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Abstract
It is increasingly important for parallel applications to run to-
gether on the same machine. However, current performance
is often poor: programs do not adapt well to dynamically
varying numbers of cores, and the CPU time received by
concurrent jobs can differ drastically. This paper introduces
Callisto, a resource management layer for parallel runtime
systems. We describe Callisto and the implementation of two
Callisto-enabled runtime systems—one for OpenMP, and
another for a task-parallel programming model. We show
how Callisto eliminates almost all of the scheduler-related
interference between concurrent jobs, while still allowing
jobs to claim otherwise-idle cores. We use examples from
two recent graph analytics projects and from SPEC OMP.

1. Introduction
It is increasingly important for multiple parallel applications
to run well together on the same machine. There are several
trends: (i) the need to make effective use of multi-core hard-
ware leads to increasing use of parallelism within software,
(ii ) the desire to use hardware efficiently leads to greater co-
location of workloads on the same machine, and (iii ) parallel
applications are expected to “just work” without careful tun-
ing to specific systems.

Currently, parallel runtime systems interact poorly with
the schedulers used by operating systems and virtual ma-
chine monitors. We see three problems:

First, preemption occurs at inconvenient times. A classic
example is while holding a lock: threads needing the lock
cannot proceed until the lock holder runs. Another example
is a parallel loop in which threads claim batches of iterations:
the loop cannot terminate if a thread is preempted mid-batch.

Second, when a thread waits, it must decide whether to
spin or to block. The best decision depends on information
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Fig. 1. Execution time for jobs running together on a 2-
socket machine and competing for access to 32 h/w contexts.
Each square shows the execution time of the job on the y-
axis when running with the job on the x-axis. We normalize
to the job’s execution time running alone on 1-socket.

that is not usually available to the thread (e.g., which other
threads are running) [4, 15, 16, 36]. There can be a tension
between a process’s own performance and system-level con-
cerns (e.g., using cores productively instead of for spinning).

Finally, when multiple jobs run together, the CPU time
that each receives can be drastically different and hard to
control. It can depend, for example, on whether the OS
prioritizes threads that have recently unblocked.
Fig. 1 illustrates these problems. We return to the details in
Section 4 but, in outline, the experiment examines the per-
formance of pairs of benchmarks sharing a 2-socket x64
Linux machine. We ran each pair of benchmarks together.
For each combination, we repeated each benchmark until
both of them have run at least 5 times. We then plotted the
median execution time of the benchmark on the y-axis when
sharing the 2-socket machine with the benchmark on the x-
axis, normalized to how long the benchmark took in isola-
tion on just 1-socket. Darker squares indicate progressively
slower performance. White squares indicate either a speed-
up or at least no slow-down. Ideally, with two jobs sharing
two sockets, we would expect the complete heat map to be
white. However, in practice, some jobs take up to 3.5x longer
when sharing the machine.

In this paper we introduce Callisto, a resource manage-
ment layer for parallel runtime systems. Compared with the



Fig. 2. The structure of a system using Callisto.

results in Fig. 1, Callisto lets us reduce the worst interference
to 1.25x execution time. We use three techniques:

• Multiple parallel jobs coordinate their resource demands
to leave exactly one runnable s/w thread for each h/w
context (Section 2.1). This generally avoids the OS pre-
empting threads transparently.

• We provide CPU time to runtime systems using an up-
call mechanism, inspired by scheduler activations [1]
(Section 2.2). A runtime system divides its work into
small pieces which generally run to completion within
each of these up-calls, and which can be multiplexed over
however many h/w contexts are available (Section 2.3).

• We provide a single API for building the synchronization
primitives exposed to applications (e.g., locks), for the
synchronization within a runtime system (e.g., managing
task pools), and for synchronization within Callisto itself
(Section 2.4). By combining these three kinds of synchro-
nization, we expose to Callisto information about which
work is ready to execute, and we provide a single point
to make spin/block decisions.

Fig. 2 shows the overall structure of our prototype imple-
mentation. In this prototype, Callisto is a user-mode shared
library which links with modified versions of different par-
allel runtime systems. Multiple instances of the library inter-
act through shared memory to cooperatively control the use
of the h/w contexts. Runtime systems need to be adapted to
use Callisto. However, applications built over these runtime
systems operate unmodified, and there are no OS changes.
Our cooperative approach using a shared library is intended
to allow experimentation, rather than necessarily being how
Callisto would be deployed in practice (e.g., when it would
need to protect against failures, bugs, or malicious behavior
in the applications it controls). We discuss different deploy-
ment options in more detail at the end of this paper.

Section 3 discusses two Callisto-enabled runtime sys-
tems: OpenMP, and Domino [12] (a fine-grained task-
parallel system). We show how unmodified OpenMP appli-
cations can run over a dynamically varying number of h/w
contexts while still meeting requirements in the OpenMP
API for how pieces of work map to specific threads.

Section 4 presents initial performance results from a
Linux system with 32 h/w contexts. When running a single
job, Callisto varies between a 22% slow down and a 22%
speed up (mean slow down of 3.1%). When running pairs of
jobs, we show that Callisto (i) reduces the likelihood of in-
terference, (ii ) reduces the severity of interference, and (iii )
increases the ability for peaks in one job’s CPU demand to
benefit from troughs in another’s.

Section 5 describes related work, and Section 6 covers
limitations of our approach, along with future work, and
conclusions.

2. Callisto
In this section we introduce the assumptions made by Cal-
listo, and the kinds of workload we target. We then intro-
duce the main techniques we use—dynamic spatial schedul-
ing (Section 2.1), an up-call interface for passing control
to the runtime system (Section 2.2), a mechanism for the
runtime system to express the parallel work it has available
(Section 2.3) and a unified synchronization mechanism for
waiting (Section 2.4).

Setting and assumptions. We focus specifically on im-
proving co-scheduling between jobs using abstractions such
as CDDP [12], Cilk [11], Data-Parallel Haskell [30], Ga-
lois [17], and OpenMP. In these settings, workloads iden-
tify sources of parallelism without explicitly forking threads.
The number of h/w contexts used is usually set either by pa-
rameters, or by the runtime system.

