
Trash Day: Coordinating Garbage Collection in Distributed Systems

Martin Maas? † ∗ Tim Harris† Krste Asanović? John Kubiatowicz?
? University of California, Berkeley † Oracle Labs, Cambridge

Abstract

Cloud systems such as Hadoop, Spark and Zookeeper are
frequently written in Java or other garbage-collected lan-
guages. However, GC-induced pauses can have a signifi-
cant impact on these workloads. Specifically, GC pauses
can reduce throughput for batch workloads, and cause
high tail-latencies for interactive applications.

In this paper, we show that distributed applications
suffer from each node’s language runtime system mak-
ing GC-related decisions independently. We first demon-
strate this problem on two widely-used systems (Apache
Spark and Apache Cassandra). We then propose solv-
ing this problem using a Holistic Runtime System, a dis-
tributed language runtime that collectively manages run-
time services across multiple nodes.

We present initial results to demonstrate that this
Holistic GC approach is effective both in reducing the
impact of GC pauses on a batch workload, and in improv-
ing GC-related tail-latencies in an interactive setting.

1 Introduction

Garbage-collected languages are the dominant choice for
distributed applications in cloud data centers. Languages
such as C#, Go, Java, JavaScript/node.js, PHP/Hack,
Python, Ruby and Scala account for a large portion of
code in this environment. Popular frameworks such
as Hadoop, Spark and Zookeeper are written in these
languages, cloud services such as Google AppEngine
and Microsoft Azure target these languages directly, and
companies such as Twitter [7] or Facebook [4, 5] build a
significant portion of their software around them.

This reflects the general trend towards higher-level
languages. Their productivity and safety properties of-

∗Work was started while at Oracle Labs, Cambridge. UC Berke-
ley research partially funded by the STARnet Center for Future Archi-
tecture Research, and ASPIRE Lab industrial sponsors Intel, Google,
Huawei, LG, NVIDIA, Oracle, and Samsung.

ten outweigh performance disadvantages, particularly for
companies that cannot afford the engineering workforce
to maintain large native code bases.

Garbage collection (GC) underpins many of the ad-
vantages of high-level languages. GC helps productiv-
ity because it reduces the engineering effort of explicitly
managing pointer ownership. It also eliminates a large
class of bugs, increases safety and avoids many sources
of memory leaks (the latter is very important in cloud
settings where applications often run for a long time).

GC performs well for many single-machine work-
loads. However, as we show in Section 2, it is a double-
edged sword in the cloud setting. In latency-critical ap-
plications such as web servers or databases, GC pauses
can cause requests to take unacceptably long times (this
is even true for minor GC pauses at the order of mil-
liseconds, as sub-millisecond latency requirements are
increasingly common). This is exacerbated in applica-
tions that are composed of hundreds of services, where
the overall latency depends on the slowest component (as
common in data center workloads [10]). GC also poses
a problem for applications that distribute live data across
nodes, since pauses can make a node’s data unavailable.

In our work, we investigate the sources of GC-related
problems in current data center applications. We first
show how to alleviate these problems by coordinating
GC pauses between different nodes, such that they occur
at times that are convenient for the application. We then
show how a Holistic Runtime System [15] can be used
to achieve this in a general way using an approach we
call Holistic Garbage Collection (Section 3). We finally
present a work-in-progress Holistic Runtime System cur-
rently under development at UC Berkeley (Section 4).

2 GC in Distributed Applications

Data center applications written in high-level languages
are typically deployed by running each process within
its own, independent language runtime system (such as a

1



Java Virtual Machine or Common Language Runtime).
Frameworks such as Hadoop or Spark hence run over
multiple runtime systems on different nodes, communi-
cating through libraries such as Apache Thrift [2].

A consequence of this approach is that each runtime
system makes decisions independently, including over
when to perform GC. In practice, this means that GC
pauses occur on different nodes at different times based
on when memory fills up and needs to be collected. De-
pending on the collector and workload, these pauses can
range from milliseconds to multiple seconds.

