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Abstract. Even for small multi-core systems, it has become harder and
harder to support a simple shared memory abstraction: processors access
some memory regions more quickly than others, a phenomenon called
non-uniform memory access (NUMA). These trends have prompted re-
searchers to investigate alternative programming abstractions based on
message passing rather than cache-coherent shared memory. To advance
a pragmatic understanding of these models’ strengths and weaknesses,
we have explored a range of different message passing and shared mem-
ory designs, for a variety of concurrent data structures, running on dif-
ferent multicore architectures. Our goal was to evaluate which combina-
tions perform best, and where simple software or hardware optimizations
might have the most impact. We observe that different approaches per-
form best in different circumstances, and that the communication over-
head of message passing can often outweigh its benefits. Nonetheless,
we discuss ways in which this balance may shift in the future. Overall,
we conclude that, by emphasizing high-level shared data abstractions,
software should be designed to be largely independent of the choice of
low-level communication mechanism.
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1 Introduction

As modern processor architectures evolve, programming abstractions are strain-
ing to keep up. The transition from single-core to increasingly multi-core ar-
chitectures means that scalability, that is, the ability to exploit parallelism and
manage concurrency, has become a central concern for software system design.

Even for small multi-core systems, it has become harder and harder to sup-
port a simple shared-memory abstraction. This abstraction is already start-
ing to fail with respect to performance: processors observe that some mem-
ory regions can be accessed more quickly than others, a phenomenon called
non-uniform memory access (NUMA). Once a concern primarily for large-scale,
high-performance workloads, NUMA effects are increasingly visible to smaller,



“everyday” programs. In the long term, some researchers have even suggested
that cache coherence will no longer be feasible across a single multi-core chip,
or that individual cores may perform better in the absence of coherence.

In reaction to these trends, researchers have investigated alternative program-
ming abstractions in which—even within a shared-memory system—coordination
is based on message passing rather than via direct access to shared-memory data
structures. A key example is a design pattern we call delegation, in which one
thread requests that another thread perform an operation on its behalf, and the
request and response (if any) are sent by message passing. For instance, Bar-
relfish [1] runs a separate kernel on each core, and cores communicate only via
a message passing interface, itself implemented in shared memory.

Advocates for delegation appeal to its simplicity: it promises to support appli-
cation designs that span NUMA architectures, heterogeneous architectures, and
even architectures that lack global coherence. Moving platform-specific engineer-
ing concerns—such as cache line sizes or idiosyncratic coherence protocols—out
of the application and into the message passing substrate could ease porting
applications from one platform to another, or from one platform to its successor.

Many of these proposals (surveyed in Section 7), however, are ad-hoc in
nature, focusing on a specific implementation of a specific data structure, yielding
little insight into where the message passing abstraction performs better than the
shared-memory abstraction. Our contribution is to explore a range of message
passing and shared-memory designs, on various benchmarks running on different
multicore architectures, and to evaluate which combinations perform best.

This paper does not take sides in the ongoing debate about the relative mer-
its of shared-memory versus message-passing abstractions [9]. In contrast, our
contribution is to advance a pragmatic understanding of these models’ strengths
and weaknesses. In particular, such debates often present a false dichotomy: that
we must choose between these models, and that one is superior. Instead, by em-
phasizing high-level abstractions, software can be designed largely independently
of the choice of low-level communication mechanism. The choice itself should be
based on pragmatic performance evaluations.

We will use the following terminology. Many modern large-scale multiproces-
sor architectures are composed of multiple sockets or nodes, each encompassing
multiple cores. Each core has access to a local cache hierarchy and to dynamic
random-access memory (DRAM), along with multiple threads. Such systems typ-
ically utilize a cache-coherence protocol, which creates the illusion that threads
share a common memory. Nevertheless, as noted, cache coherence protocols do
not hide NUMA effects in the form of differences in the times needed to com-
municate between local and remote memories. We use the term NUMA domain

to indicate a set of threads with identical memory access times.

Section 2 explains our notion of delegation, and Section 3 describes alter-
native ways of implementing message passing on a shared-memory multicore.
Section 4 describes the range of benchmarks used, and Section 5 describes the
experimental results, which are discussed further in Section 6. Section 7 surveys
related work, and Section 8 presents conclusions.



2 Delegation

In delegation, access to a data structure is mediated by one or more server

threads, which are the only threads allowed to manipulate the data directly.
Even though all threads share a common (NUMA) memory, client and server
threads communicate by a message passing protocol whose implementation is
optimized to take advantage of the underlying shared memory.