We assume that parallel sections of jobs are generally
CPU-bound and so each s/w thread is able to completely use
a single h/w context. Some parallel runtime systems, such as
Grappa [25], use lightweight threads to issue IO operations
concurrently; these systems also fit our model, multiplexing
lightweight threads over a single s/w thread, and combining
IO operations into batches.

We do not currently focus on distributed map-reduce-
style frameworks. In those settings, the processes themselves
are typically independent, and are dispatched to machines
under the control of a central scheduler. Systems such as
Mesos [13] and Omega [32] have been used to dispatch
processes from different jobs to a shared set of machines
in a cluster. However, within a single machine, multiplexing
the resulting set of processes seems to be handled relatively
well by existing OS schedulers.

2.1 Dynamic Spatial Scheduling
Our first idea is to ensure that a set of jobs leaves exactly one
runnable s/w thread pinned to each h/w context. Runtime
systems claim h/w contexts via a table in shared memory,
adjusting their own demands when other jobs start or finish,
and when the amount of available work changes. Our current
implementation assumes cooperative runtime systems (we
discuss the merits of this at the end of the paper).



(a) Static spatial allocation (b) Gang-scheduled allocation (c) Dynamic spatial allocation

Fig. 3. Contrasting different policies for allocating 6 cores to two jobs. Time quanta run top to bottom.

We dynamically partition the h/w contexts between jobs.
Each job has a fixed portion of the CPUs when all of the
jobs are runnable, but can make use of otherwise-idle h/w
contexts when available. This approach has two benefits
over statically partitioning a machine (Fig. 3a), or gang-
scheduling jobs [26] in time slices (Fig. 3b): First, we can
improve utilization if peaks in one job’s demands coincide
with troughs in another’s. Second, jobs usually get less ben-
efit from each additional h/w context: therefore it is better
to split h/w contexts among jobs if we can do so without
generating interference.

Our scheduler is controlled by two policies. First, a spa-
tial scheduling policy defines which jobs should use which
h/w contexts when all the jobs are runnable. The spatial
scheduling policy grants a single job high priority for each
h/w context. This defines a state for the system when jobs
remain CPU-bound, and lets us explore placement policies
such as whether to allocate all of the h/w contexts in a given
core to the same job. We repeat spatial scheduling when jobs
start or terminate.

Second, a temporal scheduling policy defines how to use
a h/w context when its high priority job is idle. There is a
trade-off between re-allocating spare resources, versus let-
ting the high priority job keep the h/w context in the hope
that it will have new work soon (or simply to avoid disrup-
tion to the state of local caches). Our approach is:

1. Each job has a dedicated h/w context for its “main”
thread. In OpenMP, this thread is responsible for spawn-
ing parallel work and the performance of the job is highly
dependent on the main thread’s execution.

2. If a job runs out of work, it retains the h/w contexts on
which it has high priority for a configurable hysteresis
delayHhigh . This rule lets the job retain resources if it
has short sequential sections in between parallel work.

3. After this delay, h/w contexts are re-allocated to other
jobs. If these, in turn, run out of work then they can
retain the h/w context for a delayHlow (assuming that
the job with high priority is still out of work, and there
are no other low priority jobs with work). AfterHlow

without work, the h/w context is returned to the high
priority job. The rule avoids low priority jobs losing h/w

contexts during short sequential sections, while returning
the allocation to a “clean” state if no job has any work.

4. If a job is running on a h/w context on which it does
not have high priority, then it must periodically check if
the context’s high priority job has become runnable, and
yield if requested. The check-in period isPlow . This rule
lets a job regain access to its high priority h/w contexts.

5. If a job has high priority on a h/w context then it must still
periodically check for changes to the spatial allocation of
contexts. The check-in period isPhigh .

Implementation. The check-in protocol is cooperative. A
runtime system is expected to check-in at times when pre-
emption would be convenient (e.g., between batches of loop
iterations, rather than within a batch). The check-in testsare
made by the runtime system, without changes to application
code. We add a periodic “runaway timer” to force a check-
in if one does not occur within the required interval—this is
currently done in user mode within the runtime system itself,
but could be moved to the kernel to enforce check-ins if nec-
essary. By default we set the two hysteresis delays to 10ms,
Phigh to 100ms, andPlow to 1ms.

Callisto maintains a table in shared memory holding per-
h/w-context information: (i) which job has high priority for
that context, (ii ) which job is currently running on the con-
text, (iii ) context-local timestamp values for when the next
check-in is due, and when the hysteresis delay ends, (iv) per-
job flags indicating if that job wishes to run on the context,
and (v) a pthread mutex and condition variable used by jobs
to block/wake-up when passing the core to one another.

In the common case, a check-in test simply compares the
current time against the time at which the next check-in is
due. When the time is reached, the full test checks which
job should run on the context (a deterministic function of
the shared state), and yields if necessary. To switch jobs,
the yielding job signals others jobs waiting on the condition
variable, before blocking.

2.2 Interface to Callisto-Enabled Runtime Systems
A runtime system on Callisto operates by dispatching work
to run over a set ofworkers. A job is expressed as a
set of work tickets, each of which represents a source of
parallelism—e.g., a complete parallel OpenMP loop would



Fig. 4. System structure with an OpenMP loop which uses
three threads to call the functionf.

be represented by a single work ticket. Whenever a worker
is allocated a h/w context, it executes parts of a work ticket
by making an up-call to the runtime system at a fixed entry
point. The code at that entry point then executes part of the
work (e.g., a batch of loop iterations). The use of up-calls is
inspired by scheduler activations [1] and so we call the entry
point the runtime system’s activation handler, and we call
each up-call anactivation.

Figure 4 provides an initial OpenMP example in which
the main thread enters a parallel section. This uses three
threads (“num_threads(3)”), each of which callsf with
its own thread ID. Thef function uses a barrier internally.
With Callisto, this example is implemented by the OpenMP
runtime system creating a work ticket for the parallel region
(Step 1) which can be activated three times for the calls
f(0). . .f(2). A worker picks up one of these calls (Step
2), allocates a stack to use, and then executes the call untilit
blocks at the barrier. When blocking, the partially-executed
piece of work is put into a pool of blocked activations (Step
3a), and the same worker thread can switch to a fresh stack
and pick up new work instead (Step 3b). Once all of the calls
to f have reached the barrier, the blocked activations can be
made eligible to run again (Step 4) and be picked up by a
Callisto worker and completed.

