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Abstract—The simplicity of concurrent programming with
Transactional Memory (TM) and its recent implementation
in mainstream processors greatly motivates researchers and
industry to investigate this field and propose new implementa-
tions and optimizations. However, there is still no standard C
system library which a wide range of TM developers can adopt.
TM application developers have been forced to avoid library
calls inside of transactions or to execute them irrevocably (i.e.
in serial order). In this paper, we present the first TM-aware
system library, a complex software implementation integrated
with TM principles and suited for software (STM), hardware
(HTM) and hybrid TM (HyTM).

The library we propose is derived from a modified lock-
based implementation and can be used with the existing
standard C API. In our work, we describe design challenges
and code optimizations that would be specific to any TM-
based system library or application. We argue about system
call execution within transactions, highlighting the possibility
of unexpected results from threads. For this reason we propose:
(1) a mechanism for detecting conflicts over kernel data in user
space, and (2) a new barrier to allow hybrid TM to be used
effectively with system libraries.

Our evaluation includes different TM implementations and
the focus is on memory management and file operations since
they are widely used in applications and require additional
mechanisms for concurrent execution. We show the benefit we
gain with our libc modifications providing parallel execution as
much as possible. The library we propose shows high scalability
when linked with STM and HTM. For file operations it shows
on average a 1.1, 2.6 and 3.7x performance speedup for 8 cores
using HyTM, STM and HTM, respectively (over a lock-based
single-threaded execution). For a red-black tree it shows on
average 3.14x performance speedup for 8 cores using STM
(over a multi-read single-threaded execution).

Keywords-transactional memory; system library; system
calls; I/O; memory allocation

I. INTRODUCTION

The growing number of on-chip cores and hardware

threads increases the need for parallel programming models
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⋆This work was conducted when the author was with Microsoft Research
Cambridge.

that are easy to use by average programmers and that can

assure proper multithreaded synchronization. Transactional

Memory (TM) [1], [2], either as a software (STM), a

hardware (HTM) or a hybrid (HyTM) implementation, has

been proposed as a solution to this issue. After dozens of TM

implementations, several TM applications [3], [4], [5], [6]

and research on its fundamentals, a system library (a layer

between an operating system and an application) compatible

with transactional memory is missing.

Current TM implementations handle library code either

by marking it ineligible for execution in a transaction (and

reporting an error if the library is invoked), or by using

irrevocable execution (so that only one transaction may

call into the library at any time). The first approach limits

the ability for complex programs to be adapted to use

transactions. The second approach limits the scalability of

transactional programs. In this paper, we examine how to

adapt a complex existing library so that it can be used within

transactions without making all operations irrevocable.

System libraries abstract and simplify the access to ser-

vices of the operating system and encapsulate a shared state:

e.g. memory allocation lists and file structures. If a library

is used in a large program, then its internal state might be

accessed within transactions in some threads, and concur-

rently accessed un-intendedly outside transactions in other

threads using other protection schemas (e.g. locks). This

is especially the case for TM implementations with weak

isolation guarantees like most of STM implementations. If

an access to shared data structures is intended to be protected

by locks, operations have to be implemented in a way that

the interaction of locks and transactions cannot cause any

unwanted or undefined behavior [7]. In contrast, Hardware

TM implementations like AMD’s Advanced Synchronization

Facility (ASF) [8] or Intel’s Restricted TM (RTM) in the

upcoming processor Haswell [9] provide strong isolation

guarantees assuring consistent views even for unprotected

access.

In this paper, we present a TM-aware implementation

of a standard C system library, based on diet libc [10].



Diet libc is an open-source standard C library designed

to have the smallest possible code footprint. We modify

the original lock-based implementation to make transac-

tions as synchronization primitives without introducing new

functions, system calls, or instructions. Instead, we perform

various modifications inside the library which are invisible

to regular users. Other proposals require some degree of

change, in the form of a particular API [11], [12] or

specialized transactional calls [13].

This paper makes the following contributions:

• We present the first TM-aware system library with

the standard libc API. It is based on an originally

lock-based library and the API remains unchanged in

order to allow software developers to maintain their

programming habits and to ease the transactification of

existing software.

• We explain general design choices related to (1) in-

teraction between lock-based and transactional library

code, (2) system library adaptation to a TM system,

and (3) system library execution. We explain which

design choices are suitable for system libraries, and we

detail our experience with diet libc and TM integration,

transactional code optimizations, insufficient support of

TM tools, etc.

• We introduce a TM conflict detection mechanism exten-

sion, a new technique to solve the problem of detecting

conflicts that cannot be detected automatically by TM

because they modify kernel space. Furthermore, we

explain how to support transactions with system calls

in HyTM and avoid running them sequentially.