In this section, we show how GC pauses cause prob-
lems in two representative real-world systems, Apache
Spark [20] and Apache Cassandra [14]. We next demon-
strate how even simple strategies can alleviate these
problems. In Section 3, we then show how these strate-
gies can be generalized to fit a wider range of systems.

We use the commodity OpenJDK Hotspot JVM (using
the GC settings provided by each application). There are
specialized systems – such as those used in real-time sce-
narios – that limit or even eliminate GC pauses by run-
ning GC concurrently with the application [18]. How-
ever, this usually comes at the cost of reduced overall
performance or increased resource utilization (e.g., from
barrier or trap handling). Furthermore, these special-
ized runtime systems still incur pauses if memory fills up
faster than it can be collected. To our knowledge, none
of these systems are widely used in cloud settings.

We perform all experiments on a cluster of 2-socket
Xeon E5-2660 machines with 256GB RAM, connected
through Infiniband. All our workloads run on dedicated
nodes, but the network is shared with other jobs.

2.1 Case Study I: Apache Spark
Apache Spark is a distributed computation framework
representative for a class of applications often called
batch workloads. Spark jobs perform large-scale, long-
running computations on distributed data sets and perfor-
mance is measured in overall job execution time.

Problem. When running a job on a cluster, Spark
spawns a worker process on each node. Each worker then
performs a series of tasks on its local data. Occasionally,
workers communicate data between nodes (for example,
during shuffle operations). In those cases, no node can
continue until data has been exchanged with every other
node (equivalent to a cluster-wide barrier).

This synchronization causes problems in the presence
of GC pauses: if even a single node is stuck in GC dur-
ing such an operation, no other node can make progress,
and therefore all nodes stall for a significant amount of
time. Worse, once the stalled node finishes its GC, exe-
cution will continue and may quickly trigger a GC pause

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Superstep

0
5

10
15
20
25
30
35

Ex
ec

ut
io

n 
tim

e 
(s

)

(a) Baseline System (no coordination)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Superstep

0
5

10
15
20
25
30
35

Ex
ec

ut
io

n 
tim

e 
(s

)

(b) Coordinating GC (stop-the-world everywhere)

Figure 1: Impact of GC on the superstep durations of
Spark PageRank (darker = more nodes performing GC
during a superstep; white = no GC). This does not count
minor collections, which occur much more frequently but
have negligible impact.

0 50 100 150 200 250 300 350 400
Execution Time (s)

0

20

40

60

80

100
Ol

d 
Ge

ne
ra

tio
n 

(%
)

(a) Baseline System (no coordination)

0 50 100 150 200 250 300 350 400
Execution Time (s)

0

20

40

60

80

100

Ol
d 

Ge
ne

ra
tio

n 
(%

)

(b) Coordinating GC (stop-the-world everywhere)

Figure 2: Memory (old generation) occupancy and GC
pauses of Spark PageRank. Each of the colors represents
a node, and vertical lines indicate the start of a GC.

on a different node, as nodes are likely to not allocate
any memory while stalling idly, and therefore only trig-
ger GC while actually performing productive work.

To illustrate this problem, Figure 1a shows a PageR-
ank computation using Spark on an 8-node cluster (the
same workload as in the original Spark paper [20]). We
show the time that each PageRank superstep takes, as
well as how many nodes incur a GC pause during that
superstep. We clearly see that while superstep times are
homogeneous in the absence of GC, they increase sig-
nificantly as soon as at least one node is performing a
collection. Figure 2a shows the reason for this – mem-
ory occupancy increases independently on the different
nodes, and once it reaches a threshold, a collection is per-
formed, independently from the state of the other nodes.

2



Strategy. Instead of nodes collecting independently
once their memory fills up, we want all nodes to perform
GC at the same time – this way, none of the nodes waste
time waiting for another node to finish collecting. This
is reminsiscent of the use of gang-scheduling in multi-
threaded synchronization-heady workloads. Figure 1b
and Figure 2b show the effect of this strategy: we instru-
mented all the JVMs in our Spark cluster to track their
occupancy, and as soon as any one node reaches an occu-
pancy threshold (80% in this case), we triggered a GC on
all nodes in the Spark cluster. Even on our small cluster,
the PageRank computation completed 15% faster over-
all, without tuning or modifications to the JVM. This ef-
fect will become significantly more pronounced on larger
cluster sizes, since this increases the likelihood of some
node incurring a GC during each superstep. Typical
Spark deployments can contain 100 nodes or more [20].

