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Abstract

We introduce Callisto-RTS, a parallel runtime system
designed for multi-socket shared-memory machines. It
supports very fine-grained scheduling of parallel loops—
down to batches of work of around 1K cycles. Fine-
grained scheduling helps avoid load imbalance while
reducing the need for tuning workloads to particular
machines or inputs. We use per-core iteration counts
to distribute work initially, and a new asynchronous
request combining technique for when threads require
more work. We present results using graph analytics al-
gorithms on a 2-socket Intel 64 machine (32 h/w con-
texts), and on an 8-socket SPARC machine (1024 h/w
contexts). In addition to reducing the need for tuning, on
the SPARC machines we improve absolute performance
by up to 39% (compared with OpenMP). On both archi-
tectures Callisto-RTS provides improved scaling and per-
formance compared with a state-of-the-art parallel run-
time system (Galois).

1 Introduction

Callisto-RTS is a parallel runtime system for multi-
socket shared-memory machines. We focus on support-
ing graph analytics workloads such as PageRank [24]
and betweenness centrality (BC) [17]. These workloads
are increasingly important commercially, and are the fo-
cus of benchmarking efforts [1,29] along with myriad
single-machine systems (such as Galois [21] and Green-
Marl [12]) plus distributed systems (such as Grappa [20],
Naiad [19], and Pregel [18]). It can be difficult to exploit
parallelism in these workloads because of the difficulty
of achieving good load balance in combination with low
synchronization overhead.

As a running example, consider a PageRank superstep
(Figure 1). The outer loop (t) ranges over the vertices.
Within each iteration, w ranges over the vertices adjacent
to t and updates the new PageRank value for t based on
the current value for w. Using OpenMP [22] as an exam-
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#pragma omp for schedule (dynamic, BATCH_SIZE)
for (node_t t = 0; t < G.num_nodes(); t ++) {
double val = 0.0;
for (edge_t w_idx = G.r_begin[t];
w_idx < G.r_begin[t+1]; w_idx ++) {
node_t w = G.r_node_idx [w_idx];
val += G_pg_rank[w] /
(G.begin[w+l] - G.begin[w]);
}
G_pg_rank_nxt[t]

(1 -d) / N+ d = val;

Figure 1: PageRank loop, with t ranging over vertices.

ple, the pragma indicates that chunks of BATCH_SIZE
iterations of the outer loop should be assigned dynam-
ically to threads. Typically, implementations do this
assignment using an atomic fetch-and-add on a shared
counter.

Setting BATCH_SIZE introduces a trade-off. Setting
it too large risks load imbalance with threads taking large
batches of work and some threads finishing before oth-
ers. Setting it too small introduces synchronization over-
heads. It is difficult to set BATCH_SIZE optimally: The
distribution of work between iterations is uneven—for
instance, in a social network, a celebrity has millions of
times more neighbors than the average. Even if the it-
erations are divided evenly, the work performed by each
thread can be uneven. In some cases, the number of in-
structions executed by each thread may be the same, but
the execution times differ based on differing memory ac-
cess times and cache locality.

With Callisto-RTS we reduce the need for tuning by
making it efficient to select a very small BATCH_SIZE
while still achieving good performance and scalability.
Concretely, on machines with 1024 h/w contexts, we
achieve good performance down to batches of around 1K
cycles (compared with 200K cycles using dynamically-
scheduled OpenMP loops).

Section 2 describes our programming model. We pro-
vide nested parallel loops, with control over how the h/w
contexts in the machine are allocated to different levels
of the loop hierarchy—for instance, an outer loop may



run with one thread per core, leaving additional threads
per core idle until an inner level of parallelism is reached.
This non-work-conserving approach to nesting can lead
to better cache performance when iterations of the inner
loop share state in a per-core cache.

Section 3 describes our techniques for fine-grained
scheduling. We use a combining mechanism to allow
threads requesting new work to aggregate their requests
before accessing a shared loop iteration counter (e.g.,
combining requests via local synchronization in a core’s
L1$). In addition, we introduce a new asynchronous
combining scheme in which a thread issues a request for
new work while executing its current work: this provides
more time for combining to occur. Furthermore, combin-
ing can be achieved with ordinary read/write operations,
reducing the need for atomic read-modify-writes.

In Section 4 we evaluate the performance of
Callisto-RTS. We use a 2-socket Intel 64 system (having
32 h/w contexts). We also use an 8-socket TS SPARC
system (having 1024 h/w contexts).

