
Hardware Trends: Challenges and
Opportunities in Distributed Computing

Tim Harris
timothy.l.harris@oracle.com

Oracle Labs, Cambridge, UK

This article is about three trends in computer hardware, and some of the challenges
and opportunities that I think they provide for the distributed computing commu-
nity. A common theme in all of these trends is that hardware is moving away from
assumptions that have often been made about the relative performance of different
operations (e.g., computation versus network communication), the reliability of
operations (e.g., that memory accesses are reliable, but network communication
is not), and even some of the basic properties of the system (e.g., that the contents
of main memory are lost on power failure).

Section 1 introduces “rack-scale” systems and the kinds of properties likely in
their interconnect networks. Section 2 describes challenges in systems with shared
physical memory but without hardware cache coherence. Section 3 discusses non-
volatile byte-addressable memory. The article is based in part on my talk at the
ACM PODC 2014 event in celebration of Maurice Herlihy’s sixtieth birthday.

1 Rack-Scale Systems
Rack-scale computing is an emerging research area concerned with how we design
and program the machines used in data centers. Typically, these data centers are
built from racks of equipment, with each rack containing dozens of discrete ma-
chines. Over the last few years researchers have started to weaken the boundaries
between these individual machines, leading to new “rack-scale” systems. These
architectures are being driven by the need to increase density and connectivity
between servers, while lowering cost and power consumption.

Different researchers mean somewhat different things by “rack-scale” systems.
Some systems are built from existing components. These are packaged together
for a particular workload, providing appropriate hardware, and pre-installed soft-
ware. Other researchers mean systems with internal disaggregation of compo-
nents: rather than having a rack of machines each with its own network interface

timothy.l.harris@oracle.com


and disk, there might be a pool of processor nodes, disk nodes, and networking
nodes, all connected over an internal intra-machine interconnect. The interconnect
can be configured to connect sets of these resources together in different ways.

Initial commercial systems provide high-density processor nodes connected
through an in-machine interconnect to storage devices or to external network in-
terfaces. Two examples are the HP MoonShot [12] and AMD SeaMicro [22]
single-box cluster computers. Many further ideas are now being explored in re-
search projects—for instance, the use of custom system-on-chip (SoC) processors
in place of commodity chips.

These systems should not just be seen as a way to build a faster data cen-
ter. Communicating over a modern interconnect is different from communicating
over a traditional packet-switched network. Some differences are purely trends in
performance—a round-trip latency for over InfiniBand is around 1µs, not much
longer than the time it takes to access data stored in DRAM on a large shared-
memory multiprocessor. The Scale-Out NUMA architecture provides one exam-
ple of how latencies may be reduced even further: it exposes the interconnect
via a specialized “remote memory controller” (RMC) on a multi-core SoC [18].
Threads in one SoC can instruct the RMC to transfer data to or from memory at-
tached to other processors in the system. Threads communicate with their RMC
over memory-mapped queues (held in the SoC’s local caches). These operations
have much lower latency than accessing a traditional network interface over PCI-
express. If network latencies continue to fall, while memory access latencies
remain constant, then this will change the optimization goals when designing a
protocol.

Other differences are qualitative: as with the Scale-Out NUMA RMC, the
main programming interface in many rack-scale systems is RDMA (remote direct
memory access). To software, RDMA appears as a transfer from a region of a
sender’s address space into a region in the receiver’s address space. Various forms
of control message and notification can be used—e.g., for a receiver to know
when data has arrived, or for a sender to know when transmission is complete.
Flow control is handled in hardware to prevent packet loss.

Some network devices provide low-latency hardware distribution of data to
multiple machines at once (for instance, the ExaLINK matrix switches advertise
5ns latency multicasting data from an input port to any number of output ports [1]).
Researchers are exploring how to use this kind of hardware as part of an atomic
broadcast mechanism [7].

Research questions: What are the correct communication primitives to let ap-
plications benefit from low-latency communication within the system? What are
the likely failure modes and how do we achieve fault tolerance? What is the ap-



propriate way to model the guarantees provided by the interconnect fabric in a
rack-scale system? How should the interconnect fabric be organized, and how
should CPUs, DRAM, and storage be placed in it?

