
DistIR: An Intermediate Representation for
Optimizing Distributed Neural Networks

Keshav Santhanam
keshav2@stanford.edu
Stanford University, USA

Siddharth Krishna
Ryota Tomioka

Andrew Fitzgibbon
Tim Harris

{t-sikris,ryoto,awf,tiharr}@microsoft.com
Microsoft, UK

Abstract
The rapidly growing size of deep neural network (DNN)
models and datasets has given rise to a variety of distribu-
tion strategies such as data, horizontal, and pipeline par-
allelism. However, selecting the best set of strategies for a
given model and hardware configuration is challenging be-
cause debugging and testing on clusters is expensive. In this
work we propose DistIR, an IR for explicitly representing
distributed DNN computation that can capture many popu-
lar distribution strategies. We build an analysis framework
for DistIR programs, including a simulator and reference
executor that can be used to automatically search for an
optimal distribution strategy. Our unified global represen-
tation also eases development of new distribution strate-
gies, as one can reuse the lowering to per-rank backend
programs. Preliminary results using a grid search over a hy-
brid data/horizontal/pipeline-parallel space suggest DistIR
and its simulator can aid automatic DNN distribution.

CCSConcepts: •Computingmethodologies→Distributed
programming languages;Machine learning; • Software
and its engineering→ Compilers.

Keywords: intermediate representation, distributed compu-
tation, neural networks, optimization
ACM Reference Format:
Keshav Santhanam, Siddharth Krishna, Ryota Tomioka, Andrew
Fitzgibbon, and Tim Harris. 2021. DistIR: An Intermediate Repre-
sentation for Optimizing Distributed Neural Networks. In The 1st
Workshop on Machine Learning and Systems (EuroMLSys ’21), April
26, 2021, Online, United Kingdom.ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3437984.3458829

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMLSys ’21, April 26, 2021, Online, United Kingdom
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8298-4/21/04. . . $15.00
https://doi.org/10.1145/3437984.3458829

Graph Importer DistIR

Parallel
trans-
forms

Simulator
Reference
executor

Lowering
Per-rank
programs

Search

Graph
Per-rank
programs

Parallel
transforms

Figure 1. The workflow of existing approaches to DNN dis-
tribution (top) vs. DistIR’s approach (bottom). Instead of
directly transforming the computation graph to per-rank
programs, we write parallel transforms as manipulating Dis-
tIR programs, which can then be lowered for execution.

1 Introduction
In recent years, deep neural network (DNN) models and
datasets have grown rapidly in size [5, 10, 21, 29]. Large
datasets such as C4 [27] are impractical to process on a
single device, and models with billions of parameters [10]
exceed the memory capacity of even the highest grade ac-
celerators. Thus, it is often important to distribute models
across multiple devices.

DNN distribution strategies each make different trade-offs
to tailor for particular model architectures or hardware types.
For instance, data parallelism [9] partitions input data across
devices or ranks, allowing one to train models with large
batch sizes, but can incur high communication costs to sync
multiple copies of the model’s parameters. Other distribution
strategies, such as horizontal model parallelism [31], pipeline
parallelism [14, 24], and hybrid strategies that combine par-
allelism dimensions [17, 18, 21, 25], allow one to scale model
size but have their own drawbacks; e.g., pipeline parallelism
needs a large batch size to keep all devices utilized. In this
work we address the following questions:

How do we select the best distribution strategy
for a given model and hardware configuration?

https://doi.org/10.1145/3437984.3458829
https://doi.org/10.1145/3437984.3458829

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Keshav Santhanam, Siddharth Krishna, Ryota Tomioka, Andrew Fitzgibbon, and Tim Harris

How do we develop new strategies for emerging
model architectures?

Unfortunately, most existing DNN frameworks suffer from
one or more of the following problems:
1. Choosing the best strategy for a given model, or design-

ing a new strategy for a novel architecture, is difficult
because testing and debugging is expensive on real clus-
ters. Existing frameworks do not capture the distribu-
tion strategy explicitly in an intermediate representation
(IR) [24, 30, 31] (Figure 1, top), which makes it hard to per-
form static analyses such as simulation or runtime/mem-
ory estimation. Such analyses both accelerate the task of
manual distribution and are vital for systems that auto-
matically distribute models [17, 33].

2. Combining existing distribution strategies is challenging
because many implementations [14, 21, 24, 31] are not
written as composable transforms; in fact, they often have
different input and output representations.

3. Implementing a new strategy in existing frameworks is
difficult as this entails designing the distribution algorithm
while workingwith low-level programs; these frameworks
provide no way to decouple the distribution from the
creation of the per-rank programs.

In this work we propose a more modular workflow for dis-
tributing DNNs (Figure 1, bottom) using DistIR, a new IR
for distributed computation. Our key insight is that all three
of these problems can be solved by capturing the entire dis-
tributed execution in an IR and implementing distribution
strategies as transformations over this IR.

