
Towards Whatever-Scale Abstractions
for Data-Driven Parallelism

Tim Harris† Maurice Herlihy† Yossi Lev† Yujie Liu?

Victor Luchangco† Virendra J. Marathe† Mark Moir†

Oracle Labs† Lehigh University?

Abstract
Increasing diversity in computing systems often requires problems
to be solved in quite different ways depending on the workload,
data size, and resources available. This diversity is increasingly
broad in terms of the organization, communication mechanisms,
and performance and cost characteristics of individual machines
and clusters. Researchers have thus been motivated to design ab-
stractions that allow programmers to express solutions indepen-
dently of target execution platforms, enabling programs to scale
from small shared memory systems to distributed systems compris-
ing thousands of processors. We call these abstractions “Whatever-
Scale Computing”.

In prior work, we have found data-driven parallelism to be a
promising approach for solving many problems on shared mem-
ory machines. In this paper, we describe ongoing work towards
extending our previous abstractions to support data-driven paral-
lelism for Whatever-Scale Computing. We plan to target rack-scale
distributed systems. As an intermediate step, we have implemented
a runtime system that treats a NUMA shared memory system as
if each NUMA domain were a node in a distributed system, using
shared memory to implement communication between nodes.

1. Introduction
Modern computing systems are increasingly diverse, complex and
heterogeneous, ranging from shared-memory multi-socket multi-
core systems, to racks of computers connected via high-speed in-
terconnects, to loosely coupled farms of thousands of processors.
Writing software that performs well across such a variety of sys-
tems is difficult: nodes may communicate via high-speed message-
passing interconnects such as InfiniBand, or via shared memory,
which may or may not be cache-coherent, or some combination of
these; locality characteristics vary depending on system topology;
even within one system, nodes may differ from each other, and may
change over time. We need models that facilitate programming for
such platforms by providing abstractions that can make effective
use of whatever hardware happens to be executing the program; we
say these models support whatever-scale computing.

The quest to improve programmer productivity through such
models is not new. It motivated parts of the design of popular
MapReduce frameworks [9, 10, 28], and recent languages for sci-
entific computing such as X10 [7], Chapel [6], and Fortress [16],
among other systems. The recent surge in domain-specific lan-
guages (DSLs) for areas such as machine learning [25], graph ana-
lytics [19, 21, 22], or statistical computation [24] reflects a similar
desire to boost productivity via high-level abstractions.

This paper describes Domino, a whatever-scale programming
model we are developing to support data-driven computation.
Domino provides an abstract model of distribution and locality,

along with constructs for manipulating remote data and compu-
tation, so that a single program can be mapped onto a variety of
systems using implementation techniques appropriate for each sys-
tem: we use a different implementation of Domino for each system,
but want to avoid manual refactoring or tuning of the workloads
running above it.

Domino builds on our prior work on constrained data-driven
parallelism (CDDP) [18], which provided triggers that associate
handler functions with pieces of data and spawn tasks that execute
a handler whenever the associated data is updated. Tasks can run
in parallel, and computation typically propagates as a wavefront
through a data structure as updates to one piece of data structure
trigger handlers that update neighboring pieces. Our earlier paper
illustrated the use of this model for graph analysis workloads and a
discrete event simulator [18]. Our earlier work provided additional
control over how tasks are run by grouping their execution into
phases and enabling the programmer to identify when a task should
be triggered for execution in the active (current) phase or deferred
to the next phase. This degree of control was crucial for obtaining
good performance in several workloads.

As described in Section 2, Domino extends this model by:

• providing special global references to identify data that may be
held on a remote machine and to specify how arrays should be
partitioned across machines; and
• providing async and do..finish constructs, with which the pro-

grammer can express opportunities for hiding the latency of re-
mote operations when running in large/distributed systems.

The semantics of these constructs is designed carefully so that they
impose no overhead when running on a small machine, or when
accessing local data.

In Section 3, we describe three different approaches to im-
plementing these sets of constructs: one for small cache-coherent
shared-memory machines, one for NUMA machines, and one for
clusters without cache-coherent shared memory. We describe our
implementation of two of these; the second is an intermediate step
towards the third, which we have not yet implemented. This is work
in progress, and we do not yet have experimental results to present.
Related work and concluding remarks appear in Sections 4 and 5.