We evaluate our TM-aware diet libc implementation using

a set of micro-benchmarks for file operations and the red-

black tree benchmark for memory management functions.

We compare our TM-aware implementation using differ-

ent TM implementations with the traditional approach of

running library calls irrevocably or with locks. We show

that TM-aware implementation is scalable with a significant

speadup for running on 8 cores. In addition, we demonstrate

the first comparison with emulated Intel’s RTM implementa-

tion. TM-dietlibc is an open-source system library, available

at [14].

In the following sections, we present: different design

choices for integrating a system library to TM usage (Sec-

tion II); modifications we made to the library itself and

experience we gained which can be applied to other system

libraries (Section III); the quantification effort (Section IV);

limitations of a diet system library and existing TM support

(Section V); the experimental results (Section VI); the

comparison of our work to previous studies (Section VII);

and our conclusions (Section VIII).

II. VARIOUS SYSTEM LIBRARY DESIGNS

Developing a TM-based system library or changing an

existing lock-based one involves choosing applicable pro-

gramming models and designs. In this section, we describe

different choices related to (1) how to mix locks and trans-

actions, (2) how to adapt a library to a TM system, and (3)

how to execute library code.

Our design choices for TM-dietlibc are based on two

external dependencies (rather than on the original lock-based

libc): the TM implementation and the TM compiler.

A. Mixing locks and transactions

Applications can invoke system library functions from

both transactional and non-transactional parts, and having

lock-based code is still inevitable in some cases. For ex-

ample, the functions that are part of TM initialization at

application startup have to remain thread-safe, but should

not contain transactions. Therefore, we must handle any

interaction of locks and transactional boundaries as well as

any interaction of lock-protected and TM-protected accesses

to the same shared data.

Completely shared data. This programming model re-

quires strong atomicity provided by a TM implementation.

With strong atomicity, transactional accesses of a shared

variable are totally synchronized with unprotected accesses

by other threads. However, most of STM implementations

do not guarantee strong isolation.

Partially shared data. Dynamic separation [15], [16] is

a programming model where a programmer indicates shared

variables that could be accessed within or outside of a

transaction, and TM provides the necessary synchronization

between transactional and non-transactional accesses.

Completely separated shared data. Some TM imple-

mentations require transactional and non-transactional data

to be separated. The programming model is called static sep-

aration [17] and the system library has to contain duplicated

data structures and duplicated code wherever a memory

access can be transactional and non-transactional.

TM-dietlibc design choice: In the entire system library

we completely separate shared data protected by locks and

protected by TM. The reasons for not choosing mixing trans-

actional and lock-protected data and code are the following:

(1) breaking the TM isolation rule: a transaction should not

be able to see the intermediate state of another transaction,

e.g. when it directly accesses memory of a lock held by the

other transaction, (2) disabling concurrent execution: if one

transaction acquires a lock, all other transactions would have

to wait until the first one finishes, and (3) causing non-trivial

pathological behaviour [7], e.g. a deadlock. The approach

we choose is defensive, distinguishes transactional and non-

transactional accesses and does not require strong atomicity

from TM.



B. Library adaptation level

Various TM implementations present a wealth of different

features, algorithms and solutions in order to exploit better

usability and performance. The level of system library

adaptation to one specific or various TM systems influences

its complexity and portability.

Library adapted to a specific TM implementation. A

developer of a TM-based system library could make design

decisions depending on the chosen TM system. As each

TM system has its policies regarding conflict detection,

validation, atomicity, nesting, etc., adopting a library to one

TM system increases the performance and decreases the

range of TM problems that a developer could face using

or developing the system library.

Library independent of TM implementations. Employ-

ing different TM implementations becomes straightforward

with Intel’s ABI [18], and recent work on a framework

makes it easy to integrate an STM library backend to

Intel/gcc ABI compliant STM compilers [19]. However, a

system library that does not depend on a specific TM im-

plementation has to rely only on common TM features which

weakens TM optimization and exploitation opportunities.

TM-dietlibc design choice: We adapt TM-dietlibc to be

compatible with different TM systems [8], [20], [21], all

compatible to Intel’s ABI [18], with flat nesting and eager

conflict detection. Flat nesting allows deferring actions from

the outer or any inner transaction until the commit phase of

the outer one. Eager conflict detection provides the discovery

of a conflict at the moment of a conflicting data access, and

immediate re-execution of the aborted transaction. Relying

on these TM features, we enable system calls to be executed

if no conflicts with other transactions occur. For TM with

lazy conflict detection, transactions with system calls are

executed in the irrevocable mode.