Capturing distribution explicitly in the IR design enables
efficient simulation and analysis. Problem 1 can be tackled
by using a simulator that estimates runtime and memory
consumption of DistIR programs in an automated search
algorithm to pick the best distribution for a given model.
We present an abstract interpretation framework [7, 8] that
can be instantiated to perform a variety of analyses such
as simulation in linear time. Our framework can also be
used to construct a reference executor that executes a DistIR
program on a single device. These tools can help performance
engineers quickly test and debug new distribution strategies.
A uniform representation also makes it possible to write

hybrid strategies as compositions of IR transformations (Prob-
lem 2). Implementing a new strategy, Problem 3, is simplified
as one can focus on achieving the desired distribution in a
high-level IR and reuse the lowering pass that produces the
low-level per-rank programs. An IR can also enable high-
level (e.g. Python) APIs for DNN practitioners to directly
write and combine distribution strategies.

The key properties of DistIR are its explicit schedule and
distributed semantics. DistIR programs consist of a sequence
of operations that are executed in the order that they appear.
DistIR’s semantics are defined over a distributed comput-
ing model where each device is capable of executing one

operation at a time, and operations involving multiple de-
vices execute synchronously on all participating devices (e.g.,
Send blocks both sender and receiver). Despite this apparent
restriction, we show that DistIR can express the range of
currently employed distribution strategies in deep learning.
DistIR’s benefits are not due to special primitives, but to

its explicit modeling of the global distributed computation.
DistIR uses MLIR’s dialect-based design [19] to be paramet-
ric with respect to its primitive operators. This allows one
to easily extend DistIR to new application domains by pro-
viding operator definitions and cost models. In this paper,
we instantiate DistIR with the ONNX operators for machine
learning primitives and the MPI communication primitives,
and use analytic cost models. One could instead instantiate
it with the primitive operators of XLA or PyTorch in order
to integrate it with their respective frameworks.

In summary, this paper makes the following contributions:
• We present DistIR, an efficient and expressive IR for dis-
tributed computation (§2). DistIR can express many pop-
ular distribution strategies, and DistIR’s modular design
allows adding new primitives to capture novel strategies.
• We define an analysis framework (§3), that can be used
for efficient lowering of DistIR (§3.1), a reference executor
to check correctness of DistIR transforms (§3.2), and a
fast general-purpose simulator for estimating runtime and
memory consumption of DistIR programs (§3.3).
• We show howDistIR facilitates writing parallel transforms
by implementing a prototype transform for the D/H/P
search space [30] created by combining data, horizontal
(or operator), and pipeline parallelism.
• We demonstrate DistIR’s suitability for automatic distribu-
tion and optimization by applying a grid search algorithm
over the D/H/P space (§4).

We discuss future work in §5, review related work in §6, and
conclude in §7.

2 DistIR
In this section we define the DistIR language and semantics,
and discuss its design and expressivity.

DistIR is an intermediate representation (IR) for distributed
computation based on the Multi-level Intermediate Repre-
sentation (MLIR) [19] compiler framework. As such, its syn-
tax is based on the Static Single Assignment (SSA) form.
While DistIR is designed to be implemented within the MLIR
framework, for ease of presentation, in this paper we use a
simplified syntax (e.g., Figure 2).
The top-level container is a module, which is comprised

of a sequence of functions. A function consists of a name,
a sequence of variables that are function parameters, and
a sequence of operations that make up the function body.1
Operations come in three forms: invocations to a primitive
1We use MLIR naming conventions in code listings, e.g. %x for variables
and @foo for functions.

DistIR: An Intermediate Representation for Optimizing Distributed Neural Networks EuroMLSys ’21, April 26, 2021, Online, United Kingdom

1 func @dense(%w, %x) {

2 %A, %b = UnpackTuple(%w)

3 %h = Gemm(%x, %A, %b)

4 %a = Relu(%h)

5 return %a

6 }

7
8 func @denseGrad(%wb, %x, %da) { ... }

9
10 func @lossGrad(%p, %y) { ... }

11
12 func @mlpPP(%w1: D1, %w2: D2, %x: D1, %y: D2) {

13 // Split into microbatches 1 and 2

14 %x_1: D1, %x_2: D1 = Split(%x, dim=0, num_splits=2)

15 %y_1: D2, %y_2: D2 = Split(%y, dim=0, num_splits=2)

16 // Pipeline

17 %as_1: D1 = @dense(%w1, %x_1)

18 %ar_1: D2 = Send(%as_1, 2)

19 %as_2: D1 = @dense(%w1, %x_2)

20 %p_1: D2 = @dense(%w2, %ar_1)

21 %ar_2: D2 = Send(%as_2, 2)

22 %dp_1: D2 = @lossGrad(%p_1, %y_1)

23 %dw2_1: D2, %das_1: D2 = @denseGrad(%w2, %ar_1, %dp_1)

24 %dar_1: D1 = Send(%das_1, 1)

25 %dw1_1: D1, _ = @denseGrad(%w1, %x_1, %dar_1)

26 %p_2: D2 = @dense(%w2, %ar_2)

27 %dp_2: D2 = @lossGrad(%p_2, %y_2)

28 %dw2_2: D2, %das_2: D2 = @denseGrad(%w2, %ar_2, %dp_2)

29 %dar_2: D1 = Send(%das_2, 1)

30 %dw1_2: D1, _ = @denseGrad(%w1, %x_2, %dar_2)