We now describe the interfaces for managing work tickets
(Section 2.3), and then the interfaces for building barriers
and other synchronization primitives (Section 2.4).

2.3 Managing Work Tickets
To illustrate how parallel work is managed over Callisto, we
use the following OpenMP loop as a larger running example:

#pragma omp parallel for schedule(dynamic,100)
for (int i = 0; i < 1000000; i++) {
arr[i] *= 2;

}
printf("Done\n");

// Start-of-day
Worker[] CreateWorkers();

// Managing work
uint64_t CreateWorkTicket(void *data,

int max_concurrency);
void SetTicketDrained(uint64_t ticket);
void WaitTicketDrained(uint64_t ticket);
void WaitTicketComplete(uint64_t ticket);

(a) Operations exposed by Callisto.

void Activate(Worker *w, void *data,
uint64_t ticket);

(b) Operations implemented by
a Callisto-enabled runtime system.

bool ShouldYield();
void YieldPoint();

(c) Operations for coordination between jobs.

Fig. 5. APIs used for creating and managing work.

This loop iterates over a large array (arr), doubling each
element. The pragma indicates that the iterations can run in
parallel, and that threads should share the work by dynam-
ically claiming batches of 100 iterations. “Done” is printed
only after all of the iterations have completed. An OpenMP
compiler usually extracts the body of the loop into a separate
function, and creates a data structure holding the bounds of
the loop and a shared counter to indicate the next batch of it-
erations to be claimed. Threads use an atomic increment on
the shared counter to claim a batch of iterations, run those,
and then return for more.

Workers. Conceptually, every job has one worker for each
h/w context in the machine. The number of workers that
are actually running will vary over time under the dynamic
spatial scheduling policy. Fixing workers to h/w contexts,
rather than having them migrate within a machine, enables
the runtime system to cache information about the physical
structure of the machine (e.g., which workers are co-located
on the same core), and use that information to build data
structures such as SNZI trees [9]. Also, although our current
implementation supports only homogeneous systems, we
believe it will be easier to extend the fixed-worker model
to support heterogeneous systems in the future.

Fig. 5 shows the API used for managing work. The
CreateWorkers function is used at start-of-day to ini-
tialize a job’s workers. Concretely, each worker is imple-
mented by a pthread pinned to the associated h/w context,
and blocked on the context’s condition variable when it
should not receive the CPU. Each worker is in one of two
states:waiting (created, but either waiting for work to run,
or waiting for synchronization within its current work), or
runnable(with work to execute, whether or not it is actu-
ally running on its h/w context). Workers start in thewaiting



state, and so simply creating a set of workers does not cause
any computation to happen.

Work tickets. A work ticket represents a source of par-
allel work. CreateWorkTicket takes two parameters:
(i) an opaque data pointer which is passed back to the ac-
tivation handler when running this ticket, and (ii ) a bound on
the maximum number of concurrent activations that should
occur (and hence on the amount of memory needed for
their stacks). In the OpenMP example, this maximum comes
from theOMP_NUM_THREADS environment variable which
OpenMP uses to set the number of s/w threads used.

A work ticket is in one of three states:active (created,
and able to run),drained(all of the work has been started,
so further activations are unnecessary), orcomplete(all of
the work has finished, rather than simply being in progress).
In our example,SetTicketDrained is called when the
final batch of loop iterations starts. The main thread calls
WaitTicketComplete before printing “Done”.

Activations. An activationexecutes part of a work ticket.
One of Callisto’s workers makes an up-call to the run-
time system’sActivate function (Fig. 5b), identifying the
worker that the up-call starts on, the pointer from the ticket,
and the ID of the ticket itself. In our example, the pointer
identifies an OpenMP structure describing the parallel loop.

Activations are intended to be short-lived and to coop-
erate with the spatial scheduling algorithm: when invoked,
the activation handler should perform work in the runtime
system and check in periodically by callingShouldYield
(Fig. 5c). WhenShouldYield returns true, the activation
should return from its up-call. Usually, activations are nat-
urally short-lived when executing parts of loops, or small
tasks from a work-pool. However, there are two cases where
an activation might not be short-lived:

First, application code may block—e.g., an OpenMP par-
allel region may contain a barrier in the middle of it. If this
happens then the activation will be resumed once it unblocks
(possibly on a different worker). We call theseorphaned ac-
tivations, and workers run them in preference to starting new
activations. To let these long-running activations move be-
tween workers, each up-call runs on its own stack, indepen-
dent from the one used within Callisto.

Second, application code may simply run for a long time,
either intentionally or due to a bug. To avoid uncontrolled
preemption, an activation can callYieldPoint at places
where it would be convenient to pause its execution (e.g.,
just after releasing a lock). Internally,YieldPoint tests
ShouldYield and, if requested to yield, the current acti-
vation is suspended and added to the job’s set of orphaned
activations. If the activation fails to check in sufficiently fre-
quently then the runaway timer mentioned in the previous
section will force it to yield in any case.

Miscellaneous functions. We provide worker-local and
activation-local state. The first is used for state that is fixed

// Latches
void LatchInit(Latch *l);
void LatchAcquire(Latch *l);
void LatchRelease(Latch *l);

// Synchronization variables (SVars)
void SVarInit(SVar *s, int v);
int SVarRead(SVar *s);
void SVarWrite(SVar *s, int v);

// Blocking
typedef bool (*Sync_fn)(void *data);
void SyncWaitUntilTrue(Latch *l,

Sync_fn *fn,
void *data);

// Control over activations
void SuspendAct(act **ap);
void ResumeAct(act *a);

Fig. 6. Synchronization API exposed by Callisto.

to a given context (e.g., a work pool for a specific NUMA
domain). Activation-local state is for information associated
with a s/w thread in the programming model—e.g., it is used
for the current OpenMP thread ID. It must follow the activa-
tion if it is moved to a different worker.

2.4 Synchronization and Blocking
The second part of our API is for synchronization. It is a
low-level API for use within a runtime system to build ab-
stractions for use by application programmers (e.g., mutexes
and barriers). It is also used within Callisto itself in the func-
tions which manage synchronization on work tickets and
activations. Using a common abstraction across these dif-
ferent levels means that spin/block decisions can be made
consistently—for instance, spinning in the absence of other
work to execute, or yielding the h/w context to another job.