When a client thread needs to apply an operation to a data structure, it
delegates that operation by sending a request message to the server thread. When
the server thread receives the message, it carries out the operation directly on
the data structure, and stores the result value, if any, in a client-allocated buffer.

Delegation is attractive for several reasons. First, the server thread can oper-
ate directly on the data structure—without synchronizing its accesses with other
threads, in which case programmers need not worry about synchronization. Fur-
thermore, a server thread may encounter fewer cache misses and generate less co-
herence traffic than threads operating on the data structure directly. Advocates
of delegation often suggest that delegation can produce more robust software
designs: to be cost-effective, applications must be designed to work over a wide
range of parallel platforms, making it difficult to optimize shared data structures
for any specific platform. Delegation introduces an abstraction layer, allowing
implementations to be optimized for different platforms with no changes to ap-
plications. This abstraction layer allows applications to be more easily scaled
out from multicores to multiple machines by replacing the shared-memory com-
munication protocol with one that operates over a distributed system.

Nevertheless, delegation also has its pitfalls. From the point of view of an
individual operation on a data structure, a central question is how the time
spent operating directly on a shared data structure compares with the cost of
(i) sending and receiving messages, (ii) queuing time of a message at a server
thread, and (iii) execution time at the server thread. Server threads are statically
assigned to cores, so they may be idle some of the time. If there are enough
cores, however, this static assignment removes the need for complex mechanisms
to enable server threads to be quickly identified and dispatched (as with active
messages [17]). Server threads may become a bottleneck, so the underlying data
structure may need to be partitioned and delegated to multiple servers, a problem
similar to moving from coarse to fine-grained locking. Finally, delegation imposes
some inconvenience on programmers, as operation requests and responses must
be marshalled into messages before being sent and unmarshalled upon receipt.

In short, while delegation has some attractive properties, it does not follow
that delegation-based data structures are inherently preferable.

3 Communication

Message Passing Clients communicate with servers via a message-passing proto-
col implemented in shared memory. Although we consider several different mech-
anisms for communication, the messages themselves are similar across schemes.



Each message contains an opcode identifying the requested operation (e.g., add a
key-value pair to a table), one or more arguments (the values to add), a pointer
to a buffer where the call’s result is to be stored (e.g., the value returned by a
get() call), and a ready flag that the server sets when the result is ready. We
follow the convention that the client manages the memory occupied by messages
(most messages are allocated on the client’s stack).

In our experiments, when a client issues a request, it blocks until the response
is available. Straightfoward alternative approaches could allow clients to issue
requests for multiple operations to be performed in parallel.

We evaluate three communication mechanisms: MPSCChannel, InletQueue,
and DNCInletQueue, each making different synchronization trade-offs.

The MPSCChannel (multiple producer, single consumer), based on the “Mul-
tilane” structure of Dice and Otenko [6], uses an array of request slots. A shared
variable PutCursor indicates the next available slot. A client uses a compare-and-

swap (CAS) instruction to increment PutCursor atomically, and uses the previous
value (modulo the size of the array) to choose a slot. Because that slot might
still be in use, the client repeatedly calls CAS to swap null with a pointer to its
request message. The server uses a private variable TakeCursor to cycle around
slots, waiting for each one to contain a non-null pointer to a request. It then
reads the opcode and arguments from the request, resets the array slot to null
(making it available to other clients), performs the operation, stores the result
in the buffer provided, and finally sets the ready flag.

In NUMA architectures, memory accesses not satisfied by local cache are
substantially slower when applied to remote memory than to local memory. A
disadvantage of MPSCChannel is that it requires threads to repeatedly apply
CAS to remote PutCursor locations, and, more rarely, to remote slots.

The InletQueue channel provides one slot per NUMA domain. Each client uses
CAS to attempt to replace the slot’s null value with a pointer to its message.
When the server reads the request, it resets the slot to null to make it available
again, performs the operation, copies the result (if any) to the client’s buffer,
and sets the message’s ready flag.

The DNCInletQueue channel (“direct, no CAS”) uses only load and store
operations to access remotely share variables, and a lock for synchronization
among threads on a single node. In this channel, the node’s slot contains the
message itself, not just a pointer to the message. When a client thread acquires
the lock for its node’s slot, it copies the request message into the slot, including
a pointer to the client buffer where the result is to be stored.