2.2 Case Study II: Apache Cassandra
Apache Cassandra is a distributed key-value store. It uses
consistent hashing to replicate key-value pairs across
multiple nodes. Requests can be sent to any node, which
then acts as a coordinator and contacts all replicas of a
particular key-value pair to assemble a read or write quo-
rum. Cassandra is an example of an interactive work-
load: The most important metric is the latency of each
query. Systems usually require that queries take a some-
what predictable time. Requests that take longer than,
say, the 99.9 percentile of requests are called “stragglers”
and cause problems with other services relying on data
from the Cassandra cluster, e.g., to serve web requests.

Cassandra uses a different collector than the Spark ex-
ample from Section 2.1: pauses are only incurred for col-
lecting the young generation that stores freshly allocated
objects. A concurrent collector is used for the old gen-
eration (running alongside the application workload on
other threads). While Spark incurs minor collections as
well, they have little impact there – however, they do af-
fect Cassandra due to its low-latency requirements.

Problem. GC is a key contributor to stragglers in many
interactive systems [6, 8]. Figure 3a shows Cassandra
update request latencies for a YCSB [9] workload aver-
aged over 10ms intervals. While 99.9% of queries take
less than 3.3ms, the remainder takes up to 25× longer.
While GC is not the only cause, most of these long query
latencies coincide with GC on at least one of the nodes.

The impact of GC is two-fold. While many stragglers
stem from a GC pause in the coordinator responsible for
a request, others result from GC pauses in nodes hold-
ing accessed replicas, making it impossible for the co-
ordintor to assemble a quorum. Other (non-GC) sources
of stalls include periodic tasks such as anti-entropy [1].

60 80 100 120 140
Time (s)

0

20

40

60

80

100

Qu
er

y 
La

te
nc

y 
(m

s)

(a) Baseline System (no coordination)

60 80 100 120 140
Time (s)

0

20

40

60

80

100

Qu
er

y 
La

te
nc

y 
(m

s)

(b) Steering requests away from nodes in GC

Figure 3: Latencies of Cassandra update queries over
time. Colors represent the nodes that act as the coordi-
nator for each query, and the faded vertical lines in the
background indicate GC pauses on those nodes.

Strategy. Stragglers due to stalled coordinators can be
avoided by anticipating GCs and redirecting requests to
nodes that are not about to incur a GC pause. Even
though minor GC pauses may only be a few ms in du-
ration, modern data center networks enable such coordi-
nation between machines over much finer timescales.

We ran an experiment where we expose memory occu-
pancy of all nodes in the cluster to the YCSB load gener-
ator and steer requests away from nodes that are about to
collect, indicated by 80% occupancy of the young gener-
ation (Figure 4). This strategy is effective in eliminating
many of the stragglers (Figure 3b). The 99.9 %ile update
latency is improved from 3.3 ms to 1.6 ms, the worst case
from 83 ms to 19 ms. A more general strategy could ex-
tend steering to periodic tasks, as well as ensuring that
only one node within each quorum is collecting at a time
(by staggering GCs, as we describe in Section 4).

3 A General Solution: Holistic GC

After identifying several strategies to coordinate GC in
distributed systems (Section 2), our goal is to general-
ize these ideas to a wider range of applications. Today,
applications implement ad-hoc solutions to this problem,
such as reducing GC frequency using non-idiomatic Java

3



YCSB	  

Node	  0	  (50%	  full)	  

Node	  1	  (90%	  full)	   Node	  2	  (10%	  full)	  

Node	  3	  (40%	  full)	  

Memory	  Occupancy	  Informa=on	  

Request	  Generator	  
Steer	  away	  
from	  Node	  1	  

Contact	  
replicas	  Request	  Generator	  

Request	  Redirector	  

Figure 4: Avoiding GC-induced stragglers in Cassandra
by steering requests away from nodes during GC.