2 Shared Memory Without Cache Coherence
The second trend I will highlight is toward systems with limited support for cache
coherence in hardware: Some systems provide shared physical memory, but rely
on threads to explicitly flush and invalidate their local caches if they want to com-
municate through them. Some researchers argue that cache coherence will be
provided within a chip, but not between chips [15].

This kind of model is not entirely new. For instance, the Cray T3D system
distributed its memory across a set of processor nodes, providing each node with
fast access to its local memory, and slower access to uncacheable remote mem-
ory [6]. This kind of model makes it important to keep remote memory accesses
rare because they will be slow even in the absence of contention (for instance,
lock implementations with local spinning are well suited in this setting [16]).

One motivation for revisiting this kind of model is to accommodate special-
ized processors or accelerators. The accelerator can transfer data to and from
memory (and sometimes to and from the caches of the traditional processors) but
does not need to participate in a full coherence protocol. A recent commercial
example of this kind of system is the Intel Xeon Phi co-processor accessed over
PCI-express [13].

A separate motivation for distributing memory is to provide closer coupling
between storage and computation. The IRAM project explored an extreme ver-
sion of this with the processor on the same chip as its associated DRAM [19].
Close coupling between memory and storage can improve the latency and energy
efficiency of memory accesses, and permit the aggregate bandwidth to memory to
grow by scaling the number of memory-compute modules.

Some research systems eschew the direct use of shared memory and instead
focus on programming models based on message passing. Shared memory buffers
can be used to provide a high-performance implementation of message passing
(for instance, by using a block of memory as a circular buffer to carry messages).
This approach means that only the message passing infrastructure needs to be
aware of the details of the memory system. Also, it means that software written
for a genuinely distributed environment is able to run correctly (and hopefully
more quickly) in an environment where messages stay within a machine.

Systems such as K2 [14] and Popcorn [4] provide abstractions to run existing
shared-memory code in systems without hardware cache coherence, using ideas
from distributed shared memory systems.



Conversely, the Barrelfish [5] and FOS [23] projects have been examining the
use of distributed computing techniques within an OS. Barrelfish is an example of
a multikernel in which each core runs a separate OS kernel, even when the cores
operate in a single cache-coherent machine. All interactions between these ker-
nels occur via message-passing. This design avoids the need for shared-memory
data structures to be managed between cores, enabling a single system to operate
across coherence boundaries. While it is elegant to rely solely on message passing,
this approach seems better suited to some workloads than to others—particularly
when multiple hardware threads share a cache, and could benefit from spatial and
temporal locality in the data they are accessing.

Research questions: What programming models and algorithms are appropri-
ate for systems which combine message passing with shared memory? To what
extent should systems with shared physical memory (without cache coherence) be
treated differently from systems without any shared memory at all?

3 Non-Volatile Byte-Addressable Memory

There are many emerging technologies that provide non-volatile byte-addressable
memory (NV-RAM). Unlike ordinary DRAM, memory contents are preserved
on power loss. Unlike traditional disks, locations can be read or written at a fine
granularity—nominally individual bytes, although in practice hardware will trans-
fer complete cache lines. Furthermore, unlike a disk, these reads and writes may
be performed by ordinary memory access instructions (rather than using RDMA,
or needing the OS to orchestrate block-sized transfers to or from a storage device).

This kind of hardware provides the possibility of an application keeping all of
its data structures accessible in main memory. Researchers are starting to explore
how to model NV-RAM [20]. Techniques from non-blocking data structures pro-
vide one starting point for building on NV-RAM. A power loss can be viewed as
a failure of all of the threads accessing a persistent object. However, there are
several challenges which complicate matters:

First, the memory state seen by the threads before the power loss is not nec-
essarily the same as the state seen after recovery. This is because, although the
NV-RAM is persistent, the remainder of the memory system may hold data in or-
dinary volatile buffers such as processor caches and memory controllers. When
power is lost, some data will transiently be in these volatile buffers. Aggressively
flushing every update to NV-RAM may harm performance. Some researchers
have explored flushing updates upon power-loss, but that approach requires care-
ful analysis to ensure that there is enough residual power to do so [17].