2. Programming Model
Before presenting the extensions for Domino (Sections 2.1–2.2),
we briefly review our prior work on CDDP [18]. In this model,
a computation is divided into tasks executed by threads. One task
may spawn new tasks explicitly via a parallel-for loop, or implicitly
by updating data which has a trigger attached to it:

x triggers [deferred] f(void ∗d);
∗y triggers [deferred] g(void ∗d);

We say x is a direct trigger for f and y an indirect trigger for g.
When such declarations are in effect, writing to x spawns a task to
run f, and modifying data by dereferencing y spawns a task that
runs g. The functions f and g take a single argument, a pointer to
the data that was modified. We provide an example of how trigger
functions can be used in practice in Section 2.3.

A trigger is deferred if it is declared with the optional deferred
keyword; otherwise, it is immediate. A task spawned by a deferred
trigger is not executed until all tasks spawned by immediate triggers
have completed. Such declarations implicitly partition tasks into a
totally ordered sequence of phases: an immediate trigger spawns
tasks in the current phase, a deferred trigger spawns tasks in the
next phase, and no task is executed until all tasks in previous phases
have completed. At any time, every unfinished task is in either the
current phase or the next phase of the entire computation. In addi-
tion, a callback function to be invoked between phase transitions
can be registered with the runtime system.

2.1 Domino
The abstractions of CDDP were designed for a shared memory
model in which tasks running on any thread could access any
data across a single shared heap. In Domino we wish to extend
this model to support NUMA machines and distributed systems,
without imposing costs when running on SMP machines.

Our overall approach is to partition a program’s data across a
set of compute domains, but to retain the basic data-driven execu-
tion model, with handler functions running at the compute domain
of the data they are watching. We provide three constructs for ex-
pressing and controlling accesses between compute domains:

// r is a global reference to an object of type T:
gRef T r;

do {
// Functions called via global references in the async
// block may execute asynchronously with respect to the
// code after the async block:
async {

// Invoke foo at the site of r ’ s target object . If this
// results in a blocking RPC, then execution resumes
// at the statement following the async block.
r . foo ();
}
...

// Execution is blocked at finish until any asynchronous work
// started within it is complete.
} finish;

A gRef is an opaque global reference that enables remote data
access. A function call via a global reference, if enclosed in an
async block, may result in an asynchronous RPC to a different
compute domain: the caller does not block for the call to return,
and resumes execution at the async block’s continuation. (A call
via a gRef reference that is not in an async block executes syn-
chronously, even if an RPC is required.) The do..finish block al-
lows a task to wait for all the pending RPCs issued by asyncs in the
do..finish block to complete and return.

We keep the async construct for handling asynchronous exe-
cution independent from the trigger mechanisms for introducing
parallelism. We assume that triggers already provide sufficient par-
allelism to exploit the hardware available—either using the cores,
or by requesting enough data accesses to saturate the interconnect.
Eschewing parallelism within tasks avoids the need for synchro-
nization within a task, simplifying the programming model and re-
moving a source of runtime overhead when RPC calls do not block.

2.2 Data Distribution
The Domino programming model strives to enable applications
to be oblivious to the actual distribution of data on the system.
The programmer needs to simply specify what data may be dis-
tributed, and optionally specify the distribution pattern (blocked,
cyclic, etc.). Domino provides extensions to the gRef construct to
distribute large collections of objects over the entire system. The
listing below illustrates these extensions:

gRef [dist ,<pattern>] Node[] nodeArray;
do all gRef(foo,nodeArray,args); // runs foo in parallel on

// all elements of nodeArray
... = nodeArray[i]; // returns global reference to a Node

nodeArray[i] = ...; // rvalue is a global reference to a Node

The dist parameter to gRef tells Domino that nodeArray is an array
of gRefs that is distributed across the system (different from just
an array of gRefs). <pattern> can be any of blocked, cyclic, or
random. We leave exploration of richer forms of data distribution
geared toward enhancing locality for future work. The do all gRef
function, which runs a specified function over all the elements in
the specified gRef array, is useful for array-wide parallel invoca-
tions of operations (e.g., initialization, reductions).