31 // Weight update (WU)

32 %dw1: D1 = Sum(%dw1_1, %dw1_2)

33 %w1_new: D1 = Optimizer(%w1, %dw1)

34 %dw2: D2 = Sum(%dw2_1, %dw2_2)

35 %w2_new: D2 = Optimizer(%w2, %dw2)

36 return %w1_new, %w2_new

37 }

Figure 2. DistIR code listing for pipeline-parallel train-
ing of a 2-layer MLP model over 2 devices. The functions
@denseGrad implements the backwards pass for an MLP
layer, and @lossGrad(%p, %y) computes the gradient of the
predictions %p given the labels %y. In DistIR, Send encapsu-
lates both sending and receiving. We annotate variables with
D1 and D2, and color them blue and orange, to represent that
they live on device 1 and 2 respectively.

operation (henceforth op), calls to other functions defined
in the same module, or return statements.
DistIR, like MLIR, is designed to be extensible by being

parametric on the set of primitive op typesO. The core frame-
work requires only that ops be registered along with their
function signatures. (The simulator in §3.3 requires abstract
implementations and cost functions for each registered op.)
DistIR’s type system also allows extension with new types

1

2

Time

D
ev
ic
es

𝑥1

𝑦1

𝑎𝑠1

𝑎𝑟1

𝑎𝑠2

𝑝1

𝑎𝑟2

dp1 dw21

dar1

dw11

𝑝2 dp2 dw22

dar2

dw12 WU

WU

1

2

Time

D
ev
ic
es

𝑥1

𝑦1

𝑎𝑠1

𝑎𝑟1

𝑎𝑠2

𝑎𝑟2

𝑝1 dp1 dw21

dar1

dw11

𝑝2 dp2 dw22

dar2

dw12 WU

WU

Figure 3.Traces (not-to-scale) for @mlpPP from Figure 2 (top)
and the program obtained by swapping lines 20 (𝑝1) and 21
(𝑎𝑟2) of @mlpPP. Each op is labelled by its (first) return value
(with %s omitted) and “WU” represents the weight update.

as required (we omit type annotations in our listings for
brevity). We have instantiated DistIR with ONNX ops, corre-
sponding backward ops, and MPI communication ops.
All programs in DistIR are essentially straight-line code:

there are no loops, branches, or recursive function calls. How-
ever, note that primitive ops can abstract arbitrarily complex
computations, including on multiple devices, as long as we
can define cost models for them.

For example, consider the program to train a 2-layer multi-
layer perceptron (MLP) model over 2 devices using a pipeline
parallel strategy (Figure 2). The function @dense represents
a single layer in an MLP model, and uses primitive ops Gemm
and Relu from the ONNX standard, and an UnpackTuple
primitive to unpack a tuple of weights (for brevity). The
@mlpPP function splits the training data into two micro-
batches and then executes the forward pass and backward
pass on each microbatch before summing up the gradients
and updating the weights. The code for each microbatch is in-
terleaved in order to capture the efficient pipelined execution
shown in the trace in Figure 3, as explained below.

2.1 Distributed Semantics
DistIR programs execute on a distributed computation model
over a finite fixed set of devices D, each of which is single-
threaded and can execute at most one operation at a time.
Each operation executes in a synchronous manner on a set
of devices 𝐷 ⊆ D. This means that execution of the op waits
until all the involved devices are free before proceeding. This
set of devices can depend on the runtime input values and
their locations, e.g. a Send(%x, 2) will run on devices 1 and
2 if its input %x lives on device 1.2 The op register contains
this information, along with the concrete implementations
of each primitive op in O.

2Since DistIR models the global computation over all devices, there is no
need to have separate send and receive ops.

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Keshav Santhanam, Siddharth Krishna, Ryota Tomioka, Andrew Fitzgibbon, and Tim Harris

DistIR has an explicit schedule: operations execute in the
program order, but consecutive operations on disjoint sets
of devices execute in parallel. For example, consider @mlpPP
from Figure 2. Assuming its input values %w1 and %x (respec-
tively, %w2 and %y) live on device 1 (respectively, 2), then the
first two Split ops execute in parallel on devices 1 and 2
(Figure 3, top). After this, the @dense returning %as_1 and
the Send returning %ar_1 execute in sequence (because they
both involve device 1), followed by simultaneous compu-
tation of %as_2 and %p_1 (because they involve separate
devices).
However, if we swapped lines 20 (%p_1) and 21 (%ar_2),

then because the Send involves both devices, it blocks %p_1
on device 2 from executing until it completes (Figure 3, bot-
tom). We see that DistIR enforces the schedule given by
program order, regardless of the fact that line 20 and line 21
have no data dependencies and can be swapped without
changing the program’s return value.

DistIR’s representation of pipeline training (@mlpPP) cap-
tures the distributed computation on all devices in the same
function. It captures the way the inputs are split into mi-
crobatches in the first few lines; the way the model is parti-
tioned into multiple stages using the @dense function; and
the pipeline schedule that determines the order in which
microbatches execute on a device in the program order of
the multiple calls to @dense.