C. Library execution mode

To exploit optimistic concurrency that TM provides, the

ideal case is when system-library functions access only

local data, or user-space shared data, and can be completely

synchronized by TM. However, more frequent cases are

when functions can be only executed as transactional with

the developer’s usage of additional TM mechanisms, or

they have to remain as non-transactional. In this subsection,

we describe different possibilities to run system library

functions.

Complete transactional execution. Libc code can be

executed transactionally if it contains only local variables

and memory accesses at the user level.

Transactional execution employing TM techniques.

More sophisticated TM systems might be able to handle non-

trivial cases. e.g. TM support for locking inside transactions.

Transactional execution in a TM-adapted system li-

brary. Library code is transformed to transactional code,

but has to be modified to allow the exploitation of TM.

For instance, a lack of support for locks within transactions

requires removing locks and using another synchronization

mechanism whenever needed.

Sequential execution. Transition of a transaction that

contains a system library call to serial irrevocable execution

ensures safe execution without any libc changes. However,

executing transactions sequentially does not benefit from the

parallel execution of programs.

Non-transactional execution within TM integration. A

system library can be executed non-transactionally, but with

a certain adaptation for TM integration. For instance, the

Intel [18] and DTMC [8] compilers provide deferral and

compensation actions for memory management functions

and allow non-transactional execution inside a transaction.

TM-dietlibc design choice: We use a combination of

four design choices: (1) complete transactional execution is

possible when there are no system calls during the execution,

(2) transactional execution employing TM techniques is

preferable when some system calls occur, and we employ

abort and commit handlers provided by TM, (3) transactional

execution in a TM-adapted system library is for the cases

when we apply the conflict detection extension implemented

in TM-dietlibc, and (4) sequential execution for the system

calls when we have to transit to irrevocable execution.

III. THE TRANSACTIFICATION OF DIET LIBC -

IMPLEMENTATION EXPERIENCE

In this section, we present details on how we modified the

lock-based diet libc in order to integrate it with TM. Some of

the modifications are simple; however, the majority required

significant effort to: (1) identify groups of locks which are

used to protect access to a shared resource, (2) replace

them with transaction boundaries, (3) use TM techniques in

appropriate way for system library functions, (4) implement

and apply a TM conflict detection extension, and (5) support

hybrid TM.

The experience we gained during the transactification can

be used for other system libraries, irrespective of them being

“diet” or not, e.g. glibc1, EGLIBC2 and uClibc3, or for

writing a TM-aware system library from scratch. We assume

that system library developers would face many challenges

we faced during the transactification of diet libc.

A. Identifying groups of locks

A system library contains various synchronization primi-

tives to control accesses to its critical sections. The first chal-

lenge is identifying different groups of locks and choosing

groups that are in our area of interest. Since we do not want

interaction between locks and transactions, all locks and

locking operations from a chosen group should be replaced

with appropriate TM support.

1http://gnu.org/software/libc/
2http://eglibc.org/
3http://uclibc.org/



int fgetc(FILE* fp) {

  int r;

  _IO_acquire_lock(fp);

  r = _IO_getc_unlocked(fp);

  _IO_release_lock(fp);

  return r;

}

 

int fgetc(FILE* fp){

  int r;

  MUTEX_LOCK(fp->l);

  r = fgetc_unlocked(fp);  

  MUTEX_UNLOCK(fp->l);

  return r;

}

(a) glibc/EGLIBC (b) uClibc

int fgetc(FILE* fp) {

 int r;

 tm_atomic {

  r = fgetc_unlocked(fp);

 }

 return r;

}

int fgetc(FILE* fp) {

  int r;

  pthread_mutex_lock(fp->m);

  r = fgetc_unlocked(fp);

  pthread_mutex_unlock(fp->m);

  return r;

}

(c) diet libc (d) TM-dietlibc

Figure 1: Lock-based implementations of fgetc for different system libraries (a), (b), (c) and the transactional counterpart (d). Lock
operations in diet libc are replaced with block marked with boundaries tm_atomic{}.

B. Defining critical section boundaries

Defining critical section boundaries is trivial when it

is easy to recognize locking operations and localize them

in one function. In other cases, the operations might be

missing, hidden behind macros, or operations for acquiring

and releasing the same lock might be located in multiple

files.

Simple lock-operation pairing. Defining critical section

boundaries is straightforward when the functions lock and

unlock are paired up and located inside a single function

(shown in Figure 1 for different system libraries (a), (b), (c)).

This way, they can be easily replaced with the boundaries

of an atomic block (Figure 1(d)).