In addition to comparing with OpenMP, we compare
our PageRank results with Galois, a state-of-the-art sys-
tem based on scalable work-stealing techniques [21].
In contrast to work-stealing, we show that the shared-
counter representation we use for parallel work en-
ables single-thread performance improvements of 5%—
26%. The asynchronous combining technique enables
improved scalability on both processor architectures.

Section 5 discusses related work, and in particular,
task-parallel models such as Cilk [8] and Intel Threading
Building Blocks (TBB) [27]. Callisto-RTS differs from
these systems in two main ways: First, compared with
work-stealing, our implementation is specialized to dis-
tributing batches of loop iterations via shared counters.
We use request aggregation to reduce contention on these
counters rather than using thread-local work queues. Our
approach avoids reifying individual batches of loop iter-
ations as entries in work queues (as in Galois [21]), or re-
quiring memory fence instructions (as in typical thread-
safe work queues).

Second, we exploit the structure of the machine in
the programming model as well as the runtime system.
Our non-work-conserving approach to nesting contrasts
with work-stealing implementations of task-parallelism
in which all of the idle threads in a core would start ad-
ditional iterations of the outer loop. In workloads with
nested parallelism, our approach aims to reduce cache
pressure when different iterations of an outer loop have
their own iteration-local state: it can be better to have
multiple threads sharing this local state, rather than ex-
tracting further parallelism from the outer loop.

As we say in Section 6, we hope that our techniques
can be incorporated in runtime systems for other parallel
programming models in the future.

2 Programming model: parallel loops

In this section we introduce the API supported by
Callisto-RTS. Our initial workloads are graph analytics
algorithms generated by a compiler from the Green-Marl
DSL [12]. Therefore, while we aim for the syntax to be
reasonably clear, our main goal is performance.

2.1 Flat parallelism

Callisto-RTS is based on parallel loops. As with
OpenMP, and other systems, the programmer must en-
sure that iterations are safe to run concurrently. Loops
are expressed using C++ templates, specializing a
parallel_for function according to the type of the
iteration variable and the loop body. Currently, all of the
loops we support distribute their iterations across the en-
tire machine (as with OpenMP dynamic loops). This
reflects the fact that our graph algorithms typically have
little temporal or spatial locality in their access patterns.
In this setting, we are concerned more by reducing con-
tention in the runtime system, and achieving good uti-
lization of the h/w contexts across the machine and their
associated memory.

A parallel loop to sum the numbers O... 10 is written:

struct example_1 ({
atomic<int> total {0}; // O-initialized atomic
void work (int idx) {
total += idx;
} o} oel;

// Atomic add

parallel_ for<example_1, int>(el, 0, 10);
cout << el.total;

The work function provides the body of the loop. The
parallel_for is responsible for distributing work
across multiple threads. The struct el is shared across
the threads. Hence, due to the parallelism, atomic add
operations are needed for each increment.

Per-thread state can be used to reduce the need for
atomic operations. This per-thread state is initialized
once in each thread that executes part of the loop, and
then passed in to the work function:

struct per_thread { int wval; };

struct example_2 {
atomic<int> total {0}; // O-initialized atomic

void fork (per_thread &pt) { pt.val = 0; }

void work (per_thread &pt, int idx) {
pt.val += idx; // Unsynchronized add
}

void join (per_thread &pt) {
total += pt.val; // Atomic add
b} oez;

parallel_for<example_2, per_thread, int>(e2,0,10);
cout << e2.total;



In this example the fork function is responsible for ini-
tializing the per-thread counter. The work function then
operates on this per-thread state. The join function uses
an atomic add to combine the results.

Design rationale. We considered whether to use C++
closures for loop bodies. Closures provide simpler syn-
tax for short examples, and permit variables to be cap-
tured by reference in the work function. Unfortunately,
performance using current compilers appears to depend a
great deal on the behavior of optimization heuristics. We
hope that future compiler implementations may provide
more consistent performance in this regard.

For simplicity we have an implicit barrier at the end of
each loop. This reflects the fact that, for our workloads,
there is abundant parallel work, plus the fact that our im-
plementation techniques are effective in reducing load
imbalance (meaning that threads tend to arrive at the end
of the loop at approximately the same time). We assume
that Callisto-RTS runs within an environment where it
has exclusive use of h/w contexts, and so thread preemp-
tion is not a concern.

In more variable multiprogrammed environments, dy-
namic techniques such as the prior work of Harris et
al. [10], or abstractions and analyses such as those of
Vajracharya and Grunwald may mitigate straggler prob-
lems [32].