Note that we do not expect users to write DistIR code man-
ually. Users can continue writing forward-only code (e.g.,
@dense) in a frontend like PyTorch and export it to ONNX or
XLA to generate the backwards pass (e.g, @denseGrad), after
which we import to DistIR. DistIR then distributes the code
by applying transforms (resulting in, e.g, @mlpPP). The ver-
bose nature of DistIR makes it easy to perform distribution,
and to analyze and simulate the resulting programs.

2.2 Expressivity
DistIR is expressive enough to represent many distributed
DNN training strategies of interest, including:

• data parallelism, horizontal parallelism [31], model paral-
lelism, and multiple pipeline-parallel schedules;
• hybrid strategies such as the one-weird-trick [18];
• training optimizations such as ZeRO [29], and tensor re-
materialization [12, 15];
• sparsely activated models such as GShard [21] and Switch
Transformers [10].

Our evaluation of these models is ongoing.
DistIR’s explicit design means that some computations

are harder to model. For example, the assumption that each
primitive op in DistIR is blocking synchronous means one
must use lower-level communication primitives such as Send
to model the behavior of fine-grained collective communi-
cation algorithms where some devices perform useful work
before others are ready. Another common optimization is to

Algorithm 1: An Abstract Interpreter for DistIR
given :an abstract domain (𝐴, S)
inputs :a function 𝑓 and a list of input values ®𝑣
outputs : the final abstract state 𝜌
𝜌 ← new abstract state mapping ®𝑥 to ®𝑣
foreach op ∈ ®op do

case op looks like ®𝑦 = 𝑂 (®𝑥) do
®𝑤 ← run abstract semantics S[𝑂] (𝜌 (®𝑥))
𝜌 ← update ®𝑦 to ®𝑤

case op looks like ®𝑦 = call foo(®𝑥) do
𝜌 ′← call Abstract Interpreter on foo and 𝜌 (®𝑥)
𝜌 ← update with ®𝑦 from 𝜌 ′

case op looks like return ®𝑥 do
return 𝜌, 𝜏

overlap communication with computation on devices like
GPUs with multiple streams. Expressing this in DistIR needs
a more verbose approach of using a DistIR device per stream,
and specifying that devices representing streams within the
same GPU have low or zero communication cost (see §3.3).

3 Analyses
This section presents an analysis framework, based on ab-
stract interpretation [7, 8], that can be used, e.g., to simulate
the runtime and memory consumption of DistIR programs.

At a high-level, abstract interpretation can be thought of
interpreting a DistIR program line-by-line, but with a state
that maps each variable to an abstract value (such as the type
Int) instead of a concrete value (such as 42). These abstract
values represent the set of possible values that the variable
can have over all executions of the program.
Abstract interpreters are parametric on the abstract do-

main, which consists of a set 𝐴 of abstract values, and ab-
stract implementations of primitive ops over this domain,
represented as an abstract semantics S : O→ 𝐴∗ → 𝐴∗ map-
ping each op type to a function over abstract values. For
abstract interpretation to be sound, the abstract semantics
must abstract the concrete semantics (more details in [7, 8]).

Algorithm 1 gives the algorithm for abstract interpretation
of a DistIR function 𝑓 on input (abstract) values ®𝑣 . It returns
an abstract state 𝜌 : X→ 𝐴.

An example instantiation of abstract interpretation is type
propagation. The abstract domain consists of types such
as Int, Float, and Tensor[Float], and the abstract imple-
mentation of each op checks that the op’s inputs match the
expected types and returns the type(s) of the output(s).

3.1 Lowering
We can use the abstract interpreter to perform the lowering
from a DistIR program representing an entire distributed

DistIR: An Intermediate Representation for Optimizing Distributed Neural Networks EuroMLSys ’21, April 26, 2021, Online, United Kingdom

computation to the per-rank program executed by each par-
ticipating device. Our abstract domain is the set of devices.
The abstract implementation of each op checks that the input
values live on the expected devices and then returns abstract
values corresponding to the devices on which each output
resides. For instance, the implementation of MatMul checks
that all inputs are on a single device 𝑑 and returns device 𝑑
as the output, whereas an Allreduce checks that inputs are
on distinct devices and returns the same list of devices. After
interpretation, we project the input program to device 𝑑 by
filtering out all ops without inputs or outputs on device 𝑑 .

3.2 Reference Executor
Another instantiation of our framework is a reference se-
quential executor, which can be used to check the output of
an DistIR program without executing it on a cluster. This
helps debug and develop parallel transforms that manipulate
DistIR programs. We use an abstract domain consisting of
concrete values (technically, each value represents a single-
ton set) and abstract implementations of each op perform
a sequential version of its computation. For example, an
MPIGather op concatenates its inputs on the specified axis.

3.3 Simulator
We can also instantiate the abstract interpreter to perform
a simulation of an DistIR program in order to estimate its
runtime and memory consumption.