2.3 Example
Figure 1 shows pseudo-code that uses Domino to implement
PageRank [4], a popular algorithm that computes the relative im-
portance of nodes in a web graph based on transitive references
made to each node in the graph. PageRank is an iterative algorithm
that recomputes the new rank for each node based on the ranks of its
incoming neighbors from the previous iteration. It terminates when
the cumulative changes in ranks of nodes goes below a threshold,
or after a specified maximum number of iterations. The algorithm
is inherently data-driven because a node’s rank changes in one it-
eration only if the ranks of at least one of its incoming neighbors
changed in the previous iteration.

Recomputing each node’s rank is done in two consecutive
gather and scatter steps. The gather step first accumulates the
ranks of all the incoming neighbors of the target node, using
asynchronous calls to getRank. Thereafter, the continuation in
computeRank calculates the new rank of the target node, and
pushes notification updates downstream, using the deferred trig-
gers associated with the phaseId fields of its outgoing neighbors.

These two asynchronous steps are ordered by the barrier at
the end of the first do..finish block, while different phases of the
algorithm are implicitly ordered via the use of the deferred triggers.
The barrier at the end of the scatter step (second do..finish block)
is necessary to guarantee that the current phase is not over before
all tasks for the next phase are triggered.

3. Implementation
We now discuss how to implement Domino in (i) cache-coherent
shared memory systems (Section 3.1), (ii) large cache-coherent
NUMA systems (Section 3.2), and (iii) distributed, tightly coupled
rack-scale computers with high speed interconnect such as Infini-
Band (Section 3.3).

Our implementations are in C++, and we use various C++
classes and macros to prototype the abstractions in the Domino
programming model. As in our previous work [18], computation is
driven by direct and indirect trigger objects, which are implemented
using templatized Trigger<T> and TriggerP<T> classes, re-
spectively. These classes wrap the relevant object (or a pointer to
an object) of type T . Each trigger object has a handler function
that is registered with the trigger via an argument to its construc-
tor. Triggers provide special getter and setter functions to access

class Node {
...
int phaseId;
// deferred trigger
phaseId triggers deferred computeRank();

static int globalPhaseId ; // Shared (static) variable
... // holding the current Phase Id;

// Updated once per phase by the
// transition callback function .

gRef Node[] inNeighbor;
gRef Node[] outNeighbor;
...
float rank [2];

void computeRank() {
gRef Node neighbor;
int sumNeighborRanks = 0;
do {

for (int i = 0; i < numInNeighbors; i++) {
neighbor = inNeighbor[i];
// Fire off a getRank call on this neighbor
async {

sumNeighborRanks += neighbor.getRank();
}
}
} finish; // Wait until all the async work inside is done

// d is the damping factor (typically 0.85)
rank[(globalPhaseId+1)%2] =

((1 − d)/numNodes) + (d∗sumNeighborRanks);

do {
for (int i = 0; i < n.numOutNeighbors; i++) {

neighbor = n.outNeighbor[i];
async {

// a successful CompareAndSet triggers
// computeRank() (only once) for the next phase;
//
CompareAndSet(&neighbor.phaseId,

globalPhaseId ,
globalPhaseId+1);

};
}
} finish; // Wait until all the async work inside is done
}
...
float getRank() {

return rank[globalPhaseId%2]/numOutNeighbors;
}
...

};
...

// distributed gRef array of Nodes
gRef[dist ,blocked] Node[] nodes;
...

Figure 1: PageRank pseudo-code using Domino abstractions.

the encapsulated data. The setter functions (e.g., Set and Comp-
areAndSet) also drive the computation by spawning a task that
executes the handler function associated with the trigger. We also
provide a Spawn function to explicitly spawn new tasks.