(e.g., large byte arrays to store data structures), writ-
ing critical parts of Java applications in C (with explicit
memory management), or treating old-generation GC as
a failure mode and restarting the application. We believe
that these strategies can be implemented in a better and
more general way via a Holistic Runtime System [15].

A Holistic Runtime System is a language runtime sys-
tem in which resource management policies span mul-
tiple nodes. Instead of making decisions about GC, JIT,
etc. independently, the per-node runtime systems that un-
derly a distributed application form a distributed system
that allows the runtimes to make globally coordinated
consensus decisions. We call the GC decisions made by
such a system Holistic GC. Note that the heaps on the
different nodes remain separate, and software still uses
their same communication libraries for sharing data.

We briefly highlight the key components for enabling
Holistic GC within a Holistic Runtime System:

(I) GC Policy. Single-node runtime systems provide
different garbage collectors to match the requirements of
different applications (e.g., throughput vs. pause times).
The same can be true for Holistic GC. In the examples
from Section 2, we saw two very different GC strate-
gies: For Spark workloads, a good strategy is Stop-the-
world everywhere (STWE), where all nodes stop for GC
at the same time, while Cassandra requires the oppo-
site, a Staggered GC (SGC) strategy that avoids bringing
down too many replicas of an entry at the same time.

(II) Communication. It is often beneficial for the
Holistic GC framework to communicate with the
application-level framework. One example is exposing
information about which nodes are about to perform GC,
so that applications can select nodes that will remain
available to fulfill a request (as with the Cassandra re-
quests above). Similarly, we may want to handle mainte-
nance tasks such as anti-entropy in addition to GC. The
Holistic Runtime could call into the application-level
framework to execute such tasks at suitable times.

Communication in the other direction is important as
well. For example, an application can communicate how
long it expects to be idle, so that the Holistic Runtime
can make decisions to run an incremental GC pass [3].

(III) Reconfiguration. The correct strategy is not just
dependent on the application, it can also depend on the
application’s program phase. For example, STWE may
be correct for a shuffle phase in Spark, but not while
Spark is accessing the file system (in which case it may
be better to collect only on data nodes that are not cur-
rently accessed). Furthermore, the set of nodes that need
to be coordinated may change depending on the opera-
tion (e.g., a distributed coordination operation may only
involve a subset of the nodes). The system must be able
to reconfigure itself to respond to these changes.

The above features should be implemented in a general
and extensible way – there will be many application-
specific special cases, and it must be possible to express
them. At the same time, configuration in the general case
should be easy – ideally, the developer should be able to
choose from a set of prepared, configurable strategies,
similar to how garbage collectors are configured today.

4 Towards a Prototype Holistic Runtime

We will now describe our vision for implementing these
ideas in a Holistic Runtime System currently under de-
velopment at UC Berkeley.

Our system is based on the OpenJDK Hotspot JVM
as the per-node runtime. It is a drop-in replacement for
Java; all that is required is to change the PATH, and Java
programs will run under the Holistic Runtime System,
transparently to the application. This approach lets us
run a large number of unmodified workloads (including
the Apache Hadoop ecosystem). We augment each per-
node runtime with a management process that is logi-
cally part of the runtime system and connects to Hotspot
through its management interface. This process can in-
teract with Hotspot by (for example) reading out memory
diagnostics or triggering GC. We will extend Hotspot as
necessary to expose additional control features not sup-
ported through the current management interface.

The per-node runtimes automatically connect to each
other and implement a consensus protocol that executes
the GC Policy (I). The policy is written in a DSL and is a
function that considers the current state of the entire sys-
tem (such as the memory occupancy on each node) and
produces a plan describing what language events each
node should perform next (Figure 5).