Implementation. We initially describe the implementa-
tion with a single level of parallelism (we discuss nest-
ing in Section 2.2). A set of worker threads is created
at startup. A designated leader starts the main function.
Other follower threads wait for work.

The definition of parallel_for instantiates a
work_item object and publishes it via a shared pointer
being watched by the followers. The work item has a
single run function containing a loop which claims a
batch of iterations before calling the workload-specific
loop body. This repeats until there are no more itera-
tions. A reference to the loop’s shared state is held in the
work item. Any per-thread state is stack-allocated within
run. Consequently, only threads that participate in the
loop will need to allocate per-thread state.

The thread which claims the last batch of iterations re-
moves the work item from the shared pointer (prevent-
ing additional threads needlessly starting it). Finally,
each work item holds per-socket counts of the number
of active threads currently executing the item. The main
thread waits for these counters to all be 0, at which point
it knows that all of the iterations have finished execution.

Process termination is signaled by the leader publish-
ing a designated “finished” work item. This approach
means that a worker can watch the single shared location
both for new work and for termination.

2.2 Nested parallelism

Parallel loops can be nested within one another, and
Callisto-RTS provides control over the way in which h/w
contexts are allocated to different levels. The workloads
we target have a small number of levels of parallelism,
dependent on the algorithm rather than on its input. For
instance, our betweenness centrality workload (BC) uses
an outer level to iterate over vertices, and then an inner
level to implement a parallel breadth-first search (BFS)
from each vertex.

Selecting which of these levels to run in parallel de-
pends on the structure of the hardware. In the BC ex-
ample, parallelizing just at the outer level can give poor
performance on multi-threaded cores because multiple
threads’ local BFS states compete for space in each per-
core cache. Conversely, parallelizing just at the inner
level gives poor performance when the BFS algorithm
does not scale to the complete machine. A better ap-
proach is to use parallelism at both levels, exploring dif-
ferent vertices on different cores, and using parallel BFS
within a core.

A loop indicates how many levels are nested inside
it. That is, a loop at level O is an inner loop with no
further parallelism. A loop at level 1 encloses one level
of parallelism, and so on.

Concretely, writing parallel for is short for a
loop at level 0. For a loop at level N we write:

outer_parallel_ for<...>(N, ...);

Design rationale. This “inside out” approach to count-
ing levels provides composability. A leaf function using
parallelism will always be at level 0, irrespective of the
different contexts it may be called from.

If we numbered levels “outside in”, or assigned them
dynamically, then it would not be possible to distinguish
(i) reaching an outer loop which should be distributed
across all h/w contexts, versus (if) an outer loop which
should just be distributed at a coarse level leaving some
idle h/w contexts for use within it. A given program may
have loops with different depths of nesting—e.g., a flat
initialization phase at level O over all h/w contexts, while
a subsequent computation may start at level 1 and just be
distributed at a per-socket granularity.

Implementation. Environment variables set how nest-
ing levels map to the machine—e.g., indicating that loops
at level O should be distributed across all h/w contexts,
and that level 1 should be distributed across cores, core-
pairs, sockets, or some other granularity. This flexibil-
ity lets a program express multiple levels of parallelism
on large NUMA machines, but execute more simply on
smaller systems.
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(d) Threads tl and t5 enter loops at level 0,
threads participate in the respective loops.

Figure 2: Allocation of threads to loops. Thread tI is at
the top level, t5 at level 1, and other threads at level 0.
This allocation might be appropriate in a 2-socket ma-
chine with 4 threads per socket.

Based on this, threads are organized into a tree which
selects which threads participate in which loops. Each
thread has a level in this tree, and a parent at the next
non-empty level above it (aside from a designated top-
level thread which forms the root of the tree). Dynami-
cally, each thread has a status (leading or following). Ini-
tially, the root is leading and all other threads following.
A thread’s leader is the closest parent with leading status
(including the thread itself). A thread at level n becomes
a leader if it encounters a loop at level k<n. A follower
at level n executes iterations from a loop if its leader en-
counters a loop at level k<n; otherwise, it remains idle.

Figure 2 illustrates this dynamically with a possible or-
ganization of 8 threads across 2 sockets. The main thread
is #1 and is the parent to #,. . .t4 in its own socket (level 0),
and 75 in the second socket (level 1). In turn, #5 is parent
to #6. . .t3. Initially #; is the only active thread and hence
leader to all of the threads #;...rg (Figure 2a). If #; en-
counters a loop at level O then all threads participate in
the same loop (Figure 2b). If, instead, #; encounters a
loop at level 1 then just #; and t5 participate (Figure 2c).
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(a) Distribution during a level-0 loop led by t;
in which all threads participate, using separate
request combiners on each socket.
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(b) Distribution during a level-0 loop
led by t; (left) and by ts5 (right).