The motivation for DNCInletQueue is to ensure that the mechanism used for
actual inter-socket communication is as simple as possible (simple stores by the
client and simple loads by the server): synchronization such as acquiring the lock
that protects the slot is performed only among threads on the same node. (With
InletQueue, although only clients on the same node attempt to modify the slot,
slots are still shared remotely with the server reading them.) We believe this
approach creates the best opportunity for potential future hardware optimiza-
tions to reduce communication overhead. Even without such optimizations, the



“direct” aspect of DNCInletQueue ensures that, when a server reads a slot writ-
ten by a client, it already knows the operation to perform. In contrast, methods
that send a pointer to the message require the server to initiate another round
of inter-socket communication to fetch the message contents.

Shared memory For shared-memory mechanisms, we consider lock-based struc-
tures employing the following kinds of locks: a simple spin lock, the MCS lock [11],
and fair and unfair versions of a NUMA-aware “cohort” lock C−TKT−MCS [5]
that uses MCS for synchronization between threads on the same socket, and a
global ticket lock to explicitly manage when the lock is handed off to a thread
on another socket. Handing off the lock preferentially within a socket can reduce
lock handoff time, and increase cache locality for data accessed in the critical
section. However, doing so blindly can result in “gross unfairness”, in which high
throughput is achieved, but some threads are essentially starved. Perhaps sur-
prisingly, depending on the architecture, this phenomenon can occur even with
simple locks that do not explicitly seek to keep the lock within a socket. Thus,
it is important to manage such pitfalls. We therefore include “fair” and “unfair”
variants of C−TKT−MCS (denoted as C−TKT−MCS-fair and C−TKT−MCS-
unfair, respectively). The fair version imposes a limit on how many times the
lock can be handed off within a socket, avoiding grossly unfair behavior.

4 Benchmarks

In this paper, we restrict our analysis to two representative cases among the
data structures we explored. Both implement a map interface, storing key-value
pairs with standard insert (), remove() and get() operations.

4.1 Concurrent Hash Maps

The hash map is partitioned into multiple pieces; with delegation, each is man-
aged by a server thread. Each partition has a preconfigured number of buckets,
where each bucket is a linked list of chunks. Each chunk is a fixed-size, cache-
line-aligned structure that holds a set of key-value pairs whose keys lie within a
fixed range. Chunk size is a multiple of 64 bytes (the unit of cache coherence).
To speed searches, adjacent chunks’ key ranges do not overlap, and each chunk
records the maximum key that it stores. Chunks in a bucket are sorted by their
maximum stored keys, but key-value pairs within a chunk are unordered.

Each bucket is a linked list of cache-aligned chunks, instead of the more
traditional list of key-value pairs, because loading each chunk brings in multiple
key-value pairs, reducing cache coherence traffic. This structure should benefit
both shared-memory and delegation-based methods. However, it is likely to favor
shared-memory more because delegation ensures that all accesses to this data
are from the same NUMA node, resulting in more effective use of lower level
caches, and more ability to place data in memory near where it will be accessed.



To store a key-value pair in a partition, the key is hashed to identify the
bucket where the pair will be stored. The bucket’s list of chunks is then scanned
to identify which chunk should contain the given key, skipping chunks whose
maximum key is smaller than it. The target chunk is then scanned linearly for
the given key. If found, the value is updated. If not, but the chunk is full, the
chunk is split and half of its elements are moved to a new chunk, making space
for the new pair. Chunk size is subject to a trade-off: smaller chunks are better
for cache locality, but larger chunks reduce the frequency of splitting.

Although many other possibilities exist, we have chosen shared-memory and
delegation-based implementations that each exploit a key advantage they have
over the other. For delegation, by having a single server thread manage each
partition, it can do so without additional synchronization. For shared memory,
we have chosen an example in which fine-grained locking is straightforward: a
fixed-size hash map implemented using a single lock for each bucket, allowing
one thread per bucket to access the hash map concurrently.

While multiple server threads could also use this technique to collectively
manage a partition, this would impose overhead on each operation, introduce is-
sues such as how clients balance requests over these multiple servers, and require
additional hardware threads to be reserved for the additional severs. In contrast,
in the lock-based hash map, as long as the total number of buckets (and therefore
locks) remains the same, the actual number of partitions has almost no effect on
performance or on the number of hardware threads required.