We now divide execution into epochs of varying
lengths, during which the runtimes exchange their state
and execute the policy to generate a plan that defines
1) the length of the next epoch, 2) on which nodes to
perform language operations such as GC during the next
epoch, 3) any necessary reconfiguration (III) and 4) up-
dates to a set of key-value pairs stored on each node. The
latter are a general mechanism for communication be-

4



Hotspot%JVM% Hotspot%JVM%

Applica=on%Node%0% Applica=on%Node%1%

M
e
m
o
ry
H%

O
cc
u
p
a
n
cy
,%

S
ta
te
%

Plan,%

Reconfigura=on,%

State%updates%

%

UserHsupplied%

Policy%

Holis=c%Run=me%System%

Monitor% Monitor%

State% State%

Figure 5: Overview of the Holistic GC approach.

tween Holistic Runtime and application (II), through an
API to access the key-value pairs from user-level appli-
cations and frameworks.

Once the plan has been created, it is shared between
all nodes and executed throughout the next epoch. The
function describing the policy is user-defined (making
it very flexible), but a library of standard strategies can
be supplied for ease-of-use, and as a basis to compose
them into more complex strategies. The system will al-
low users to write policies in a domain-specific language
that can query state (such as memory occupancy or the
key-value pairs), construct a plan (i.e., define language
events to be triggered at a particular time on a specific
set of nodes), and compose policies.

To make this possible, the framework abstracts away
decentralized policy execution and time synchroniza-
tion (we are planning to achieve this by using a failure-
tolerant consensus protocol such as Raft [16]). We are
also planning to integrate the Holistic Runtime with clus-
ter managers such as Mesos [13], to feed information to
the cluster manager that may help it to make scheduling
decisions, and vice-versa. From a user perspective, all
that needs to be implemented is a policy function that
takes the states of all nodes and produces a plan.

Example Strategies. We anticipate that applications
will require different strategies to coordinate GC be-
tween nodes. While these strategies will probably be
based on a small set of primitives (e.g., STWE), there
will be application-specific aspects that require knowl-
edge available to the programmer (e.g., about strategies
that work best in particular phases of the application).

We therefore expect that applications will be shipped
with a GC policy included. For example, the strategies
identified for the two case studies from Section 2 could
be described as follows (ignoring reconfiguration):

Algorithm 1 Spark (Section 2.1)
GC Policy (I) STWE (in: nodes, out: plan)

if nodes.filter(x: x.oldgen ≥ 0.8) 6= {} then
plan += MajorGC(nodes)

We assume a constant epoch for simplicity (e.g., 100ms),
but both the epoch and the GC threshold (0.8) could be
dynamically adapted to match the allocation rate.

Algorithm 2 Cassandra (Section 2.2)
GC Policy (I) SGC (in: nodes, out: plan)

static gc group = 0
for n ∈ nodes do

state[n steeraway] = (n.newgen > 0.8);
if (n%Q == gc group and n.newgen > 0.8) then

gc nodes += n
if len(gc nodes) 6= 0 then

plan += MinorGC(gc nodes)
gc group = (gc group+1)%Q

Communication (II) KEY-VALUE PAIRS
bool n steeraway: true tells application to avoid node

Here, the gc_group variable ensures that only one node
in a quorum (where Q is the quorum size) can ever per-
form GC: Nodes in Cassandra are arranged in a ring, with
replicas in successive nodes, so by ensuring that nodes
that are Q apart from each other perform GC at the same
time, we stagger GC in such a way that no two nodes in
a quorum perform GC in the same time. Note that this
assumes that memory does not fill up before a GC is trig-
gered – this is ensured by steering requests away from
nodes close to GC, reducing their allocation rates.

The application-level code that steers the load to the
different nodes can access the “n steeraway” key-value
pairs to decide which nodes to send requests to.

Related Work. Several concurrent projects are also in-
vestigating the interaction between GC and distributed
workloads. Broom [12] confirms the problems we
showed in Spark for iterative Naiad workloads and pro-
poses to eliminate GC altogether through region-based
memory management. Other concurrent work confirms
the impact of GC on interactive workloads [17], and pro-
poses strategies [11, 19] similar to our steering approach.
In contrast, we focus on supporting all these strategies in
a general Holistic Runtime System that is simple to de-
ploy and minimally invasive to existing applications.