3.1 Domino-SM — Shared Memory Implementation
In our implementation for the shared memory setting, called
Domino-SM, the entire Domino application resides in a single
process’s address space. We use a work-stealing-based scheduler to
execute tasks generated by triggers. In this setting, a gRef is simply
a regular object reference, and there is no need for RPCs (all called

functions are directly executed). The async and do..finish con-
structs have no effect dynamically. Thus, we do not incur any per-
formance overhead from the constructs that we added to Domino
for distribution.

Concretely, our shared memory runtime system uses a pool of
worker threads, each with a work-stealing deque [8]. Each thread
gets tasks from its work deque, and adds tasks that it spawns
to its work deque. If a thread’s work deque is empty, the thread
attempts to steal a task from the deque of another thread, selected
at random. Tasks are executed in phases, which are generated by
virtue of deferred triggers. We use scalable nonzero indicators
(SNZI [12]) to track whether any tasks are present in each phase.
SNZI objects provide scalable increment/decrement operations that
avoid frequent communication between workers, as well as a fast
query operation to test whether the number of applied increment
and decrement operations are equal.

3.2 Domino-NUMA — Pseudo-Distributed Implementation
The last decade has witnessed a significant pivot toward multi-
core multi-chip processor architectures. A natural side effect of this
pivot is that machines are becoming increasingly NUMA (Non-
Uniform Memory Access) in nature, where remote memory access
latencies can be substantially larger than local accesses. Although
today’s NUMA machines support hardware cache-coherence, ex-
isting shared-memory software often requires careful tuning and
control over data placement to achieve good scalability. Possible
problems include access latency and contention in the underly-
ing interconnect. These observations have prompted researchers to
consider treating large NUMA machines as distributed systems [2,
3, 26], and to require the programmer to make more explicit con-
sideration of the machine’s underlying structure.

To that end, we have built a “pseudo-distributed” implemen-
tation of the Domino programming model in which we partition
the runtime system between NUMA domains. Domino-NUMA
shares some similarities with our shared-memory implementation,
but the constructs related to creating and handling data distribu-
tion now have meaningful manifestations. The complete runtime
system still operates within a single process, but we use message-
passing for cross-domain operations on application data. The only
shared-memory data structures used are the SNZI objects used for
synchronization between phases, and the communication channels
implemented as single-producer-single-consumer queues for inter-
domain messages.

As with Domino-SM, a work-stealing runtime system is used
to schedule the execution of tasks. With Domino-NUMA we use
a separate work stealing scheduler per compute domain; all inter-
domain communication is done via RPCs, and we do not migrate
tasks between domains.

Split-tasks. In our current prototype implementation, the async
and do...finish constructs must be expressed manually by
decomposing a function such as computeRank. This adds two
sources of complexity which we plan to avoid in the future:

• A task must be rewritten as a split-task consisting of a se-
ries of task-steps, each of which performs a piece of the func-
tion until an RPC operation or the boundaries between async
and do..finish blocks. For instance, the computeRank function
would be split into task-steps that send getRank calls to each
in-neighbor in turn, a task-step that updates the rank array, and
then further task-steps to execute the scatter phase, that invokes
CompareAndSet on the out-neighbors. This manual transfor-
mation is laborious, but it could be performed automatically by
a compiler (as it was in prior work using these constructs [17]).
• Our implementation exposes more parallelism than intended in

our programming model. In particular, multiple task-steps from

the same original task may run concurrently on different worker
threads (for instance, in the implementation of computeRank,
multiple increments to the same element of the rank array may
run on different threads).
This means that, with our current implementation, the program-
mer must use an atomic increment rather than an ordinary incre-
ment. In the future we intend to avoid this by ensuring that the
task-steps from a single task do not become split over multiple
workers—this would be consistent with our intended informal
semantics in Section 2, and with the original operational seman-
tics for AC [17].

Initially, the trigger handler spawns a split-task at its first task-step.
Task-steps are coordinated via a SetContinuation method which
defines a new task-step to add to a worker’s deque if the current
task-step blocks. For instance, in computeRank, this method is
used to let the next iteration of the two loops execute whenever
an RPC in one of the loops blocks. These continuation functions,
along with call-backs when RPC results are received, allow the
program to track the number of outstanding asynchronous RPC
calls, and to only run work after a do..finish once all of the
results have been received. Note that a split-task will never span
more than one phase in the data driven computation, as it is merely
a task broken into multiple pieces, to allow worker threads to
execute other split-tasks’ steps while waiting for an RPC to return.