4.2 Concurrent Linked Lists

The concurrent linked list is a degenerate hash map, where each partition consists
of a single bucket. In particular, each bucket is a linked list of chunks, as ex-
plained in Section 4.1. One important point is that the whole partition/bucket
is protected by a single lock, so the concurrency achievable in the lock-based
linked list is bounded by the number of partitions, much as with delegation.

4.3 Workloads

We used both small and large workloads. The small (large) hash map has 500
(50,000) buckets per partition. In the small (large) workload, the hash map is
initialized by storing a key-value pair with a randomly-chosen key 1000 (100,000)
times. For the linked list, the small (large) workload initializes the list by storing
a key-value pair with a randomly-chosen key 1000 (100,000) times. Thus, the
small workload has better cache locality than the large workload. After some
experimentation, we sized chunks to accommodate 64 key-value pairs.

We experimented with three mixes of operations: read-only, consisting en-
tirely of get() calls, write-only, consisting of 50% insert () and 50% remove()
calls, and read-write, a mixture of 50% get(), 25% insert (), and 25% remove()
calls. There are too many combinations of data structures, architectures, and
workloads to present them all, so we focus here on the most interesting cases.



Results were qualitatively similar for the three operation mixes (read-only,
write-only, and read-write); for brevity, we present only the read-write results.

5 Performance Results

The experiments were conducted on two systems with different architectures.
The first is an 8-socket Nehalem system [13] (“X4800”), each socket containing
a Xeon X7560 processor chip with 8 hyperthreaded cores running at a 2.26Ghz
clock frequency, with a total of 128 hardware threads. The second system is an
Oracle T4-4 [14] (“SPARC T4-4”), which consists of 4 T4 SPARC sockets, each
socket containing 8 cores, and each core containing 8 hardware thread contexts,
for a total of 256 hardware thread contexts, running at a 3 GHz clock frequency.

For the delegation-based implementations, server threads were placed uni-
formly among the sockets (see Section 5.4 for additional details). Placement of
client threads was controlled by the OS in all cases. In each experiment, each
thread repeatedly chooses at random whether to insert or delete an item, and
performs the operation. No “external” work is performed between operations.
We measure the total number of operations completed by all threads over a
measurement period of ten seconds, and report throughput as the number of
operations performed by all client threads per millisecond. Each experiment was
repeated 6 times, and the average throughput for each configuration is reported.

5.1 Hash Map

The first set of experiments was conducted on the concurrent hash map data
structure of Section 4.1. We experimented with both small (Figures 1(a) and
1(b)), and large (Figure 1(c) and 1(d)) workloads. Unless stated otherwise, the
number of partitions (as well as the number of server threads in the case of
delegation) is constant at 8 (which is equal to or a small multiple of the number
of sockets), and we use the read-write operation mix.

Figure 1 shows that, for the hash map benchmark, shared-memory mecha-
nisms with any of locks performs much better than delegation for any channel
type. This difference is because the fine-grained locking employed in our hash
map implementation allows many threads to manipulate the shared hash map
data structure concurrently. On the other hand, concurrency is limited by the
number of servers in the case of delegation. Indeed, the performance of delega-
tion scales only up to 32 threads (which is more than 8, the number of servers,
because clients perform work such as choosing a random key and determining
which server thread will perform the operation before sending the request).

For small hash maps (Figures 1 (a) and (b)), all locks eventually stop scaling
(and most perform worse) as the number of threads increases. This is due to
contention on the (relatively) small number of buckets/locks. The performance
of delegation, though worse than that of locking, is less sensitive to this con-
tention because it is limited primarily by the sequential server threads, whose
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(a) Small RW Hash Map (X4800)
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(b) Small RW Hash Map (SPARC T4-4)
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(c) Large RW Hash Map (X4800)
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(d) Large RW Hash Map (SPARC T4-4)

Fig. 1: Hash Map experiment

performance is largely insensitive to contention on message queues. (Nonethe-
less, MPSCChannel’s centralized PutCursor makes it more sensitive to contention
than the other message queues.)

The simple MCS lock is typically the best-performing lock at low contention.
However, MCS’s performance degrades under heavy contention. By contrast,
NUMA-aware locks perform better under high contention because there is an
increased likelihood that locks can be handed off to threads on the same socket.
The unfair C−TKT−MCS variant provides better high-contention performance
than the fair variant because it permits more consecutive, local hand-offs. We
return to this point in Section 5.3.