The low-level synchronization API is not intended for
use within applications. Consequently, design decisions are
taken to optimize performance rather than for ease of pro-
gramming. Figure 6 shows the API itself. It provides two
abstractions:

Latches. In Callisto, a latch is a mutual exclusion lock
which is used to protect other synchronization data struc-
tures (such as a full/empty flag for a work pool). Latches are
never held when waiting.

Synchronization variables (SVars). An SVar encapsulates
a single integer value, with read and write functions. Each
SVar must be protected consistently by a latch: the latch
must always be held when updating the SVar (the program-
mer must ensure this).

Blocking is done by callingSyncWaitUntilTrue with a
predicate over SVars which will be true when it is possible
to continue. The result of this predicate must depend only
on the contents of SVars protected by the latch passed to the
waiting function. Furthermore, the predicate must be written
carefully so that it can be “probed” without acquiring the



latch—it must not loop or crash if it sees an inconsistent set
of values in the SVars. The latch must be held before calling
SyncWaitUntilTrue, and it will be re-acquired by the
implementation before returning.

Examples. Our OpenMP barriers are implemented using
an integer counter which is atomically decremented with
fetch-and-add on arrival at the barrier, counting down to
zero when all of the OpenMP threads have arrived. The
last thread to arrive briefly acquires a per-barrier latch and
increments a per-barrier generation number held in an SVar.
If an OpenMP thread is not the last to arrive then it blocks,
waiting for a change to the generation number.

Our OpenMP-level mutexes are implemented using an
MCS-style list of per-OpenMP-thread queue nodes [24]. The
lists are constructed using atomic compare and swap. Each
queue node holds a latch and a single SVar. An OpenMP
thread blocking on a mutex sets the SVar to 0 before calling
SyncWaitUntilTrue to wait for the SVar to become 1.

Implementation. The SyncWaitUntilTrue abstrac-
tion provides flexibility to use a combination of different
implementation techniques. In doing so, the aim is to provide
a unified place at which spin/block decisions can be made,
taking into account synchronization within the runtime sys-
tem (e.g., at an OpenMP barrier) and synchronization within
Callisto (e.g., waiting for a work ticket to be complete). The
predicate can be evaluated either by the waiter (spinning un-
til it is true), or the predicate can be held in a queue attached
to a latch and re-evaluated whenever an update is made to
one of the SVars protected by that latch.

Concretely, we implement a latch as an integer version
number and a linked list of wait-queue entry structures.
A latch is unlocked iff its version number is even. The
LatchAcquire function spins until the version number is
even, before using atomic compare-and-swap to increment
it, making it odd. The latch protects a chain ofWaitQ struc-
tures which hold the predicates on which code is waiting.
LatchRelease processes the queue (we describe how this
is done below), before incrementing the version number to
release the latch.
SyncWaitUntilTrue can behave in two ways:
Active— SyncWaitUntilTrue(l,fn,d) starts by

testingfn(d). If true, it returns immediately. If false, it
releases the latch and spins until the latch has been locked
and unlocked at least once. (Sincefn(d) depends only
on SVars protected by the latch, the predicate’s value can
change only after the lock has been held. We assume that
watching the single version number is faster than repeatedly
probing the predicate). After observing a change,fn(d) is
probed and, if true, the latch is re-acquired,fn(d) tested
once again and, if true,SyncWaitUntilTrue returns.
Otherwise, the function repeats.

Passive— In this implementation, responsibility for
wake-ups is passed to theLatchRelease function. Call-
ing SyncWaitUntilTrue checks that the predicate is

false. If so, it initializes a stack-allocatedWaitQ struc-
ture, and then the activation yields (callingSuspendAct
to store a handle for the current activation in theWaitQ).
When resumed,SyncWaitUntilTrue re-acquires the
latch, checks the predicate, and returns if it is true. The
LatchRelease function is responsible for waking acti-
vations, testing the predicates in the queue if it is nonempty.
For any predicates that are true, it removes the queue entry,
and callsResumeAct to add the activation to the pool of
orphaned activations for execution by the job’s workers.

Our implementation combines these two implementa-
tions in a conventional spin-then-block approach. We ini-
tially use the active implementation until (i) the worker is
requested to yield to another job, or (ii ) there is an orphaned
activation available to run, or (iii ) a configurable spinning
limit is reached (we use 100k cycles, but our results do not
seem sensitive to the exact value chosen).

Optimizations. We applied several optimizations to the ba-
sic implementation described above: While holding a latch,
we maintain a flag recording whether or not any SVars
have been updated; we only consider waking threads if
writes have been made. We provide specialized version of
SyncWait... functions for common cases—e.g., waiting
until a single SVar holds a specific value, or when the caller
can guarantee that the predicate is false initially.

In addition to these successful optimizations, we consid-
ered a “hand-off” wake-up policy in which at most one ac-
tivation would be woken per release of the latch. In turn,
that first activation would be responsible for handing off the
wake-up to a second wait queue entry after it has released
the latch. The hope was to avoid multiple activations be-
ing woken and stampeding for the latch (since they must
all acquire it before making progress). The implementation
became complex because of the need to avoid forgetting to
make the hand-offs; it did not lead to a performance benefit
for the workloads we studied.

3. Building Runtime Systems over Callisto
In this section we describe the two prototype Callisto-
enabled runtime systems—an implementation of OpenMP
(Section 3.1), and a task-parallel framework (Section 3.2).

3.1 OpenMP Runtime System
Our OpenMP implementation is based on GOMP in GCC
4.8.0. We handle C/C++ and Fortran, and all OpenMP 3.0
features except for tasks, theORDERED directive, and nested
parallel sections. We do not believe there are fundamen-
tal difficulties in adding these; indeed, our second runtime
system includes a work-pool-based implementation of tasks
(Section 3.2). We briefly describe two challenges that we
addressed: (i) avoiding unnecessary barriers, and (ii ) reduc-
ing load imbalance in statically-scheduled loops. We then
summarize implementation details. We do not require any
changes to the compiler, or to the OpenMP applications.