The second problem is that applications often need to access several structures—
for instance, removing an item from one persistent collection object, processing
it, and adding it to another persistent collection. If there is a power loss during the
processing step, then we do not want to lose the item.

Transactions provide one approach for addressing these two problems. It may
be possible to optimize the use of cache flush/invalidate operations to ensure that
data is genuinely persistent before a transaction commits, while avoiding many
individual flushes while the transaction executes. As with transactional memory
systems, transactions against NV-RAM would provide a mechanism for compos-
ing operations across multiple data structures [10]. What is less clear is whether
transactions are appropriate for long-running series of operations (such as the ex-
ample of processing an object when moving it between persistent collections).

Having an application’s data structures in NV-RAM could be a double-edged
sword. It avoids the need to define translations between on-disk and in-memory
formats, and it avoids the time taken to load data into DRAM for processing. This
time saving is significant in “big data” applications, not least when restarting a
machine after a crash. However, explicit loading and saving has benefits as well
as costs: It allows in-memory formats to change without changing the external
representation of data. It allows external data to be processed by tools in a generic
way without understanding its internal formats (backup, copying, de-duplication,
etc.). It provides some robustness against transient corruption of in-memory for-
mats by restarting an application and re-loading data.

It is difficult to quantify how significant these concerns will be. Earlier expe-
rience with persistent programming languages explored many of these issues [3].
Recent work on dynamic software updates is also relevant (for instance, Arnold
and Kaashoek in an OS kernel [2], and Pina et al. in applications written in
Java [21]).

Research questions: How should software manage data held in NV-RAM, and
what kinds of correctness properties are appropriate for a data structure that is
persistent across power loss?

4 Discussion

This article has touched on three areas where developments in computer hard-
ware are changing some of the traditional assumptions about the performance and
behavior of the systems we build on.

Processor clock rates are not getting significantly faster (and, many argue, core
counts are unlikely to increase much further [9]). Nevertheless, there are other



ways in which system performance can improve such as by integrating special-
ized cores in place of general-purpose ones, or by providing more direct access
to the interconnect, or by removing the need to go through traditional storage
abstractions to access persistent memory.

I think many of these trends reflect a continued blurring of the boundaries
between what constitutes a “single machine” versus what constitutes a “distributed
system”. Reliable interconnects are providing hardware guarantees for message
delivery, and in some cases this extends to guarantees about message ordering as
well even in the presence of broadcast and multicast messages. Conversely, the
move away from hardware cache coherence within systems means that distributed
algorithms become used in systems which look like single machines—e.g., in the
Hare filesystem for non-cache-coherent multicores [8].

Many of these hardware developments have been proceeding ahead of the ad-
vancement of formal models of the abstractions being built. Although the use of
verification is widespread at low levels of the system – especially in hardware –
I think there are important opportunities to develop new models of the abstrac-
tions exposed to programmers. There are also opportunities to influence the di-
rection of future hardware evolution—perhaps as with how the identification of
the consensus hierarchy pointed to the use of atomic compare and swap in today’s
multiprocessor systems [11].

References
[1] EXALINK Fusion (web page). Apr. 2015. https://exablaze.com/
exalink-fusion.

[2] J. Arnold and M. F. Kaashoek. Ksplice: automatic rebootless kernel updates. In
Proc. 4th European Conference on Computer Systems (EuroSys), pages 187–198,
2009.

[3] M. Atkinson and M. Jordan. A review of the rationale and architectures of PJama: a
durable, flexible, evolvable and scalable orthogonally persistent programming plat-
form. Technical report, University of Glasgow, Department of Computing Science,
2000.