Cross-domain RPC. We implement the gRef construct and its
distributed array variant in Domino-NUMA using C++ templatized
classes GRef<T> and GRefArray<T> respectively. Internally,
GRef<T> encapsulates the compute domain ID and a pointer
within that domain’s address space. (This information is recorded
when the object referenced by gRef is allocated in a particular
domain.) GRefArray<T> maintains a map of index ranges and IDs
of domains hosting those ranges, along with the starting address of
each range within each domain. We implement the cross-domain
RPC operations via a Run method on each GRef<T>. This method
takes a per-object-type function ID, input arguments, a pointer to a
local buffer to hold the return result, and an optional function ID
for a callback to run locally once the result is received.

The RPC mechanism uses two additional threads per domain,
one for receiving incoming requests, and one for sending outgo-
ing requests. A worker thread posting an RPC sends a request to
the local sender thread, which forwards the request to the remote
receiver service thread via a dedicated channel (implemented as
a fixed-sized circular single-producer-single-consumer buffer). On
receiving a request, the receiver service thread instantiates a new
split-task for the request and posts it in a single-producer-multi-
consumer queue, to be processed by the worker threads.

Once the split-task is executed, the completion notification,
along with the response buffer, are sent back to the original re-
questing domain. A receiver at the requester’s domain picks up the
response and directs it to the original requester split-task, where the
pending RPC counter is decremented atomically (once this counter
goes down to 0, the split-tasks next step will be executed), or a
new split-task is created to execute the request’s callback function
if there is one (the RPC counter is decremented once the callback
returns).

Phase tracking. Finally, we adapted the phase tracking mecha-
nism to Domino-NUMA by adding a cross-domain level to the hi-
erarchy used in the SNZI objects. In particular, each domain main-
tains SNZI object(s) to indicate whether there are pending tasks in
that domain for the current and next phases. In addition, a system-
wide counter for the number of “active domains” is shared between
all domains, and is incremented or decremented by a domain when
its SNZI object changes its value from 0 to 1 or 1 to 0, respectively.

In Domino-NUMA, the active domains counter can be shared be-
tween domains without the risk of significant inter NUMA-node
cache coherence traffic because the counter is updated infrequently.
In a real distributed setting a specialized software coherence mech-
anism will likely be sufficient for this counter.

3.3 Domino-IB— Tightly Coupled Clusters
Driven by the explosion in the amount of data modern software
needs to process, tightly-coupled distributed systems have gained
significant traction in the computing industry [13, 14]. These sys-
tems typically comprise clusters of machines with high speed in-
terconnects, such as InfiniBand, where inter-node communication
is via RDMA or explicit message passing interfaces.

We plan to create a further Domino implementation to target
such clusters. Because Domino’s abstractions have been explicitly
designed to separate application code from the organization and
communication details of the underlying target systems, we believe
that the implementation changes will be relatively modest.

Compared with Domino-NUMA, we would need to replace
the RPC mechanism with one that can operate over the cluster’s
interconnect, and would need to design a distributed form of the
SNZI objects used to control the switch-over between phases.

4. Related Work
Domino builds on many areas of related work, which we briefly
discuss here.

The Tera architecture [1] and Cray XMT [15] support large
numbers of hardware threads and overlap execution of one thread
with the servicing of data accesses from other threads. This ap-
proach is effective for workloads with poor locality but large de-
grees of parallelism in which an alternative cache-based architec-
ture would be ineffective. This observation has recently been ex-
plored in software in systems such as Grappa [22] in which re-
quests to access remote data are aggregated into larger bulk re-
quests that can be transferred efficiently over InfiniBand. Compared
with Grappa, the Domino programming model aims to support effi-
cient non-distributed implementations via the design of the seman-
tics of gRef references and the async and do..finish constructs to
allow these to be elided.