5.2 Linked List

Figure 2 summarizes results for the linked list benchmark. As noted in Sec-
tion 4.2, each partition contains just one bucket protected by a lock. Further-
more, each operation performs more memory accesses with the linked list than
with the hash map, as all key-value pairs of a partition are stored in one bucket.
A larger number of memory accesses per operation favors delegation if better
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(a) Small RW Linked List (X4800)
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(b) Small RW Linked List (SPARC T4-4)
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(c) Large RW Linked List (X4800)
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(d) Large RW Linked List (SPARC T4-4)

Fig. 2: Linked List experiment

server cache locality outweighs the cost of client-server communication. Indeed,
the delegation methods performed considerably better than all locking schemes
for large linked lists (Figures 2(c) and 2(d)), where operations access a large
number of memory locations during list traversals. For small linked lists (Fig-
ures 2(a) and 2(b)), delegation provided competitive performance, losing only
to MCS on X4800, and to the C−TKT−MCS variants on SPARC T4-4.

Although the simple MCS algorithm [11] provides superior performance in
many cases, its performance degrades severely in some cases. There are two rea-
sons for this. First, when contention increases, MCS has no facility to encourage
consecutive lock handoffs within the same socket. As a result, the Tail vari-
able that is modified by every lock acquisition “bounces” around the system
frequently. This in turn causes data accessed in the critical section to similarly
bounce around the system. NUMA-aware locks are able to avoid this effect and
thus outperform MCS in this case (Figure 2(b)).

To evaluate these mechanisms in less balanced workloads, we repeated the
experiment using only one partition, representing a partition that receives a dis-
proportionate fraction of the requests, or alternatively a configuration in which
there are not enough partitions, so all partitions may be overloaded.
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(a) Small RW Linked List (X4800)
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(b) Small RW Linked List (SPARC T4-4)

Fig. 3: Linked List experiment with single partition

Results are shown in Figure 3. (We omit results for large linked lists for this
case, as sequential execution of operations dominates performance. Thus, the
synchronization mechanism used has little bearing on performance.)

Although InletQueue usually outperforms DNCInletQueue, recall that
DNCInletQueue was specifically designed to be more amenable to hypothetical
future hardware enhancements (Section 3). Interestingly, while MPSCChannel’s
performance often degrades going from low to medium thread counts, it im-

proves at even higher threading levels on SPARC T4-4. We believe that this is
because, with more client threads, there is more contention for slots, thus reduc-
ing contention on PutCursor, the primary bottleneck. We have not yet evaluated
sensitivity to the number of slots, which would shed some light on this issue.

Superficially, C−TKT−MCS-unfair seems to significantly outperform all other
methods and—to a lesser extent—both C−TKT−MCS-fair and MPSCChannel
also stand out. However, some caution is needed in interpreting these results. As
discussed in Section 3, some methods provide deceptively high throughput by
“gross unfairness”: they provide high throughput to some threads, while other
threads receive much lower throughput or even starve completely. If this issue is
overlooked, it is easy to conclude that a method that would be unacceptable in
practice delivers the best results. We discuss this issue in more detail next.

5.3 Fairness

As a crude indicator of unfairness, we use spread, defined as the maximum per-
thread count divided by the minimum per-thread count (plus one to avoid divide
by zero). If the throughput of all threads is approximately equal, the spread will
be close to 1. Methods that are grossly unfair—particularly those that starve
some threads completely—exhibit very high spread.

In Figure 3(b), C−TKT−MCS-unfair consistently delivers the highest or
nearly the highest throughput, but exhibits a spread value of over 560,000 at
32 threads. Its fair counterpart typically exhibits a spread value close to 1 (we



occasionally see values of up to 4.5), but delivers significantly lower throughput
in most cases. Similarly, on X4800, C−TKT−MCS-unfair exhibits spread over
1,000,000 in the highest contention case (single partition, 108 threads), while
C−TKT−MCS-fair almost always yields spread very close to 1 (with rare out-
liers not exceeding 40).

The delegation methods also exhibited high spread values (for example, on
SPARC T4-4, up to 2,100 for InletQueue, 670,000 for DNCInletQueue and 360,000
for MPSCChannel; the situation is not as bad on X4800, but still we occasionally
see spread values up to 1,200).