Figure 3: Work scheduling in different loops. A top-level
loop spans the complete machine, with local requests for
work being combined in each set of nearby threads. Mul-
tiple instances of an inner loop may run concurrently on
the two parts of the machine.

If #5 then encounters a new loop at level O then it becomes
a leader of #5. . .tg (Figure 2d).

3 Work scheduling

We now introduce our techniques for distributing itera-
tions. We take a hierarchical approach to defining work
scheduling policies, with a number of basic policies that
can be combined to form more complex variants. An in-
dividual thread makes a request to the leaves of a tree
of work distributors, and the implementation of this may
involve a call to a higher level distributor, and so on.
Our hierarchical approach lets us reflect the struc-
ture of the machine within the hierarchy used for work
scheduling. In addition, it lets us explore a range of
complex policies—for instance, exploring whether data
structures should be per-core, per-L2$, or per-socket,
Figure 3 illustrates this using the example 8-thread ma-
chine. Separate work distributors are used for each par-
allel loop—for instance, the 4-thread loop led by #; is
handled separately from the 4-thread loop led by #s.

Shared counter. The simplest work distributor is a sin-
gle shared counter, initialized with loop bounds, and with
threads claiming iterations using an atomic fetch-and-
add. We include this initial implementation to reflect
the techniques used for dynamically scheduled loops in
many OpenMP runtime systems.



Distributed counters. The iteration space is dis-
tributed evenly across a number of stripes according to
the number of sockets, cores, or threads within the ma-
chine. Each thread is associated with a home stripe (e.g.,
with per-socket distribution, this would correspond to the
thread’s socket). In addition, each thread has a current
stripe. A thread claims iterations by an atomic incre-
ment on its current stripe until that portion of the iter-
ation space has been completed. At that point it moves
on to the next stripe, and so on until it returns to its home
stripe.

Request combining. Request combiners attempt to ag-
gregate requests for work which are made “nearby” in
time and in the machine. Rather than have multiple
threads across the machine compete for atomic updates
to a single cache line, sets of threads can compete at a
finer granularity, and then a smaller number of threads
compete at a global level. This reduces the number of
atomic read-modify-write instructions, and it increases
the likelihood that contention remains in a local cache.

Each thread using a combiner has a slot comprising a
pair of loop indices (start/request, and end). For
instance, in a 4-slot combiner:

Start / request 0 REQ REQ 0
End 0 0 0 16

Combiner lock

Slot (0,0) is quiescent. Slot (REQ,0) represents a request
for work. Slot (0, 16) represents supplied work (in this
case the iterations 0...16). In addition, each combiner
has a lock which needs to be held by a thread collecting
requests to make to the upstream counter. In pseudocode:

my_slot->start = REQ; // Issue request

while (1) {
// Try to acquire the combiner lock
if (!spinlock_tryacquire (&my_combiner->lock)) {

// Lock busy. Wait for it to be released, then
// test if we received work.

while (spinlock_is_held (&my_combiner->lock)) {
}

else {

// We acquired combiner lock, collect requests
// from other threads, issue aggregate request,
// distribute work, and then release lock.

spinlock_release (&my_combiner->lock) ;
}
// Test if request has been satisfied
if (my_slot->start != REQ) {

return (my_slot->start, my_slot->end);

bl

A thread starts by writing REQ in its slot and then trying
to acquire the lock. If the lock is already held then the
current thread waits until the lock is available, and tests
if its request has been satisfied. Note that the REQ flag
is set without holding the lock, and so the lock holder

is not guaranteed to see the thread’s request. If a thread
succeeds in acquiring the lock it scans the other slots for
REQ and issues an upstream request for a separate batch
of iterations for each requester (for brevity we omit the
pseudocode for this). Work is distributed by writing to
the end field and then overwriting REQ in the start
field. Hence, on a TSO memory model, a thread receiv-
ing work sees the start-end pair consistently once REQ is
overwritten.

If all threads using a combiner share a common L1$
then the request slots are packed onto as few cache lines
as possible, Otherwise, each slot has its own line. Com-
biners can be configured in various ways. For instance,
threads within a core could operate with a per-core com-
biner, and then additional levels of combining could oc-
cur at a per-L2$ level (if this is shared between cores), or
at a per-socket level. We examine some of these alterna-
tives in our evaluation (Section 4).