Avoiding unnecessary barrier synchronization. The first
problem we address is the use of barriers at the end of loops.
Consider the following example:

#pragma omp parallel for
for (int i = 0; i < 1000000; i++) { ... }
#pragma omp parallel for
for (int i = 0; i < 1000000; i++) { ... }

Iterations from the second loop must not start until the first
loop is complete. This is usually enforced with a process-
wide barrier—a thread must participate in the barrier even if
it has not executed any loop iterations. That can happen if
the thread was not scheduled on a h/w context between the
time that the loop started and terminated.

We address this problem by decoupling the notion of
OpenMP threads from the specific workers that happen to
execute pieces of code. Each OpenMP parallel section maps
onto a Callisto work ticket, with the maximum concurrency
set to the number of OpenMP threads to use. Each activation
selects the next OpenMP thread, sets the activation-local
storage of the current s/w thread to that of the OpenMP
thread, and executes the iterations assigned to that thread.
Multiple OpenMP threads can therefore be multiplexed over
a single s/w thread. Switching between OpenMP threads
occurs in user-mode, typically by a worker starting new
activations when earlier ones block at the barrier.

Reducing load imbalance. The second challenge is that
OpenMP exposes the number of threads in use to the applica-
tion, and the OpenMP API provides rules about how threads
are assigned work; it would be incorrect for an implementa-
tion to vary this in an ad-hoc manner. Furthermore, we must
avoid introducing load imbalance. Consider this example:

#pragma omp parallel for schedule(static)
for (int i = 0; i < 1000000; i++) { ... }

The static clause indicates that the loop should be di-
vided between threads into equal batches. Static scheduling
is common because it has low overheads in many implemen-
tations; it is appropriate when the number of threads is fixed,
and the work in each loop iteration is constant. The prob-
lem here is that multiplexing OpenMP threads over a smaller
number of h/w contexts can cause load imbalance: suppose
(in an extreme case) that a loop is statically scheduled over
32 s/w threads, but that only 31 h/w contexts are available.
Without care, one h/w context will execute the work from 2
s/w threads in series, doubling the completion time.

Although it is tempting to replace static scheduling with
dynamic scheduling, we do not do so because (i) we would
need to modify the compiler or application, and wished to
avoid doing so, and (ii ) OpenMP dictates cases where it-
erations in statically scheduled loops must run inidentical
threads between different loops. (Informally, loops must dis-
patch the same iterations to the same threads. This lets each
thread retain local state for the iterations that it handles.)

We improve load balancing byover-subscribingthe sys-
tem with more OpenMP threads than h/w contexts. Static
loops are split between this larger pool of OpenMP threads.
These threads will be executed dynamically by Callisto
workers based on the number of workers running and the du-
ration of each batch of iterations. In effect, over-subscription
changes a statically scheduled loop into a relatively coarse-
grained dynamically scheduled one. As our results show
(Section 4), multiplexing large numbers of OpenMP threads
over Callisto is generally faster than using full OS threads.
Over-subscription increases the parallel slack [34].

3.2 Domino Runtime System
We briefly describe a second Callisto-enabled runtime sys-
tem (“Domino”) providing an implementation of a task-
based programming model. This model is based on parallel
execution of fine-grained tasks, each typically performinga
few memory reads and writes, and running to completion
without any synchronization. Domino is based on our exist-
ing implementation of the CDDP programming model [12]
in which tasks are spawned when an existing task writes to a
memory location with a “trigger” attached to it. Constraints
can be used to defer the execution of some tasks.

The original Domino implementation uses a fixed number
of worker threads, each with aDominoRTS structure hold-
ing a work queue, and a per-thread set of tasks whose execu-
tion is deferred. If a thread’s own queue is empty then it can
steal from another’s. When all work queues are empty, then
items in the deferred sets are promoted to the queues. The
original runtime system is not designed for use on shared
machines: threads spin continually while waiting for work.
Other parallel runtime systems behave in a similar way (e.g.,
we observed similar behavior in a version of Galois [17]).

The Callisto-enabled implementation is simplistic. It
starts by allocating oneDominoRTS per h/w context. These
are held in a global list. A single work ticket represents the
entire execution of the parallel computation. When activated,
the Domino runtime system claims aDominoRTS data
structure from the global list. It then executes using the work
pool from that structure, stealing work from other structures
as required. It callsShouldYield between tasks, and re-
turns from the activation handler if requested (releasing the
DominoRTS to the global pool).

This design means that a Domino job is responsive to
other jobs’ demands on the machine, but the job itself will
never actually block, even if it is short of work. This is not
ideal from a system-wide point of view, but it provides us
with an example of an aggressive runtime system.

4. Evaluation
We use 2-socket machines with Xeon E5-2660 processors at
2.20GHz (8 cores per socket, and 2 h/w contexts per core,
for a total of 32 h/w contexts). Each machine has 256GB
physical memory. We use Linux 2.6.32, and GCC 4.8.0.
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We use three sets of workloads. First, a Domino imple-
mentation of betweenness-centrality (BC) using our non-
Callisto implementation as a baseline [12]. Second, graph
analytic workloads from the public release of Green-Marl [14]:
a further implementation of BC, a single-source short-
est paths algorithm (hop_dist), PageRank, and a triangle
counting algorithm. Green-Marl compiles these programs
to OpenMP. Finally, we use benchmarks from SPEC OMP
2001 and 2012. We include all the programs supported
by our OpenMP implementation. We use the 2012 version
where similar benchmarks are in both suites. We set the in-
put parameters so that each run is 10-100s in isolation on a
whole machine: this means using the “large” versions of the
2001 benchmarks, and reducing the input size of some 2012
benchmarks. We show the median of 5 runs. We omit error
bars because results are stable when running alone.

4.1 Single job
We start with jobs running alone, examining how well they
perform without Callisto, and then compare the Callisto-
enabled versions with the originals. For consistency, we nor-

malize all results to runs where a job uses 16 s/w threads,
bound to all 16 h/w contexts in a single socket. We use pas-
sive synchronization on the OpenMP runs. (Intuitively, when
we turn to pairs of jobs, this 1-socket performance is the min-
imum we would expect when a pair shares 2 sockets.)