We use a mixed abstract domain containing both concrete
boolean, integer, float, and tensor values, as well as types
such as Int32, Float16, and tensor types annotated with
shapes, element type, and device (Tensor[Float32, (128,
64), 0]). The concrete values are needed to infer the output
shapes of ops such as Reshape, and the shapes of tensors let
us accurately estimate the cost of tensor ops.
The abstract implementations of ops is as follows: for

most ops, such as MatMul, we simply propagate types and
devices. Some ops, such as Shape, convert an abstract input
like Tensor[Float32, (128, 64), 0] to the concrete out-
put [128, 64]. An op such as Reshape requires a concrete
shape as input and returns a tensor type with the appropriate
shape. We use the input shapes to estimate the runtime of
each op using analytic cost functions; but we could alterna-
tively use profiled data. We also estimate the live memory
profile for each device by calculating the memory require-
ment of each tensor from its shape and assuming that it is
live from the time it is created until its last usage.

4 Evaluation
Our evaluation of DistIR is ongoing. We have implemented
a prototype in Python consisting of the IR, the abstract inter-
pretation framework along with instantiations to a reference
executor and simulator, and a parallel transform for apply-
ing distribution in a hybrid data/horizontal/pipeline-parallel

0 200 400 600 800 1000
Simulated throughput

(1000 samples / second)

0

200

400

600

800

1000

Re
al

 th
ro

ug
hp

ut
(1

00
0

sa
m

pl
es

 /
se

co
nd

)

Ideal Best fit

Figure 4. Comparison of DistIR’s simulated throughput and
actual throughput for various MLP models. Real throughput
measured on similar models manually written in PyTorch.

(D/H/P) space. We have yet to implement a backend for Dis-
tIR that can execute the lowered per-rank programs on real
hardware (we discuss this and other ongoing improvements
in §5). Thus, we investigate the following questions:
1. Are the DistIR simulation results accurate compared to

manually constructed models run on real hardware? (§4.1)
2. For large scale parallelism, do the trends reported by the

DistIR simulator match intuition? (§4.2)
3. Are hybrid strategies useful for optimal distribution? (§4.3)
4. How canDistIR’s simulator enable automatic optimization

in the hybrid search space? (§4.3)
For all experiments we instantiate the simulator with ana-

lytic cost functions that estimate costs based on compute and
network performance behavior of NVIDIA GPUs - Figure 4
models a single server with up to 4 Titan V [2] GPUs, while
Figures 5 and 6 model a DGX [1] machine with 16 GPUs.

4.1 Simulator vs. Real Performance
Figure 4 shows that for deployments of up to 4 GPUs, the
DistIR simulator’s throughput predictions for MLP models
strongly correlate with the true performance measured on
real hardware using equivalent PyTorch models. We manu-
ally construct the PyTorch models and run them with 32-bit
precision using the DistributedDataParallel (DDP) API. We
vary the world size, batch size, model depth, and weight size
for a total of 81 data points. Each physical GPU data point is
the median of 100 measurements recorded after 10 warmup
iterations. We find that the Pearson coefficient between the
simulated predictions and true measurements is 0.9289, and
the Spearman coefficient is 0.9311. This suggests that the Di-
stIR simulator will correctly compare distributed strategies
during automatic distribution.

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Keshav Santhanam, Siddharth Krishna, Ryota Tomioka, Andrew Fitzgibbon, and Tim Harris

5

10

15
Data parallelism

Batch size 512
Batch size 1024
Batch size 2048
Batch size 4096

2 4 8 16 32

5

10

15
Pipeline parallelism

4 microbatches
8 microbatches
16 microbatches
32 microbatches

Devices

Sp
ee

du
p

Figure 5. Simulations showing how data parallelism and
pipeline parallelism scale as the parallelism degree increases
for an MLP model with over 1 billion parameters. For data
parallelism we compare different global batch sizes, while
for pipeline parallelism we fix the global batch size and only
vary the number of microbatches per minibatch.

Our simulator overestimates throughput for some data
points, but this is due to differences in absolute runtime
rather than differences in relative speedups as we increase
the parallelism degree. This is due to a combination of: (a)
missing kernel launch overheads in our per-op cost functions,
(b) different communication strategies used by PyTorch’s
data parallelism and our implementation, (c) discrepancies
in our cost model for backward ops. We plan to address
these issues by adding launch overheads to our cost model,
updating our data parallel transform to match PyTorch’s
DDP, and using profile-based costs for per-op cost models.

4.2 Large-Scale Parallelism Trends in Simulation
Figure 5 demonstrates that the DistIR simulator matches
the expected behavior when applying data parallelism and
pipeline parallelism in isolation to MLP models. Across all
parallelism strategies, we expect better performance when
the computation-to-communication ratio increases. With
data parallelismwe indeed observe larger speedups in through-
put (samples per second processed) relative to a single-device
execution as we increase the global batch size. Similarly,
we see with pipeline parallelism that injecting more micro-
batches into the pipeline reduces “bubble” sizes and improves
overall throughput.

4.3 Hybrid Parallelism and Automated Grid Search
Figure 6 illustrates the need to search through hybrid paral-
lelism strategies in order to maximize throughput for a given
model and number of devices. The plot shows speedups for
training a 64-layer MLP with uniform hidden size 8192 over
different numbers of devices. The lines correspond to stan-
dard strategies data, horizontal, and pipeline parallelism, and
we show that the best throughput is achieved by a hybrid

2 4 8 16
Devices

5
10
15
20

Sp
ee

du
p

Data parallelism
Horizontal parallelism

Pipeline parallelism
D+H parallelism

Figure 6. Simulated results from applying combinations of
data, horizontal, and pipeline parallelism in varying degrees
to a 4-billion parameterMLPmodel across several world sizes.
The red points indicate the best performing configuration
for each parallelism configuration and world size, while the
gray points denote all other measured combinations.

data-horizontal strategy. On the other hand, pipeline par-
allelism incurs delays due to pipeline bubbles, confirming
our intuition that pipelines are not useful for models whose
parameters fit on a single device.