Asynchronous combining. With asynchronous com-
bining, a thread sets its request flag before executing its
current batch, rather than after finishing it. This asyn-
chrony exposes a request over a longer interval: other
threads using the same combiner can handle the request
while the thread’s current batch is being executed.

In the best case, in a set of n threads, all but 1 will find
they have received new work immediately after finishing
their current batches. Furthermore, if additional combin-
ing occurs, then it increases the size of the aggregate re-
quests issued from the combiner (reducing contention on
the next level in the work scheduling tree), and it reduces
contention on the lock used within the combiner (if most
threads receive work then they never need to acquire the
lock). The fast-path for the n — 1 threads receiving work
is (i) reading the work provided to them, and (i) setting
their request flag. On a TSO memory model this avoids
fences or atomic read-modify-write instructions.

4 Evaluation

We evaluate the performance of Callisto-RTS using ma-
chines with two different processor architectures:

Intel 64. We use an Oracle X4-2 machine. This is a 2-
socket machine with Intel Xeon E5-2650 IvyBridge pro-
cessors. Processors have a per-socket L3$, and per-core
L2$ and L1$. Each core provides 2 h/w contexts for a
total of 32 h/w contexts in the machine.

We use GCC 4.7.4 and Linux 2.6.32. We confirmed a
subset of our results on Linux 3.14.33 but saw no dif-
ference: the runtime systems are set to employ user-
mode synchronization using atomic instructions rather
than futex system calls.
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Figure 4: Microbenchmark scalability on X4-2 and T5-8 systems.

SPARC. We use an Oracle T5-8 machine. This is an
8-socket machine with SPARC T35 processors. Each
socket has 16 cores, and each core supports 8 h/w
contexts for a total of 1024 h/w contexts in the machine.
As with the Intel 64 system, the T5-8 has per-socket
L3$ caches, and per-core L2$ and L1$. We use Solaris
Studio 12.4 on Solaris 11.2.

Both architectures provide atomic compare-and-swap
(CAS). The Intel 64 architecture provides additional
atomic operations such as fetch-and-add. Conversely, the
TS5 processor provides a user-mode-accessible wrpause

instruction which lets a h/w context wait for a config-
urable number of cycles, avoiding it consuming pipeline
resources while waiting. This can be important in the
multi-threaded SPARC processor: when only a single
h/w context is runnable, that context can issue instruc-
tions to multiple pipelines in each clock cycle. On the
T5-8 we use wrpause for 128 cycles in loops which
are expected to unblock quickly (e.g., during request
combining), and for approximately 4096 cycles in loops
which are expected to unblock less quickly (e.g., waiting
on entry to a loop).

We spread software threads as widely as possible



within the machine. We use OpenMP with active
synchronization (i.e., spinning, rather than blocking in
the OS). For each algorithm-machine combination, the
fastest result is achieved with active synchronization
rather than blocking. We report median-of-3 results.

We use three evaluation workloads: a scalability mi-
crobenchmark (Section 4.1), graph algorithms with a sin-
gle level of parallelism (Section 4.2), and an additional
graph workload using nested parallelism (Section 4.3).

4.1 Work scheduling microbenchmarks

We start using a microbenchmark with a single large
loop. Each iteration performs a variable amount of work
(incrementing a stack-allocated variable a set number of
times). We can vary (7) the number of increments used in
the different iterations, (if) the number of threads, (iii) the
work scheduling mechanism we use, and (iv) the batch
size in which threads claim work. We investigate two
ways of organizing the work within the loop:

Even distribution. Here, each iteration performs the
same amount of work: good load balancing can be
achieved by splitting the iteration space evenly. We eval-
uate six scheduling techniques: a single shared counter,
distributed counters at per-socket, per-core, and per-
thread granularities, and finally per-core work combin-
ers coupled with per-core counters (Figure 4). For each
machine we show a workload with a modest number of
threads (left column), and then a workload with 1 thread
per core (center column), and a workload with all h/w
contexts in use (right column). We plot the speedup rela-
tive to unsynchronized sequential code on the same ma-
chine.

On the Intel 64 system, a single iteration is around 50
cycles. The per-core and per-thread counters perform
well across the experiments. Request combining per-
forms slightly worse than simple per-thread or per-core
counters: little combining occurs with only two threads
per core.