First, we compare the original runtime systems with ac-
tive/passive synchronization, and bound/unbound threads.
We say threads are bound “narrowly” when they are packed
onto the h/w contexts on a single socket (using hyper-
threading), and bound “widely” when spread between the
sockets (avoiding hyper-threading). Fig. 7a shows resultsus-
ing 16 s/w threads, and Fig. 7b shows results for 32 s/w
threads. Thedom_bc results are for the Domino implemen-
tation of BC (note that Domino does not support passive syn-
chronization; we plot the same result for both settings). The
bc—triangle_counting results are the Green-Marl bench-
marks. The remainder are SPEC OMP.

The single-job behavior of these benchmarks is depen-
dent on the number of threads used, and on the thread
placement policy. However, we can make some general ob-
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servations: As usual, active synchronization behaves well
when hyper-threading is avoided. This trend is illustratedby
comparing the active/passive 16-wide results, and the 16-
unbound results (the default scheduler tends to distribute
threads widely). Passive synchronization tends to be better
when using hyper-threading (comparing the active/passive
16-narrow results, and the 32-h/w results). In Fig. 7a, note
how the active 16-narrow results are particularly poor forbc
andbwaves. These cases exhibit the most load imbalance:
more time is spent in synchronization, and so the combina-
tion of active synchronization and hyper-threading does the
most harm. Note that all of the benchmarks scale to use all
32 h/w contexts. (We omit results for active synchronization
with 32 unbound threads; performance is variable and poor,
with frequent preemption). From these results, we chose to
focus on passive synchronization—there is generally little
benefit from active synchronization, particularly when the
machine is fully loaded.

Our second set of results varies the number of s/w threads
using the original runtime systems (Fig. 8a) and using Cal-
listo (Fig. 8b). Overall, over-subscription does not work well
with the original systems. Thedom_bc results are poor: the
Domino runtime system does not support passive synchro-
nization, and threads are often being preempted while trying
to synchronize. In particular, when adding tasks to the de-
ferred work pool, only the thread that added a task is sub-
sequently able to move it to the main work pool. Tasks can
get “stuck” if this thread is not scheduled. Over-subscription
helpsbc andbwaves which exhibited load imbalance. The
equake results get worse with extra threads:equake in-
cludes a sequential section whose time grows with the thread
count. Finally, the performance ofhop_dist is much worse
with over-subscription (over 4x normalized execution timeat
128 threads). This program uses its own spinlock to synchro-
nize updates to nodes in the graph. With over-subscription,
OpenMP threads are frequently preempted while holding
these spinlocks.

Fig. 8b shows performance with Callisto. As before, we
reduce load imbalance inbc andbwaves, and harmequake
by adding sequential work. Thedom_bc and hop_dist
benchmarks are not harmed by over-subscription: the ad-
ditional runtime system threads are multiplexed over the
Callisto workers allocated to the job, and switches between
OpenMP threads occur only when the previous runtime sys-
tem thread blocks or yields. Consequently, runtime system
threads are not preempted while holding the unique refer-
ence to a piece of work (dom_bc), or spinlocks (hop_dist).

Finally, Fig. 9 provides an overall comparison between
the original systems and the Callisto-enabled versions. We
show results for 16 h/w contexts, and both with and without
over-subscription. The normalized execution time for Cal-
listo with over-subscription ranges from a 22% slow down
to a 22% speed up. Overall, there is a slight overhead from
using Callisto – the arithmetic mean slowdown is 3.1%, the
geometric mean is 2.6%, and the median slowdown is 1.7%.

4.2 Pairs of jobs
We now turn to the performance of pairs of jobs. We com-
pare: (i) statically partitioning the machine, giving one
socket to each job, (ii ) running each job with the original run-
time systems and 32 unbound s/w threads threads using pas-
sive synchronization where available, and (iii ) running each
job with Callisto and over-subscription to 64 s/w threads.
Each job is repeated in a loop, continuing until both bench-
marks have run at least 5 times. Hence, if a short benchmark
runs alongside a longer one, the load of 2 jobs remains until
both are complete. We picked the configuration of 32 un-
bound s/w threads because this gave the best results of the
alternatives we tested (specifically, we tested using bound
threads but passive synchronization, bound/unbound config-
urations with each job given exclusive access to one h/w
context for its main thread, and unbound configurations with
over-subscription).

We plot three heat-maps for each configuration (Fig. 10a–
10i). Thepairwise gainandpairwise wasteresults compare
the performance of the pair running together sharing 2 sock-
ets against their performance running one after the other on1
socket. Note that the results are symmetric because we com-
pare the total time for the pair of jobs. A gray square on the
gain heat-map shows that the jobs are faster together (e.g.,
because their peaks and troughs allow them access to more
h/w contexts than when alone on 1 socket). A gray square
on the waste heat-map means the jobs are slower together
(e.g., inopportune preemption harms one or both jobs). Ide-
ally, the gain heat-map will have gray squares, and the waste
heat-map will not.

The per-job results show when one job in a pair is be-
ing harmed by the other. Unlike the pairwise results, this is
not symmetric: some jobs are particularly aggressive, while
other jobs are particularly sensitive. For each square, we
compare the performance of the job on the y-axis when run-
ning as a pair on 2 sockets against the original performance
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(g) Pairwise gain: Callisto (h) Pairwise waste: Callisto (i) Per-job performance: Callisto

Fig. 10. Interactions between pairs of benchmarks.

running alone without Callisto on 1 socket. As with our ini-
tial results in the introduction, darker squares indicate pro-
gressively slower performance. White squares indicate either
a speed-up or at least no slow-down. Our plots use the me-
dian execution times of each job.

Fig. 10a–10c statically partition the two sockets between
the two jobs. The graphs are almost entirely white. There is
not much interference, but equally there are no gains.

Fig. 10d–10f show the results without Callisto. Thegain
results show that jobs often benefit from sharing the two
sockets. The Green-Marl jobs, in particular, have an IO-
bound loading phase during which a concurrent job can use
more of the h/w contexts. Thewasteresults are poor in pairs
with dom_bc—as with over-subscription (Fig. 8) Domino
threads are preempted when they hold unique references to
deferred tasks. Theper-job results show thatdom_bc, art,

ilbdc, md, andswim are all particularly aggressive, with a
worst-case slowdown of 3.50x.