We demonstrate the potential for automated distribution
by performing a grid search over the D/H/P space for the
MLPmodel above. The search space has 4 dimensions: the de-
gree of data, horizontal, and pipeline parallelism, and, for the
latter, the number of microbatches. We were able to search
through the 52 resulting strategies on a 16 device setup in
under a minute using a laptop with a 4-core processor. The
simulator was able process DistIR programs with over 16,000
ops in under a second. This indicates it is possible to use
DistIR for automatic distribution based on search algorithms.
We plan to investigate more complex search algorithms as
well as evaluate the results of search on actual hardware in
future work (§5).

5 Discussion and Future Work
There are many promising directions for future work.

First, we plan to write an exporter that converts the per-
rank DistIR programs emitted by our lowering to run on a
backend such as ORT or XLA. This will allow us to compare
the simulation results with profiling results on actual hard-
ware, and creates an end-to-end DistIR workflow. We can
then also use profile data from actual executions to improve
our per-op cost functions.

Many recent works propose algorithms for automatic dis-
tribution, such as MCMC search [17], integer and dynamic
programming [24, 33], reinforcement learning [23, 34], and
custom algorithms [16, 25]. We plan to investigate these
search strategies within our simulator-based search infras-
tructure. We also aim to extend our evaluation to other DNN
models and search over optimizations such as ZeRO [29].

DistIR: An Intermediate Representation for Optimizing Distributed Neural Networks EuroMLSys ’21, April 26, 2021, Online, United Kingdom

Many frameworks use a single-program-multiple-data
(SPMD) representation for distributed computation, because
it provides concise representations of common data-parallel
programs [21]. In DistIR, we can outline such repetitive
blocks of code into functions to reduce IR size. We are also
investigating adding a map primitive to DistIR to make it
easier to express common map-reduce patterns.

While DistIR enables composable transforms through its
uniform representation, designing these transforms in prac-
tice requires careful consideration. One challenge is that each
transformation must preserve a valid communication layout
between different devices. This is especially difficult when
constructing nested distributed strategies, as each additional
transformation introduces its own collective communication
which must respect prior parallelism dimensions. Another
challenge is navigating the trade-off between conciseness
and flexibility in the representation. For example, while the
map primitive outlined above would avoid repeating code,
it might preclude subsequent non-uniform transformations
across different branches of the mapped function. We plan
to explore these trade-offs in future work.
We plan to implement DistIR’s analysis framework and

simulator on top of MLIR. This will not only bring perfor-
mance improvements, but also allow us to reuse MLIR’s
infrastructure, use existing generic transformations and op-
timization passes, as well as make it easier to instantiate
DistIR with primitives from different domains.

6 Related Work
Many existing libraries for distributed DNNs [14, 24, 31] are
implemented in eager frameworks such as PyTorch [26] that
do not have an IR capturing the distributed computation. This
makes it hard to write analyses such as a general-purpose
simulator. Implementations of distribution strategies, e.g. the
pipeline schedule in PipeDream [24], are typically entwined
with the per-rank program code. This means a simulator
would have to either be tied to a particular pipeline schedule
or accept the schedule as an auxiliary input.
Graph-based frameworks such as XLA [20] and ONNX

Runtime [22] lower DNN models from frontends such as
Tensorflow [3] or PyTorch [26] into IRs that are capable
of expressing distributed computation [10, 14, 21, 35]. Our
contribution relative to these frameworks is to make explicit
the semantics and scope of an IR for distribution and to build
a simulation and analysis framework. We can integrate our
framework with Tensorflow by importing XLA graphs into
DistIR, just as we now import ONNX Runtime graphs.
There is existing work on combining distribution strate-

gies, as well as APIs that allow users to pick from a space
of strategies [21, 30]. However, as these strategies are not
designed as IR transforms it is difficult to extend these to
distribution strategies outside of the supported space. We

plan to build a Python API for DistIR that will further lower
the barrier for people developing new strategies.
DaCe [4], Lift [32], and Elevate [13] all propose IRs for

representing parallel computation. However, these IRs are
primarily designed for maximizing single-node parallelism
rather than optimizing distributed performance for large-
scale DNNs. DistIR is not a functional language, nor a classic
data-flow model; rather, it is an imperative language and an
SSA-based IR (though functional and data-flow models can
be lowered to it). Halide [28] separates what is computed
from how it is computed; we plan to investigate integrating
Halide’s approach inDistIR in order tomake transformsmore
modular. TVM [6] is an end-to-end optimizing compiler for
DNNs, but to our knowledge it does not consider distribution.