5 Conclusion

We are currently working on a complete Holistic Run-
time System, supporting a wide range of applications and
allowing developers to easily implement whichever GC
policies they like for their applications. In doing so, we
want to provide fault tolerance and integrate into exist-
ing ecosystems such as Apache (e.g., supporting YARN).
Our plan is to make this system openly available, for de-
velopers to implement and experiment with GC policies.

5



References

[1] “AntiEntropy (Apache Wiki Entry).” [On-
line]. Available: https://wiki.apache.org/cassandra/
AntiEntropy

[2] “Apache Thrift.” [Online]. Available: http://thrift.
apache.org/

[3] “G1: One Garbage Collector To
Rule Them All.” [Online]. Avail-
able: http://www.infoq.com/articles/G1-One-
Garbage-Collector-To-Rule-Them-All

[4] “Hack: A New Programming Language for
HHVM.” [Online]. Available: https://code.
facebook.com/posts/264544830379293/hack-a-
new-programming-language-for-hhvm/

[5] “On garbage collection.” [Online]. Available:
http://hhvm.com/blog/431/on-garbage-collection

[6] “Predictable Low Latency: ”Cinnober on GC
pause-free Java applications through orchestrated
memory management”.” [Online]. Available:
http://www.cinnober.com/sites/cinnober.com/files/
news/Cinnober%20on%20GC%20pause%20free%
20Java%20applications.pdf

[7] “Twitter Shifting More Code to JVM, Cit-
ing Performance and Encapsulation As Pri-
mary Drivers.” [Online]. Available: http:
//www.infoq.com/articles/twitter-java-use

[8] 29min, “Measuring SOLR Query Performance.”
[Online]. Available: https://29min.wordpress.com/
2013/07/31/measuring-solr-query-performance/

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ra-
makrishnan, and R. Sears, “Benchmarking Cloud
Serving Systems with YCSB,” in Proceedings of
1st ACM Symposium on Cloud Computing, 2010.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, “Dynamo: Amazon’s
highly available key-value store,” in Proceedings
of 21st ACM SIGOPS Symposium on Operating
Systems Principles, 2007.

[11] H. Fan, A. Ramaraju, M. McKenzie, W. Golab, and
B. Wong, “Understanding the Causes of Consis-
tency Anomalies in Apache Cassandra,” Proceed-
ings of the VLDB Endowment, vol. 8, no. 7, 2015.

[12] I. Gog, J. Giceva, M. Schwarzkopf, K. Viswani,
D. Vytiniotis, G. Ramalingan, M. Costa, D. Mur-
ray, S. Hand, and M. Isard, “Broom: Sweeping
out Garbage Collection from Big Data systems,” in
Proceedings of the 15th USENIX/ACM Workshop
on Hot Topics in Operating Systems, 2015.

[13] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica,
“Mesos: A Platform for Fine-grained Resource
Sharing in the Data Center,” in Proceedings of
the 8th USENIX Conference on Networked Systems
Design and Implementation, 2011.

[14] A. Lakshman and P. Malik, “Cassandra: A De-
centralized Structured Storage System,” SIGOPS
Oper. Syst. Rev., vol. 44, no. 2, Apr. 2010.

[15] M. Maas, K. Asanovic, T. Harris, and J. Kubiatow-
icz, “The Case for the Holistic Language Runtime
System,” in First International Workshop on Rack-
scale Computing.

[16] D. Ongaro and J. Ousterhout, “In Search of
an Understandable Consensus Algorithm,” in
Proceedings of the 2014 USENIX Annual Technical
Conference, 2014.

[17] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker,
and B.-G. Chun, “Making Sense of Performance
in Data Analytics Frameworks,” in 12th USENIX
Symposium on Networked Systems Design and Im-
plementation, 2015.

[18] G. Tene, B. Iyengar, and M. Wolf, “C4: The
Continuously Concurrent Compacting Collector,”
in Proceedings of the International Symposium on
Memory Management, 2011.

[19] D. Terei and A. Levy, “Blade: A Data Center
Garbage Collector,” ArXiv e-prints, Apr. 2015.

[20] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, 2012.

6