Next we describe a preliminary exploration of how the fairness of the dele-
gation methods might be improved. MPSCChannel suffers from CAS contention
on the remotely-shared PutCursor variable. InletQueue applies CAS on the mes-
sage slot to swap in a pointer to the message, and DNCInletQueue uses a simple
spinlock to acquire ownership of the message slot. When threads compete in this
manner, unfairness can result because a thread that releases the message slot
has the corresponding synchronization variable in cache and is therefore likely
to be able to acquire the slot again before another thread can.

To address this issue, we experimented with simple backoff mechanisms
whereby, if a thread experiences too many consecutive CAS failures, it sets a
flag causing all threads accessing that channel to pause before retrying, con-
ditional on a function of their thread IDs and the number of times the slot
lock has been acquired. This reduces contention and gives “priority” to different
threads over time. This eliminated the gross unfairness on SPARC T4-4 with-
out impacting throughput, but we still observed spread values of up to 2000 for
DNCInletQueue and 1150 for InletQueue, indicating that there is still consider-
able room for improvement. We found that parameters controlling the threshold
and backoff could be tuned to different points in a tradeoff between spread and
throughput. We are still experimenting to improve our results here.

Unlike SPARC T4-4, X4800 yielded spread values at worst in the low hun-
dreds even before these optimizations, which were less effective on X4800, al-
though we have not yet tuned them for this platform.

5.4 Hardware-related details

In earlier experiments, InletQueue and DNCInletQueue degraded significantly at
higher thread counts. After some investigation, we hypothesized that this was
due to “sibling rivalry”: client threads executing on the same core as a server
thread would compete with the server thread for resources, thus indirectly slow-
ing client threads making requests to that server. To address this issue, when
placing a server thread on a core, we reserve all other hardware threads on
that core so that they are not used by clients. This resulted in a significant im-
provement, allowing the delegation methods to outperform all others across the
threading range for large linked lists on both platforms, for example Figures 2(c)
and 2(d). Although this dedicates more hardware threads to delegation, these
threads could potentially be used to benefit the server, rather than interfering
with it. We leave investigation of this direction for future work.



This experience highlights one potential downside of delegation. Apart from
using cores that might otherwise be used by additional application threads, re-
serving sibling threads requires server threads to be “pinned” to a specific hard-
ware thread, which can be a mixed blessing. First, overriding the operating
system’s thread placement policy prevents it from choosing the best placement
based on the current workload. This is clearly demonstrated in Figure 2(b): at
low thread counts, the lock-based methods have a significant advantage because
the operating system is able to place all threads on the same socket.

On the other hand, a fixed relationship between data and the hardware
threads that access it can be exploited in some contexts. To illustrate this point
we performed an experiment (not shown), in which we controlled the placement
of these structures so that each delegation message queue was allocated on the
same NUMA node as the corresponding server thread. In contrast, these struc-
tures are usually allocated by a single thread at initialization and are thus all
allocated in physical memory of the same NUMA node.

This simple placement optimization substantially improved the performance
of delegation on X4800, especially for InletQueue and DNCInletQueue; the latter
improved by more than 2x in most cases. This may be counterintuitive given
that these structures are likely to remain in cache. However, on X4800, each
memory access requires communication with the location’s “home node” (see [4]
for a detailed explanation). Thus, locating each communication structure near
the server thread that accesses it most often improves performance.

The substantial performance gains achieved by even this modest optimization
reinforces our belief that significantly more could be achieved if hardware were
explicitly optimized for such communication patterns.

Reducing coherence traffic between nodes can reduce consumption of inter-
socket bandwidth, which may in turn avoid a system-wide bottleneck that may
indirectly reduce performance [3]. The delegation methods we have presented
were in large part motivated by similar concerns. Using hardware performance
counters, we have found that the delegation methods typically generate a small
number of remote cache misses per operation (typically around 4-5, although we
sometimes observe significantly higher rates in high-contention cases). Software
techniques—such as discussed in [2,8], and hardware optimizations tailored for
these communication patterns could both significantly reduce this number.

However, recent progress in building NUMA-aware locks [5] has changed the
landscape. By limiting how often locks (and therefore associated data) migrate
between sockets—while avoiding gross unfairness exhibited by locks that do so
“accidentally”, such locks can reduce the per-operation remote cache miss rate
almost to zero by performing large numbers of operations protected by a lock
on one socket before allowing the lock to migrate to another. This depends on
sufficient demand for a lock within a socket, suggesting that such techniques are
excellent for avoiding performance disasters due to lock contention, but may not
be as effective in scalable applications with little lock contention.