[4] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski, A. Ravichandran, C. Kendir,
A. Murray, and B. Ravindran. Popcorn: bridging the programmability gap in
heterogeneous-ISA platforms. In EuroSys ’15: Proc. 10th European Conference
on Computer Systems (EuroSys), page 29, 2015.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe,
A. Schüpbach, and A. Singhania. The Multikernel: A new OS architecture for
scalable multicore systems. In SOSP ’09: Proc. 22nd Symposium on Operating
Systems Principles, pages 29–44, 2009.

https://exablaze.com/exalink-fusion
https://exablaze.com/exalink-fusion


[6] Cray Research Inc. CRAY T3D System Architecture Overview Manual.
1993. ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/
T3D.overview.html.

[7] M. P. Grosvenor, M. Fayed, and A. W. Moore. Exo: atomic broadcast for the rack-
scale computer. 2015. http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/
wrsc15-exo-abstract.pdf.

[8] C. Gruenwald III, F. Sironi, M. F. Kaashoek, and N. Zeldovich. Hare: a file system
for non-cache-coherent multicores. In EuroSys ’15: Proc. 10th European Confer-
ence on Computer Systems, page 30, 2015.

[9] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward dark silicon in
servers. IEEE Micro, 31(4):6–15, 2011.

[10] T. Harris, M. Herlihy, S. Marlow, and S. Peyton Jones. Composable memory trans-
actions. In PPoPP ’05: Proc. 10th Symposium on Principles and Practice of Parallel
Programming, June 2005.

[11] M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst.,
13(1):124–149, Jan. 1991.

[12] HP Moonshot system: a new class of server. http://www.hp.com/go/moonshot,
Accessed 9 July 2014.

[13] Intel Corporation. Intel Xeon Phi coprocessor system software developers guide.
2012. IBL Doc ID 488596.

[14] F. X. Lin, Z. Wang, and L. Zhong. K2: a mobile operating system for heterogeneous
coherence domains. In ASPLOS ’14: Proc. Conference on Architectural Support for
Programming Languages and Operating Systems, pages 285–300, 2014.

[15] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip cache coherence is here
to stay. Commun. ACM, 55(7):78–89, 2012.

[16] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–
65, Feb. 1991.

[17] D. Narayanan and O. Hodson. Whole-system persistence. In ASPLOS ’12: Proc.
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 401–410, 2012.

[18] S. Novaković, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot. Scale-Out NUMA.
In ASPLOS ’14: Proc. 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, 2014.

[19] D. A. Patterson, K. Asanovic, A. B. Brown, R. Fromm, J. Golbus, B. Gribstad,
K. Keeton, C. E. Kozyrakis, D. B. Martin, S. Perissakis, R. Thomas, N. Treuhaft,
and K. A. Yelick. Intelligent RAM (IRAM): the industrial setting, applications and
architectures. In Proceedings 1997 International Conference on Computer Design:
VLSI in Computers & Processors, ICCD ’97, Austin, Texas, USA, October 12-15,
1997, pages 2–7, 1997.

ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/wrsc15-exo-abstract.pdf
http://www.cl.cam.ac.uk/~mpg39/pubs/workshops/wrsc15-exo-abstract.pdf
http://www.hp.com/go/moonshot


[20] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In Proceeding of the
41st Annual International Symposium on Computer Architecuture, ISCA ’14, pages
265–276, Piscataway, NJ, USA, 2014. IEEE Press.

[21] L. Pina, L. Veiga, and M. Hicks. Rubah: DSU for Java on a stock JVM. In OOPSLA
’14: Proc. Conference on Object-Oriented Programming Languages, Systems, and
Applications, Oct. 2014.

[22] A. Rao. SeaMicro SM10000 system overview, June 2010. http://www.
seamicro.com/sites/default/files/SM10000SystemOverview.pdf.

[23] D. Wentzlaff and A. Agarwal. Factored operating systems (fos): the case for a
scalable operating system for multicores. SIGOPS Oper. Syst. Rev., 43(2):76–85,
Apr. 2009.

http://www.seamicro.com/sites/default/files/SM10000SystemOverview.pdf
http://www.seamicro.com/sites/default/files/SM10000SystemOverview.pdf

	Rack-Scale Systems
	Shared Memory Without Cache Coherence
	Non-Volatile Byte-Addressable Memory
	Discussion