As with Grappa, Domino has been designed to be effective for
workloads with poor locality by making large numbers of tasks
available for execution. In Domino-NUMA, splitting work into
task-steps enables a worker thread to switch between pieces of
different tasks while waiting for an RPC to complete.

Partitioned global address space (PGAS) languages provide
programming models in which a program’s shared data is parti-
tioned between a set of processors or threads [6, 7, 11, 16, 23].
Each can access its own local portion of the data, or make re-
mote accesses to data held elsewhere. Typically, the programming
language provides abstractions to identify which data is local or re-
mote, or to request code to execute at the “home” of particular data.
Domino takes a similar approach, providing a PGAS language built
around data-driven parallelism.

The Barrelfish [2] and fos [27] research operating systems have
explored the use of distributed systems techniques within a sin-
gle machine. Several researchers have examined the trade-offs in
multi-processor machines between using shared memory directly,
or using it to provide an efficient implementation of message pass-
ing [2, 5, 20]. This “pseudo-distributed” approach motivated our
exploration of Domino-NUMA.

The async and do..finish constructs are based on those from
the Asynchronous C language extensions used in Barrelfish [17].
As with AC, we chose to keep these constructs separate from
those used to introduce parallelism (although, as we described in
Section 3, our current prototype implementation currently requires

manual synchronization to achieve this). Our decision is motivated
by the desire to allow the constructs to be elided completely in
implementations such as Domino-SM. In contrast, X10 uses an
async construct to spawn work to execute in a concurrent thread.

5. Current Status
This paper introduced the Domino programming model, and de-
scribed our approaches to implement it on three kinds of systems.
As we reported last year [18], our shared memory implementa-
tion is complete, along with an initial set of workloads. That work
illustrated the power of our abstractions to significantly curtail
wasted work and boost performance of several important work-
loads. Domino enables similar benefits in a distributed setting,
which is a significant differentiator from related work on distributed
programming models [6, 7, 9–11, 16, 22, 23, 28]. Our second im-
plementation, treating a NUMA machine as a “pseudo-distributed”
system, is currently in progress. We have built the basic RPC mech-
anism, but are currently working on optimizations (such as aggre-
gating remote requests, as is done in systems such as Grappa [22]),
automating the splitting of tasks into individual steps, and avoiding
unintended parallelism between steps from within the same task.
We hope to use this as the basis for our third implementation, for
clusters, replacing the RPC mechanism and designing a distributed
SNZI protocol.

Acknowledgments
We thank Alex Kogan, Daniel Goodman, and our anonymous re-
viewers for their feedback on earlier drafts of the paper.

References
[1] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,

and B. Smith. The Tera computer system. In Proceedings of the
4th International Conference on Supercomputing, ICS ’90, pages 1–6,
1990.

[2] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The Multikernel: A New
OS Architecture for Scalable Multicore Systems. In Proceedings of
the ACM SIGOPS 22nd Symposium on Operating Systems Principles,
pages 29–44, 2009.

[3] A. Baumann, S. Peter, A. Schupbach, A. Singhania, T. Roscoe,
P. Barham, and R. Isaacs. Your computer is already a distributed sys-
tem. Why isn’t your OS? In 5th USENIX Workshop on Hot Topics in
Operating Systems, 2009.

[4] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In Proceedings of the Seventh International Conference
on World Wide Web 7, WWW7, pages 107–117, 1998.

[5] I. Calciu, D. Dice, T. Harris, M. Herlihy, A. Kogan, V. J. Marathe, and
M. Moir. Message passing or shared memory: Evaluating the dele-
gation abstraction for multicores. In OPODIS ’13: Proc. Principles
of Distributed Systems - 17th International Conference, pages 83–97,
2013.

[6] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability
and the Chapel Language. International Journal of High Performance
Computing Applications, 21(3):291–312, 2007.

[7] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the
20th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, pages 519–538,
2005.

[8] D. Chase and Y. Lev. Dynamic circular work-stealing deque. In
Proceedings of the 17th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 21–28, 2005.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation, pages 10–10, 2004.