On the SPARC system, each iteration is around 140
cycles. At large batch sizes, we see good scaling to
512 h/w contexts. The number of instructions per cy-
cle is 0.34 and so, with 2 pipelines per core, we would
expect to saturate the cores with 750 threads. Beyond
this point, contention between threads for pipeline re-
sources can limit performance. We believe this is an ex-
ample workload where the user-mode mwa it instruction
in the future SPARC M7 processor [25] could provide
improved scalability—unlike wrpause, the mwait in-
struction permits a thread to monitor a memory location
while waiting, rather than needing to pick a specific in-
terval in advance.

Combining shows slight benefits at high thread counts

and low batch sizes. As expected, the CAS loop used
to increment the counters starts to need re-execution
under higher contention (on Intel 64 we can use an
atomic fetch-and-add). Re-execution consumes pipeline
resources that could otherwise be used productively.

Asynchronous combining generally aggregates re-
quests from all of the active threads in a core irrespective
of the batch size used (e.g., with 256 threads, there are
2 threads per core, and each combined request is for 2
batches). Synchronous combining is effective only when
the batch sizes are small, making requests more likely to
“collide”.

Skewed distribution. With the skewed work distribu-
tion, the first n iterations each contain 1024x the work of
the others. We set n so that the total work across all iter-
ations is the same as the even distribution. The aim is to
study the impact of different work scheduling techniques
when there is contention in the runtime system: threads
which start at the “light” end of the iteration space will
complete their work quickly and start to contend for work
with threads at the “heavy” end.

On the Intel 64 system, per-core and per-thread coun-
ters perform well. As with the even workload, two
threads per core provides little opportunity for combin-
ing.

On the SPARC systems, the use of combining has sig-
nificant benefits at high thread counts (512 or 1024), with
some additional benefit from asynchronous combining.
The skewed workload means that we see CAS failures
and re-execution when incrementing shared counters. In
contrast, per-core combining allows most threads to re-
quest work by setting their request flag (which remains
core-local in the L1$) and then waiting “politely” using
wrpause.

Summary. Based on these results, we use per-thread
counters as the default on Intel 64, and per-core coun-
ters with asynchronous combining on SPARC.

In addition to the results shown here we explored two-
level combining schemes in which threads combine re-
quests within a core, before using a further level of com-
bining within a socket. We saw combining occurring at
both levels, but the the overall benefits from reduced con-
tention did not offset the cost of the additional operations
used. Per-core combining with per-core counters per-
formed better across all workloads, and so we omit the
two-level results.

4.2 Graph algorithms

We now evaluate Callisto-RTS using the PageRank and
Triangle Counting algorithms from Green-Marl [12]
(Figure 5). In Section 4.3 we use a betweenness central-
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Figure 5: Graph algorithms on LiveJournal (4.8M vertices) and Twitter (42M vertices). Execution times normalized
to the best OpenMP result. Below each plot we show the ratio of the best configuration’s execution time to the best

OpenMP result.

ity algorithm [17] as an example with nested parallelism.

We use the SNAP LiveJournal dataset (4.8M vertices,
69M edges) [16] and the Twitter data set of Kwak er al.
(42M vertices, 1.5B edges) [14].

We focus on the SPARC machine. As the microbench-
mark results illustrated, the smaller 2-socket Intel 64 sys-
tem does not exhibit a great deal of sensitivity to work
scheduling techniques with per-thread counters.

For each machine-algorithm combination we show:
the original OpenMP implementation, and then
Callisto-RTS using a single global counter, per-socket
counters, and per-core counters with asynchronous com-

bining. Each plot shows the performance of the given
technique across thread counts (32...1024), and batch
sizes (1024...4). Each square shows the execution time,
normalized to the best OpenMP result. Below each plot,
we show the time of the best configuration, normalized
to the best OpenMP result. Note that the dark rows at
the top of the plots indicate there are insufficient threads
to perform well on these scalable workloads, even with
perfect work scheduling and no overheads.

On the LiveJournal input, careful tuning is needed to
get good performance with OpenMP or with a single
counter: different numbers of threads are best for the dif-
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ferent algorithms, and there is a sharp fall-off in perfor-
mance if the best configuration is not selected.

The OpenMP implementations often perform better
than Callisto-RTS using a single global counter. This
is because they use static scheduling on some loops
where work is known to be distributed evenly (e.g., copy-
ing from one array to another). Static scheduling works
well on such loops, but not on the main parts of the algo-
rithm.