DayDream [36] and DNNMem [11] propose profiler-based
simulators to accurately predict DNN execution time and
memory respectively. However, DayDream has a special rep-
resentation for optimizations and DNNMem operates over
front-end model specifications, while we capture both model
and distribution in a generic IR. FlexFlow [17] uses a simu-
lator to search over a fixed strategy space but does not con-
sider pipeline parallelism. Similarly, PipeDream-2BW [25] in-
cludes a profiler to predict performance for various pipeline
parallel configurations but does not consider horizontal par-
allelism. DistIR’s simulator is more general as it is not tied
to a particular class of models or strategies.

7 Conclusion
DistIR is an efficient IR for explicit representation of dis-
tributed DNN computation. DistIR permits efficient static
analyses such as simulation that accelerate manual distri-
bution as well as enables automatic distribution via search
algorithms. Expressing distribution as transformations over
DistIR functions allows one to develop hybrid strategies
via composition of existing strategies. Our preliminary grid
search over a space of hybrid strategies demonstrates how
DistIR can be used to facilitate automatic distribution.

Acknowledgments. Part of the work was done while Keshav
was an intern at Microsoft, hosted by Yuan Yu. We thank our shep-
herd, Sam Ainsworth, as well as Trevor Gale, Fiodar Kazhamiaka,
Nuno Lopes, Alberto Magni, Deepak Narayanan, Simon Peyton
Jones, Deepti Raghavan, Dennis Shasha, James Thomas, Juliana Vi-
cente Franco, Thomas Wies, and Matei Zaharia for their invaluable
feedback. This research was supported in part by affiliate members
and other supporters of the Stanford DAWN project—Ant Financial,
Facebook, Google, Infosys, NEC, and VMware—as well as Toyota
Research Institute, Northrop Grumman, Cisco, SAP, and the NSF
under CAREER grant CNS-1651570. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the National Science Foundation. Toyota Research Institute ("TRI")
provided funds to assist the authors with their research but this
article solely reflects the opinions and conclusions of its authors
and not TRI or any other Toyota entity.

EuroMLSys ’21, April 26, 2021, Online, United Kingdom Keshav Santhanam, Siddharth Krishna, Ryota Tomioka, Andrew Fitzgibbon, and Tim Harris

References
[1] NVIDIA DGX Datasheet. URL: https://images.nvidia.com/aem-dam/

Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf.
[2] NVIDIA Titan V. URL: https://www.nvidia.com/es-la/titan/titan-v/.
[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A System for Large-Scale Machine
Learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), pages 265–283, 2016.

[4] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N Ziogas, Timo
Schneider, and Torsten Hoefler. Stateful Dataflow Multigraphs: A
Data-Centric Model for Performance Portability on Heterogeneous
Architectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–14,
2019.

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language Models are Few-Shot Learners.
arXiv preprint arXiv:2005.14165, 2020.

[6] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. TVM: An Automated End-to-End Optimizing Compiler
for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 578–594, 2018.

[7] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a Unified
Lattice Model for Static Analysis of Programs by Construction or
Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pages
238–252, 1977.

[8] Patrick Cousot and Radhia Cousot. Systematic design of program
analysis frameworks. In Proceedings of the 6th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 269–282,
1979.

[9] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
MarkMao,Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
et al. Large Scale Distributed Deep Networks. In Advances in Neural
Information Processing Systems, pages 1223–1231, 2012.

[10] William Fedus, Barret Zoph, and Noam Shazeer. Switch Transformers:
Scaling to Trillion ParameterModels with Simple and Efficient Sparsity.
arXiv preprint arXiv:2101.03961, 2021.

[11] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haox-
iang Lin, and Mao Yang. Estimating GPU Memory Consumption of
Deep Learning Models. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Egineering, pages 1342–1352, 2020.

[12] Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: An
Implementation of Checkpointing for the Reverse or Adjoint Mode
of Computational Differentiation. ACM Transactions on Mathematical
Software (TOMS), 26(1):19–45, 2000.

[13] Bastian Hagedorn, Johannes Lenfers, Thomas Koehler, Sergei Gor-
latch, and Michel Steuwer. A Language for Describing Optimization
Strategies. arXiv preprint arXiv:2002.02268, 2020.

[14] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. GPipe: Efficient Training of Giant Neural Networks using
Pipeline Parallelism. In Advances in Neural Information Processing
Systems, pages 103–112, 2019.

[15] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter
Abbeel, Joseph Gonzalez, Kurt Keutzer, and Ion Stoica. Check-
mate: Breaking the Memory Wall with Optimal Tensor Remate-
rialization. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors,
Proceedings of Machine Learning and Systems, volume 2, pages
497–511, 2020. URL: https://proceedings.mlsys.org/paper/2020/file/
084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf.

[16] Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Za-
haria, and Alex Aiken. TASO: Optimizing Deep Learning Computation
with Automatic Generation of Graph Substitutions. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles, pages 47–62,
2019.

[17] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data and Model
Parallelism for Deep Neural Networks. In A. Talwalkar, V. Smith,
and M. Zaharia, editors, Proceedings of Machine Learning and Systems,
volume 1, pages 1–13, 2019. URL: https://proceedings.mlsys.org/paper/
2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf.