[10] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox. Twister: A runtime for iterative mapreduce. In Proceedings
of the 19th ACM International Symposium on High Performance Dis-
tributed Computing, pages 810–818, 2010.

[11] T. El-Ghazawi and L. Smith. Upc: Unified parallel C. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06, 2006.

[12] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable NonZero
Indicators. In Proceedings of the 26th Annual ACM symposium on
Principles of Distributed Computing, pages 13–22, 2007.

[13] Oracle Exadata Database Machine, http://www.oracle.com/us/
products/database/exadata/overview/index.html.

[14] Oracle Exalogic Elastic Cloud, http://www.oracle.com/us/
products/middleware/exalogic/overview/index.html.

[15] J. Feo, D. Harper, S. Kahan, and P. Konecny. Eldorado. In Proceedings
of the 2Nd Conference on Computing Frontiers, CF ’05, pages 28–34.
ACM, 2005.

[16] The Fortress Programming Language, https://
projectfortress.java.net/.

[17] T. Harris, M. Abadi, R. Isaacs, and R. McIlroy. AC: Composable
Asynchronous IO for Native Languages. In Proceedings of the 2011
ACM International Conference on Object Oriented Programming Sys-
tems Languages and Applications, pages 903–920, 2011.

[18] T. Harris, Y. Lev, V. Luchangco, V. J. Marathe, and M. Moir. Con-
strained Data-Driven Parallelism. In 5th USENIX Workshop on Hot
Topics in Parallelism, 2013.

[19] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-Marl: a DSL
for easy and efficient graph analysis. In Proceedings of the 17th
international conference on Architectural Support for Programming
Languages and Operating Systems, pages 349–362, 2012.

[20] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Re-
mote core locking: Migrating critical-section execution to improve
the performance of multithreaded applications. In Proceedings of the
2012 USENIX Conference on Annual Technical Conference, USENIX
ATC’12, pages 6–6, 2012.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135–146, 2010.

[22] J. Nelson, B. Myers, A. H. Hunter, P. Briggs, L. Ceze, C. Ebeling,
D. Grossman, S. Kahan, and M. Oskin. Crunching Large Graphs with
Commodity Processors. In 3rd USENIX Workshop on Hot Topics in
Parallelism, 2011.

[23] R. W. Numrich and J. Reid. Co-array Fortran for parallel program-
ming. ACM FORTRAN FORUM, 17(2):1–31, 1998.

[24] The R Project for Statistical Computing, http://www.r-project.
org/.

[25] A. K. Sujeeth, H. Lee, K. J. Brown, T. Rompf, H. Chafi, M. Wu, A. R.
Atreya, M. Odersky, and K. Olukotun. OptiML: An Implicitly Parallel
Domain-Specific Language for Machine Learning. In Proceedings of
the 28th International Conference on Machine Learning, pages 609–
616, 2011.

[26] D. Wentzlaff and A. Agarwal. Factored Operating Systems (fos):
The Case for a Scalable Operating System for Multicores. SIGOPS
Operating Systems Review, 43(2):76–85, 2009.

[27] D. Wentzlaff, C. Gruenwald III, N. Beckmann, K. Modzelewski,
A. Belay, L. Youseff, J. Miller, and A. Agarwal. An operating sys-
tem for multicore and clouds: Mechanisms and implementation. In
SOCC ’10: Proc. 2010 Symposium on Cloud Computing, pages 3–14,
June 2010.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, pages 2–2, 2012.

http://www.oracle.com/us/products/database/exadata/overview/index.html
http://www.oracle.com/us/products/database/exadata/overview/index.html
http://www.oracle.com/us/products/middleware/exalogic/overview/index.html
http://www.oracle.com/us/products/middleware/exalogic/overview/index.html
https://projectfortress.java.net/
https://projectfortress.java.net/
http://www.r-project.org/
http://www.r-project.org/

	Introduction
	Programming Model
	Domino
	Data Distribution
	Example

	Implementation
	Domino-SM — Shared Memory Implementation
	Domino-NUMA — Pseudo-Distributed Implementation
	Domino-IB— Tightly Coupled Clusters

	Related Work
	Current Status