Using a single global counter leads to poor per-
formance at small batch sizes, and work imbalance
with large batches. Per-socket counters provide signif-
icant improvement at smaller batch sizes. As in the
microbenchmark, per-core counters with asynchronous
combining provide good performance over a wide range
of configurations. We see similar trends on the Twitter
input.

Comparison with Galois. The Galois system is a
lightweight infrastructure for parallel in-memory pro-
cessing. In prior work, Nguyen ef al. demonstrated
that Galois has good performance and scalability across
a range of graph benchmarks [21]. We use version
2.2.1. We adapted the Galois PageRank code to use the
same in-memory compressed sparse row representation
as with Callisto-RTS. Compared with the Galois origi-
nal, this modified implementation is faster across every
test. We disabled concurrency control and confirmed that
we obtained identical performance between Galois and
Callisto-RTS. Thread placement is identical between the

two runtime systems. We use Galois’ default batch size
(32) in both systems.

Figure 6 shows the resulting performance on the X4-
2 and T5-8. All results are normalized to the single-
threaded implementation without concurrency control.
Callisto-RTS performs better on both machines and both
inputs.

On the X4-2, Callisto-RTS scales similarly on both
graphs up to 16 threads (1 thread per core), with a slight
additional benefit from hyperthreading. Galois scales
well on the Twitter graph, with 15-20% overhead com-
pared with Callisto-RTS. Galois does not scale well on
the LiveJournal graph with shorter loop iterations. Both
differences are due to the way Galois distributes chunks
of work. Each chunk is reified in memory as a block list-
ing the iterations to execute, with each thread holding a
current working block, and per-socket queues of blocks.
On the smaller graph, the iterations are short-running and
contention on per-socket queues appears to limit scaling.
On the Twitter graph, each iteration is longer and con-
tention less significant. However, the inner loop of fetch-
ing an iteration and executing it remains slower than with
Callisto-RTS.

We see similar trends on the T5-8. Galois and
Callisto-RTS both scale well to 128 threads (1 per
core), as does the additional Callisto-RTS variant us-
ing per-socket iteration counters. Beyond this point,
Callisto-RTS continues to scale well with asynchronous
work distribution, whereas the other implementations are
harmed by contention between threads when distributing
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work. On both graphs, Callisto-RTS performs well using
the complete machine of 1024 threads.

Summary. Compared with the OpenMP implementa-
tion, using per-core counters with asynchronous combin-
ing improves the best-case performance in all four of the
workloads in Figure 5 by 6%, 8%, 17%, and 39%. In ad-
dition, and perhaps more significantly, the performance
achieved is more stable over different thread and batch
settings, and does not require the programmer to select
between static and dynamic scheduling.

4.3 Nested parallelism

Our final results use nested parallelism to compute be-
tweenness centrality [17]. For each vertex, the computa-
tion executes breadth-first-search (BFS) traversals. The
execution time can be large even for a modestly sized
graph. We use the SNAP Slashdot data set [16] (82.1K
vertices, 948K edges). Figure 7 compares flat parallelism
(in which we process each vertex sequentially), versus
nested parallelism at different levels. We use a parallel
BFS algorithm with 13 different parallel loops, some ini-
tializing per-BFS data structures, and others performing
parallel expansion of the next level of vertices. There is
a barrier in between each loop (just between the threads
executing that BFS, rather than system-wide).

On this workload, flat parallelism scales well to the
level of 1 thread per core (128 threads on the T5-8
SPARC system). We see little improvement from fur-
ther threads, and then some degradation at 512...1024
threads. We recorded values from the SPARC CPU per-
formance counters. With 1 thread per core, 9.8% of load
instructions miss in the L2-D$. With flat parallelism, this
rises steadily to 29% with 8 threads per core.

We obtain the best performance using nesting within a
single core, corresponding to the L.2-D$ in this machine.
Using nested parallelism, the miss rate rises only slightly
to 10.8% when moving from 128 to 1024 threads.

In addition to the results shown here we tried (i) nested
parallelism at a per-socket level, and (ii) parallelism only

at the inner level in the BFS algorithm. Both of these al-
ternatives were substantially worse than flat parallelism.

5 Related work

We discuss related work under three sections: program-
ming models providing parallel loops, implementations
of task parallelism, and prior work on combining tech-
niques:

Parallel loops. Our techniques could be used in imple-
mentations of programming models which include paral-
lel loops. Examples include OpenMP [22], parallel loops
in Intel Threading Building Blocks (TBB) [27], and the
proposed C Parallel Language Extensions [6]. Currently,
the GCC 4.9 OpenMP implementation uses a per-loop
shared counter with atomic fetch-and-add. As our results
show, this approach requires careful tuning.