The results with Callisto show that there is much less in-
terference, and that when interference does occur it is much
less severe. The gain graph (Fig. 10g) shows a similar pattern
of gray squares to Fig. 10d: removing interference does not
remove opportunities for gains. The waste graph (Fig. 10h)
has very few gray squares: the worst is 1.16x for twoequake
jobs running together, compared with 1.70x fordom_bc and
bt331 in Fig. 10e. The per-job results (Fig. 10i) show that
Callisto removes most of the interference: the worst execu-
tion time is 1.25x (t_counting with swim) compared with
3.50x in Fig. 10f forequake with md.

Finally, note that most of the interference with Callisto
occurs in light-gray rows across the heat-map (Fig. 10i), as
opposed to columns (Fig. 10f). With Callisto, these results
generally match the single-run slow-downs (Fig. 9)—for in-
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Fig. 11. CDFs showing (a) execution time for each pair of jobs, (b) median, (c) all jobs.

stance,equake’s performance is degraded because of the
sequential work that over-subscription adds.

CDFs of results. Intuitively, the heat maps in Fig. 10 show
that Callisto retains the gains when bursty jobs run together,
while drastically reducing interference between them. We
quantify this by plotting the CDFs for the pairwise and per-
job results. Fig. 11 shows three plots, each comparing the
different implementations.

Fig. 11a shows the CDF of the pairwise gain and waste
results. A normalized execution time belowx = 1.0 rep-
resents a gain, and abovex = 1.0 it represents waste.
The results using Callisto are strictly better than those with-
out (the CDF is always to the left, so more pairs receive
lower normalized execution times). The intercept aty = 1.0

is also better, showing that the worst-case behavior is im-
proved. (We also checked results using the original runtime
systems with over-subscription, and using Callisto without
over-subscription: both are worse than the lines we plot.)

Fig. 11b show the CDF of the median per-job execution
times (comparing Fig. 10c, Fig. 10f, and Fig. 10i). Again,
at y = 1.0, Callisto has a drastically reduced tail of long
execution times. Abovex = 1.0, the line for Callisto is to
the left of the original: it reduces the number and severity
of long execution times. Belowx = 1.0, Callisto is often to
the right of the original. This is expected: without Callisto,
aggressive jobs were performing unexpectedly well. Note
from Fig. 11a that the pairwise gain results are strictly better
with Callisto: the reduction in unfairness is not coming at
the cost of overall pairwise performance. The final CDF
(Fig. 11c) shows results fromall job runs, rather than just
the median. It shows similar trends to Fig. 11b, confirming
that improvements to the median do not occur at the expense
of worse outliers.

Impact of Domino on results. Our single Domino work-
load is particularly sensitive to lock-holder-preemptionprob-
lems. We therefore tested the sensitivity of our conclusions
to the inclusion of Domino. Even without Domino, there are
slight reductions in waste in pairs of OpenMP jobs. How-

ever, when a pair of these OpenMP jobs run together with
passive synchronization, the problem is generally that they
receive unfair allocations of CPU time, rather than that they
waste resources by spinning. When looking at the unfairness
between jobs (Fig. 10f and Fig. 10i), Callisto is effective in
removing this unfairness.

4.3 Synthetic Background Workload
Our final results use a synthetic workload to let us evaluate
Callisto under controlled conditions (Fig. 12). The synthetic
workload has bursts of CPU demand with a variable duty cy-
cle operating within a 100ms window. We plot results from
three representative benchmarks:dom_bc (for the graph an-
alytic algorithms),ilbdc (for most SPEC OMP workloads),
andfma3d (for the jobs with an overhead using Callisto).

The thick horizontal lines show the performance when
running alone using the original runtime systems with 16 s/w
threads (narrow) and 32 s/w threads. Fordom_bc andilbdc
the lines for Callisto degrade from the 32-way performance
to the 16-way performance as the load increases. Forfma3d,
the performance of Callisto is offset from the original, re-
flecting the overhead incurred, but it degrades smoothly. The
original runtime systems show interference from the main
thread of the synthetic workload (dom_bc), or a great deal
of sensitivity to the OpenMP scheduling settings (ilbdc).

Sensitivity to parameters. By default the hysteresis param-
etersHhigh andHlow are 10ms. Increasing these pushes the
Callisto results closer to static partitioning (by allowing a job
to retain h/w contexts it is not using). Increasing them to 1s
means that only very coarse gains are possible, due almost
entirely to IO-bound loading phases. Reducing below 1ms
led dom_bc andswim to become more aggressive to other
jobs (the other job would more frequently yield a context,
and need to wait for it to be returned).

The default low-priority check in intervalPlow is 1ms and
Phigh is 100ms. Our results do not seem very sensitive to
these settings; the check-in test is cheap (looking at a table
is shared-memory), and performance seems more dependent
on letting jobs retain a h/w context during short gaps in
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Fig. 12. Three representative examples when running benchmarks alongside a synthetic job.

their own execution, rather than on letting them regain a h/w
context quickly upon unblocking.

We set the runaway timer period to matchPlow . We felt
the timer was important, but it ultimately had little effect
on the results; the jobs check in sufficiently often that only
occasional long batches of loop iterations are caught.

5. Related Work
Supporting diverse parallel abstractions. Lithe [27, 28]
allows multiple runtime systems to coexist in a single ap-
plication. It introduces a hierarchy of schedulers which split
h/w contexts between different parallel frameworks. Callisto
operates between jobs, rather than within a single job.

As with Lithe, parallel frameworks such as Manticore [10]
and the Glasgow Haskell Compiler [21] support rich sets
of abstractions for multiple parallel programming models.
Unlike Lithe, the implementations of these abstractions are
often tightly integrated with one another [18].

Controlling interference in multiprocessor systems.
Zhuravlevet al.’s survey [38] describes techniques to re-
duce contention between h/w contexts in a core, contention
between cores sharing a cache, and contention for DRAM
channels. Callisto does not currently consider these kindsof
contention. Our initial focus has been scheduler interference
which has seemed more significant for our workloads.

Linux application containers reduce interference between
programs (https://github.com/google/lmctfy).
They are built over “control groups” to which h/w contexts
and memory are allocated. This reduces interference but can-
not redistribute resources between fine-grained bursty jobs.