Locking operations missing. Some of the library func-

tions in the original lock-based implementation are left to be

unsafe on purpose, i.e. declared to be a weak alias for a non

thread-safe version. Since the thread-safe implementation of

these functions exists in other system libraries, we wrap

them with transactional boundaries to make them thread-

safe.

Locking operations of lexically unstructured critical

sections. The examples we encounter in diet libc are: (1)

when lock/unlock pairs do not satisfy a TM requirement

of having critical section boundaries in one function scope,

and (2) when the code flow can lead from one lock

to multiple unlocks, meaning that it is not possible to

establish one-to-one relationships between them. Lexically

unstructured critical sections require manual program-flow

analysis from the starting point of the critical section until

all possible ending points, and gathering the code distributed

in different functions into a single transaction.

However, transactional boundaries are sufficient for TM

to provide transaction’s atomicity and isolation when a

transaction contains only local variables or memory accesses

at the user level. These cases appear in system libraries

infrequently.

C. Applying TM techniques on the library functions with

system calls

Various functions from a system library make modifica-

tions in kernel state which a TM system cannot track or

they cause side effects which a TM system cannot revert.

To illustrate these cases and our design choices in practice,

we use memory management and file operations.

Memory management functions operate over arrays of

pre-allocated memory chunks, and they invoke a system

call mmap only when no free chunks remain in the chunk

array. Similarly, a system call munmap is called only when

the size of the memory ready to be released is greater

than the acceptable size of chunks. TM compilers such as

DTMC [8] and Intel [18] wrap original lock-based functions,

adding additional structures and commit/abort handlers [22].

Since our goal is to ensure concurrent execution of memory

management operations, we do not rely on the compiler’s

wrappers. Instead, we provide: (1) speculative execution of

these functions, (2) an abort handler, used for the functions

that allocate memory, and (3) a commit handler, used for

the functions that release memory. The usage of abort and

commit handlers is shown in Figure 2(a) and (b). In our

implementation, additional structures are not necessary, and

the handlers are registered only when a system call occurs.

In all other cases, the TM system is sufficient to deal with

accesses to shared variables in user space.

In addition, as the memory management is a vital part

of the TM implementation itself, e.g. for managing read

and write sets of transactions, it is necessary to keep the

original lock-based functions and to separate chunk arrays of

transactional from non-transactional usage (libc_chunks

and tx_libc_chunks in Figure 2(a) and (b)).

Although TM-dietlibc provides two different implementa-

tions for every memory management function, benchmarks

contain only the calls of the original functions no matter if

the calls are inside or outside of transactions. When a TM

compiler instruments a benchmark, it finds the calls from

within transactions and replaces them with their transactional

counterpart. Therefore, the API used by the programmer and

benchmarks remain unchanged.

File operations provide communication (1) between a

user and a program and (2) between a program and an

operating system. Many of them have visible and nonre-

versible side effects; therefore, if they are invoked within a

transaction, the transaction has to be executed as irrevocable

[23]. In that case, the transaction waits the other running

transactions to finish their execution, and then it continues

as the only transaction running. When it commits, new



 

void* malloc(size){

 void* r;

 lock(&mutex_alloc);

 if(libc_chunks.empty())

  r = mmap(size);

  

 else

  r=libc_chunks.pop();

 unlock(&mutex_alloc);

 return r;

}

// syscall:

void *mmap(size_t size);

void* tx_malloc(size){

 void* r;

 tm_atomic {

  if(tx_libc_chunks.empty())

   r = mmap(size);

   onAbort(munmmap, r);

  else

   r=tx_libc_chunks.pop();

 }

 return r;

}

// syscalls:

void *mmap(size_t size);

int munmap(void* addr);

(a) lock-based and TM-based malloc

void free(ptr){

 lock(&mutex_alloc);

 if (libc_chunks.full())

  munmap(ptr);

 else

  libc_chunks.push(ptr);

 unlock(&mutex_alloc);

}

// syscall:

int munmap(addr);

void tx_free(ptr){

 tm_atomic {

  if (tx_libc_chunks.full())

   onCommit(munmap,ptr);

  else

   tx_libc_chunks.push(ptr);

 }

}

// syscall:

int munmap(addr);

(b) lock-based and TM-based free

size_t fwrite(ptr,size,fp){

 size_t r;

 lock(fp->m);

  if (!fp->buf.full()) 

   r = size;

   memcpy(fp->buf,ptr,size);

  else

     

   r = write(fp->fd,ptr,size);

 unlock(fp->m);

 return r; 