Task-parallelism. Systems such as Cilk [8], TBB [27],
Wool [7,26], and the Java ForkJoin framework [15]
support task-parallel programming by distributing
lightweight tasks using work-stealing systems such as
those of Blumofe er al. [3] or Chase-Lev [5]. Cilk and
TBB provide parallel loops built over task-parallel ab-
stractions, recursively decomposing loops until a mini-
mum size is reached (analogous to the batch size).

Typically, the common execution path involves a
thread taking a task from a local work queue, decompos-
ing the task, pushing part of the task back onto the queue,
and executing the extracted iterations. While these steps
can remain local to a thread, they require an atomic oper-
ation or memory fence [2]. Our request combining tech-
nique avoids these operations (aside from the one thread
performing the aggregate request). Asynchronous com-
bining reduces our fast path to a read of the current batch,
followed (without a fence) by a write for a new request.

Tzannes et al. [30,31] observe that a thread can avoid
repeated operations on a work-queue by only pushing
tasks on to the queue when it is below a threshold size
(if the queue is above this size then that indicates that
other threads are busy because otherwise items from the
queue would have been stolen).

Using work stealing provides the opportunity to bene-
fit from large amounts of prior work on scalable imple-
mentations (dating back at least as far as the work of Bur-
ton and Sleep [4], and stretching to ongoing work such
as that of Tzannes et al. [31]). As discussed in our evalu-
ation, Galois is a state-of-the-art example of this kind of
implementation, specialized to shared-memory NUMA
systems, However, reifying each loop iteration as an en-
try in a work-stealing queue introduces storage and pro-
cessing costs, especially when loops contain short itera-
tions.



Combining algorithms. Many systems have used com-
bining techniques in which operations are aggregated to
reduce contention. Direct software implementations of
early techniques such as combining trees [9] and com-
bining funnels [28] have typically not performed well.
Hendler et al. illustrate this in the evaluation of their
flat combining technique for handling requests on a lock-
based shared data structure [11]. As in our request com-
biners, with flat combining each thread has a structure to
publish requests for work, and a lock which is held while
collecting requests. Unlike our design, flat combining
requires threads to watch both the lock and their own
request—our approach allows threads to just watch the
lock (enabling the use of instructions such as mwait),
and we make requests asynchronously with working.

Oyama et al. described a technique in which a lock
protects a data structure and threads add requests to a
LIFO queue associated with the lock [23]. Each thread
must perform a successful CAS on the head of the list,
whereas we allow threads to publish requests by writing
to a per-thread flag. We use combining within a core,
and empirically the cost of scanning the flags is better
than the cost of maintaining a list.

Klaftenegger et al. described a queue-based delegation
model in which a thread making a write-only request can
proceed concurrently with the request’s execution [13].
Our specialized use of delegation avoids maintaining an
explicit queue, and handles a read-modify-update opera-
tion involving aggregation as well as delegation.

6 Conclusions and future work

In this paper we have introduced runtime system tech-
niques for supporting parallel loops with fine-grain work
scheduling. We are able to scale down to batches of work
of around 1000 cycles on machines with 1024 h/w con-
texts, and we are able to achieve good scaling with work-
loads where the distribution of work between loop iter-
ations is skewed. In addition, on an example workload
with nested parallelism, we were able to obtain further
scaling by matching the point at which we switch to the
inner level parallelism to the position of the L.2-D$ in
the machine. This lets multiple threads execute the inner
loops while sharing data in their common cache.

We believe that the techniques used in Callisto-RTS
are applicable to other parallel programming models.
The combining techniques could be applied transparently
in implementations of OpenMP dynamically scheduled
loops—either with, or without, asynchronous combin-
ing.

In addition, the same techniques could be applied to
work-stealing systems. It may be profitable to use per-
core queues and for threads within a core to use com-
bining to request multiple items at once. As with loop

scheduling in Callisto-RTS, this may reduce the number
of atomic operations that are needed, and enable asyn-
chrony between requesting work and receiving it. Fur-
thermore, using per-core queues with combining may
make loop termination tests more efficient than with per-
thread queues (typical termination tests must examine
each queue at least once before deciding that all of the
work is complete).

Finally, we see the trend toward increasingly non-
uniform memory performance making it important to ex-
ercise control over how nesting maps to hardware. In
Callisto-RTS we do this by explicit programmer control
and non-work-conserving allocation of work to threads.
Future systems could use feedback-directed techniques,
or potentially static analyses.
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