[18] Alex Krizhevsky. One Weird Trick for Parallelizing Convolutional
Neural Networks. arXiv preprint arXiv:1404.5997, 2014.

[19] Chris Lattner, Jacques Pienaar, Mehdi Amini, Uday Bondhugula, River
Riddle, Albert Cohen, Tatiana Shpeisman, Andy Davis, Nicolas Vasi-
lache, and Oleksandr Zinenko. MLIR: A Compiler Infrastructure for
the End of Moore’s Law. arXiv preprint arXiv:2002.11054, 2020.

[20] Chris Leary and Todd Wang. XLA: TensorFlow, compiled. TensorFlow
Dev Summit, 2017.

[21] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen,
Orhan Firat, Yanping Huang, Maxim Krikun, Noam Shazeer, and
Zhifeng Chen. GShard: Scaling Giant Models with Conditional Com-
putation and Automatic Sharding. In International Conference on
Learning Representations, 2021. URL: https://openreview.net/forum?
id=qrwe7XHTmYb.

[22] Microsoft. ONNX Runtime. URL: https://microsoft.github.io/
onnxruntime/.

[23] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus
Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy
Bengio, and Jeff Dean. Device placement optimization with reinforce-
ment learning. In International Conference on Machine Learning, pages
2430–2439. PMLR, 2017.

[24] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R Devanur, Gregory R Ganger, Phillip B Gibbons, and Matei
Zaharia. PipeDream: Generalized Pipeline Parallelism for DNN Train-
ing. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[25] Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and
Matei Zaharia. Memory-Efficient Pipeline-Parallel DNN Training.
arXiv preprint arXiv:2006.09503, 2020.

[26] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, et al. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing
Systems, pages 8026–8037, 2019.

[27] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Ex-
ploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer. Journal of Machine Learning Research, 21:1–67, 2020.

[28] Jonathan Ragan-Kelley, Andrew Adams, Dillon Sharlet, Connelly
Barnes, Sylvain Paris, Marc Levoy, Saman Amarasinghe, and Frédo
Durand. Halide: Decoupling Algorithms from Schedules for High-
performance Image Processing. Communications of the ACM, 61(1):106–
115, 2017.

[29] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.
ZeRO: Memory Optimization towards Training a Trillion Parameter
Models. arXiv preprint arXiv:1910.02054, 2019.

[30] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.
DeepSpeed: System Optimizations Enable Training Deep Learning
Models with Over 100 Billion Parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 3505–3506, 2020.

[31] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,
Jared Casper, and Bryan Catanzaro. Megatron-LM: Training Multi-
Billion Parameter Language Models Using GPU Model Parallelism.

https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://images.nvidia.com/aem-dam/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
https://www.nvidia.com/es-la/titan/titan-v/
https://proceedings.mlsys.org/paper/2020/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/084b6fbb10729ed4da8c3d3f5a3ae7c9-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/c74d97b01eae257e44aa9d5bade97baf-Paper.pdf
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://microsoft.github.io/onnxruntime/
https://microsoft.github.io/onnxruntime/

DistIR: An Intermediate Representation for Optimizing Distributed Neural Networks EuroMLSys ’21, April 26, 2021, Online, United Kingdom

arXiv preprint arXiv:1909.08053, 2019.
[32] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: a

Functional Data-Parallel IR for High-Performance GPU Code Genera-
tion. In 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 74–85. IEEE, 2017.

[33] Jakub M Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya Ma-
hajan, and Fanny Nina Paravecino. Efficient Algorithms for Device
Placement of DNN Graph Operators. Advances in Neural Information
Processing Systems, 33, 2020.

[34] SiyuWang, Yi Rong, Shiqing Fan, Zhen Zheng, LanSong Diao, Guoping
Long, Jun Yang, Xiaoyong Liu, andWei Lin. Auto-MAP: A DQN Frame-
work for Exploring Distributed Execution Plans for DNN Workloads.

arXiv preprint arXiv:2007.04069, 2020.
[35] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo, Mike Burrows,

Andy Davis, Jeff Dean, Sanjay Ghemawat, Tim Harley, Peter Hawkins,
et al. Dynamic Control Flow in Large-scale Machine Learning. In
Proceedings of the Thirteenth EuroSys Conference, pages 1–15, 2018.

[36] Hongyu Zhu, Amar Phanishayee, and Gennady Pekhimenko. Day-
dream: Accurately estimating the efficacy of optimizations for DNN
training. In 2020 USENIX Annual Technical Conference (USENIX ATC
20), pages 337–352. USENIX Association, July 2020. URL: https:
//www.usenix.org/conference/atc20/presentation/zhu-hongyu.

https://www.usenix.org/conference/atc20/presentation/zhu-hongyu
https://www.usenix.org/conference/atc20/presentation/zhu-hongyu

	Abstract
	1 Introduction
	2 DistIR
	2.1 Distributed Semantics
	2.2 Expressivity

	3 Analyses
	3.1 Lowering
	3.2 Reference Executor
	3.3 Simulator

	4 Evaluation
	4.1 Simulator vs. Real Performance
	4.2 Large-Scale Parallelism Trends in Simulation
	4.3 Hybrid Parallelism and Automated Grid Search

	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	References