Concurrent with our work, Creechet al. proposed the
“Scheduling and Allocation with Feedback” system (SCAF)
for controlling the number of threads used by concurrent
jobs [6]. A daemon periodically updates job-to-core alloca-
tions based on estimates of the parallel efficiency of the jobs.
SCAF’s runtime system is simpler than Callisto’s, however
it only supports “malleable” OpenMP applications, such as
those using dynamically scheduled loops.

Scheduling in multiprogrammed systems. Edler et al.
proposed application-supplied non-preemption hints [8].So-
laris provides aschedctl facility for expressing these

hints. We take the opposite approach and identify good pre-
emption points—e.g., between loop iterations.

Tucker provided an early analysis of interference between
processes, and proposed a “process control” mechanism to
tune the number of runnable threads to the number of h/w
contexts [33]. It reacts primarily when jobs start/finish, using
a process’s internal thread queue to indicate the number of
h/w contexts that it can use. Callisto handles burstier work-
loads which benefit from frequent adaptation, and which use
work-share constructs rather than explicit threads.

Majumdar et al. [20] and Zahorjan and McCann [37]
examine various multiprocessor scheduling policies analyt-
ically and via simulation. Their results support the use of
dynamic spatial allocations, allowing jobs to vary the num-
ber of h/w contexts during their execution. McCannet al.
confirmed these results in practice in the DYNIX operating
system on a 20-processor machine [23].

Marshet al. [22] and Andersonet al. [1] designed mech-
anisms for interfacing user-level thread libraries with the
OS kernel. Both allow most work to be done without mode
crossings, involving the kernel when blocking in system
calls, or when changing the resources allocated to a process.
We wished to avoid modifying the OS kernel in our initial
prototype, but these mechanisms would let Callisto better
support IO operations within jobs.

Recent research operating systems such as Barrelfish [2],
fos [35], Akaros [31] and Tessellation [5, 19] have revisited
the question of how to schedule parallel jobs.

In Peteret al.’s proposed scheduling framework for Bar-
relfish [29], a job would receive fine-grained gang-scheduled
allocation of CPU time across multiple cores. Our experi-
ence has been that gang scheduling is not necessary for our
workloads, with control over preemption being sufficient to
avoid lock-holder preemption problems, and control over
machine-wide allocation of cores to jobs being sufficient to
avoid unfairness. Gang scheduling may be more important
in Barrelfish to support efficient programs based on message
passing rather than shared memory.

In a factored operated system (fos) [35], spatial schedul-
ing replaces time multiplexing, on the assumption that the
number of cores on a chip will be comparable to the number
of active threads. This property is not true in our workloads,



in which individual jobs are able to scale sufficiently well to
use the entire machine. Consequently, we move away from
a pure spatially-scheduled model.

Akaros [31] and Tessellation [5, 19] enable OS-level
coordination across jobs. Both use two-level scheduling
of gang-scheduled resource containers. Within containers,
they can use Lithe. Resources are divided between contain-
ers adaptively based on performance metrics (Tessellation)
and resource provisioning (Akaros). This avoids scheduler-
related interference. Callisto and Tessellation are comple-
mentary: Tessellation makes longer-time-frame external re-
source trade-offs, which could be followed by short-scale
Callisto-style trade-offs for jobs which have allocationson
overlapping h/w contexts.

Grand central dispatch (GCD) schedules tasks within
an application over thread pools (http://developer.
apple.com/technologies/mac/snowleopard/
gcd.html). The GCD implementation handles sizing the
thread pools in response to system load. BWS [7] explores
related ideas for runtime systems based on work stealing.
The number of threads trying to steal work varies based on
their recent success in stealing, and whether or not the pro-
cess has had threads preempted while executing work.

6. Discussion, Future Work and Conclusions
In this paper we have presented Callisto, and shown how
it can drastically reduce the interference between bursty
parallel jobs. We have three main directions for future work:

Deployment in practice. Now that we have seen that
our overall approach seems effective, we wish to revisit
our assumption of cooperation. In some settings cooperation
seems effective and reasonable: e.g., within a private cloud,
and particularly when a small number of different runtime
systems are used. However, in general, it would be prone
to several problems—for instance, jobs could corrupt the
state that is shared between them, or they could simply not
cooperate with requests to change their resource usage.

In the future we want to explore ways to protect the
shared state that Callisto uses. This could be done by replac-
ing the current direct access to a shared memory segment
with access via a system-call API, or with memory that is
shared pair-wise between a single job and a central Callisto
management process.

In addition, we wish to introduce external enforcement
that jobs “play fair” and relinquish resources when re-
quested. One possibility is to use Callisto to reserve a subset
of the cores in a machine: a job can only use these cores if
it cooperates. Finally, with this approach, we hope to allow
sharing of h/w contexts between jobs running in different
virtual machines by treating the reserved h/w contexts as
“compute cores” which are managed separately from VMs’
normal activity.

Effective resource usage. We want to explore integration
with resource management techniques such as those of Bird

and Smith [3] to control the division of resources between
jobs. Our current policies provide coarse-grained control
over the relative number of h/w contexts to provide each job,
but they do not attempt to assess how well different jobs are
using their resources.

Interference within processors and the memory sys-
tem. Finally, since we now avoid most scheduler-related
interference between jobs, we want to consider the im-
pact of lower level interference of the kind Zhuravlevet al.
have studied [38]—for instance, finding pairs of s/w threads
which would interact well when sharing h/w contexts on the
same core, or identifying when it is better to leave a h/w
context unused to reduce contention.
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Fig. 13. Per-job results at the fastest and slowest runs.

Appendix: Additional Results
This appendix presents additional results, not part of the
canonical version of the paper available athttp://dx.
doi.org/10.1145/2592798.2592807. Aside from
this addition, the paper is unchanged.

The per-job results in Section 4.2 show the median per-
formance of the jobs over 5 runs. In contrast, Fig. 13 shows
results from the same experiments if we focus on the best-of-
5 or worst-of-5 results for each pair. Without Callisto, even
the best-of-5 results show several cases of 2.5x slow downs.
With Callisto the worst-of-5 results remain close to the me-
dian, and no worse than 1.53x (t_counting and equake).
Hence Callisto is effective in avoiding the most extreme in-
terference between pairs of jobs, not just at reducing the in-
terference in the average case.