6 Discussion

Our results show that delegation can sometimes outperform direct shared-memory
approaches, particularly when operations access enough data to ensure that the
benefits of delegation outweigh its communication costs. Nonetheless, the best
shared-memory mechanisms often performed about the same as or substantially
better than the delegation mechanisms. Synchronization granularity is a key is-
sue, for both locking and delegation. For easily partitionable data structures,
like those considered in this paper, fine-grained locking is straightforward. For
delegation, it is similarly straightforward to partition the data structure, allow-
ing multiple server threads to service requests from client threads in parallel,
but finer granularity requires additional hardware threads to be used.

While granularity affects both approaches in similar ways, there are inter-
esting differences. Suppose, for example, that we want to make our hash map
resizeable. Resizing is straightforward in the case of delegation, because oper-
ations need not synchronize with each other. In contrast, resizing a hash map
implemented with per-bucket locks is more challenging, as the resizing must be
coordinated with threads accessing the partition using these locks.

Different challenges and opportunities exist when workloads face contention.
NUMA-aware locks such as the C−TKT−MCS variants can help limit the perfor-
mance degradation of lock-based approaches, although these locks impose over-
head in the hopefully more common case in which there is no lock contention.

With delegation, an overloaded server thread can become a bottleneck. Client-
side techniques that combine multiple requests into one equivalent one, thus
reducing the communication costs and the demand on the server thread, may
improve performance. Elimination [8] can be used to complete operations with-
out communicating with the server at all [2].

Server-side techniques may help too. For example, a server thread experi-
encing high demand could repartition its own partition and create an additional
server thread to manage it. This may be effective if the execution of operations is
the bottleneck. If, however, the communication channel for requests is the bottle-
neck, simple repartitioning will not help, and more ambitious techniques would
be required in which client threads also become aware of the repartitioning.

7 Related Work

Lozi et al. [10] propose structuring a client-server system so that one or more
cores are dedicated to server threads that execute critical sections on behalf
of client threads. Client and server threads communicate through an array of
contexts, one per client. A client’s context includes the lock address, the critical
section’s private variables, and a function that encapsulates the critical section’s
code. (Note that some effort is required to encapsulate critical sections in this
way.) Clients and servers use atomic operations on shared variables to signal
when a request starts and completes. The authors observe that their scheme
improves lock access contention and cache locality, but do not explore alternative
signaling or communication structures.



Suleman et al. [16] consider an asymmetric multicore architecture encompass-
ing a small number of high-performance cores and many smaller, less powerful
cores. The paper examines architectural support for delegating critical sections
to the high-performance cores; evaluation is via an in-house simulator.

Metreveli et al. [12] describe CPHASH, a concurrent hash map that uses a
form of delegation to enhance cache locality. They show that delegation can out-
perform locking for one data structure on one platform configuration. Our goal,
in contrast, is to characterize the relative merits of delegation and direct shared-
memory mechanisms in a range of data structures, communication mechanisms,
workloads, and platform configurations.

Hendler et al. [7] and Oyama et al. [15] propose mechanisms in which threads
execute operations on behalf of others while holding a lock. (Again, critical sec-
tions must be encapsulated as self-contained functions.) This approach resembles
delegation: a single thread serially executes multiple operations. But that thread
is determined dynamically, not statically as in delegation schemes.

8 Conclusions

Delegation works well when the data structure can be partitioned so that it fits in
the servers’ collective caches. Delegation also works well when critical sections
encompass many memory accesses, as in the case of the linked lists, because
the communication overhead is outweighed by the savings in cache misses and
coherence traffic. These savings are more substantial when the cost of remote
memory access is high, allowing delegation to beat efficient NUMA-aware locks.

However, delegation is often outperformed by the best locking implementa-
tions. In particular, when critical sections are short, and especially in “small”
workloads in which data accessed in the critical section is likely to be cached,
locking approaches require little or no remote communication, while delegation
still pays in communication overhead but delivers less benefit.

Nevertheless, as the number of sockets in multicore machines grows, so will
the cost of remote memory access. Furthermore, techniques not explored in this
paper (such as elimination and combining), as well as potential hardware im-
provements, may make delegation more attractive in the future.

Our experience has shown that low-level hardware details can make a con-
siderable difference to the behavior of synchronization algorithms. Thus, we con-
clude that multicore applications should be designed around high-level data ab-
stractions, hiding the low-level communication details, so that one mechanism
can be replaced by another as workloads and platforms change.
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