}

// syscall:

size_t write(fd,buf,size);

size_t fwrite(ptr,size,fp){

 size_t r;

 tm_atomic {

  if (!fp->buf.full()) 

   r = size;

   memcpy(fp->buf,ptr,size);

  else

   go_irrevocable;

   r = write(fp->fd,ptr,size);

 }

 return r; 

}

// syscall:

size_t write(fd,buf,size);

(c) lock-based and TM-based fwrite

Figure 2: Examples of lock-based and TM-based libc functions:
(a) malloc with the abort handler and the distinct structure for
transactional access to provide static separation, (b) free with
the commit handler and the same structure as in malloc, and (c)
fwrite with the late irrevocability, i.e. going irrevocably only if
a system call needs to be invoked.

transactions are allowed to start and execute again in parallel.

I/O operations operate over a shared libc structure called

FILE. This structure contains a storage buffer for parts of

a file, pointers to the next and the last character in the

buffer, etc. Only in cases when the buffer is empty, full,

or changes need to be applied to disc, the library calls

read, write and lseek to fill the buffer, empty the

buffer, and update the file position, respectively. Since I/O

operations occasionally invoke file changes in the kernel

space, we allow late irrevocability, i.e. a transaction executes

concurrently until the system call occurs and only then the

TM system changes the execution mode of the transaction

(illustrated with an update to disk in Figure 2(c)).

D. Conflict detection extension

The mechanisms explained so far are sufficient for inte-

grating any code with TM. However, executing irrevocable

transactions impacts concurrency, and threads spend most

of the time waiting for an irrevocable transaction to finish

execution and commit changes. One of the examples when

TM should run a transaction irrevocably is when the transac-

tion causes side effects in kernel space. Kernel space is out

of the scope of TM; therefore, TM cannot observe changes

the transaction makes and cannot detect conflicts with other

transactions.

In order to reduce the number of irrevocable transactions

running in a system, we propose an extension for the TM

conflict detection mechanism. The extension ensures that:

(1) transactions run simultaneously, (2) TM keeps track of

shared kernel resources and (3) TM detects possible conflicts

over shared kernel resources.

Our proposal produces and leverages copies of the rele-

vant data from kernel space that are changed during trans-

action execution. These copies reside in user space; conse-

quently, they are under complete control of the programmer

and the TM system. The system library programmer is

responsible for making a copy of the data and for keeping

the copy updated according to the always up-to-date kernel

data. Based on the copy, the TM system can detect conflicts

and invoke the transaction’s undo function which will use

the updated copy to revert the state of kernel space.

We illustrate our idea using the lseek system call as an

example, as shown in Figure 3(a). Since lseek changes the

file pointer from kernel space, a system library programmer

has to make a copy of the file pointer in user space and

to keep the copy updated. The variable is called OS_fpos,

and it is kept in the system library, as a part of the FILE

structure. As a consequence, a TM system is able to track

reads and writes over the shared variable.

In order to provide conflict detection without invoking the

call lseek, the transaction tries to acquire a writing lock4

for the shared variable before the system call. If another

thread holds the lock, TM detects the conflict before the

system call, aborts the transaction and rolls back returning

the old values of the shared variables5. On the other hand, if

an abort happens after lseek, TM calls the undo function

which invokes a call of lseek with the earlier stored file

position value. In any case of an abort, the state of both user

space and kernel space is rolled back to how it was before

the transaction started its execution.

E. System-call barrier in HyTM

The different approaches detailed in the previous sections

allow concurrent multi-threaded executions of transactions

with system calls inside of software transactions. However,

TM using hardware support, e.g. ASF-TM [8], does not

allow system calls inside a running hardware transaction;

the transaction is aborted immediately and re-executed as

an irrevocable transaction.

4All locks acquired during transaction execution are released at com-
mit/abort.

5Early conflict detection is typical for eager TM systems.



int fseek(fp,offset,whence) {

 int r; param* p;

 tm_atomic {

  p={fp->fd, fp->OS_fpos};

  //causing a possible conflict if

  //another thread holds the lock:

  acquire_wr_lock(fp->OS_fpos);  

  r=lseek(fp->fd, offset, whence);

  //update the pointer:

  fp->OS_fpos = r;

  onAbort(undo_lseek, p);

 }

 return r;

}

void undo_lseek(void* p) {

  lseek(p->fd, p->pos, SEEK_SET);

}

// syscall:

int lseek(fd, offset,whence);
 

int fseek(fp,offset,whence) {

 int r; param* p;

 tm_atomic {

  p={fp->fd, fp->OS_fpos};

  //the barrier aborts a hw txn:  

  go_safe_syscall;

  acquire_wr_lock(fp->OS_fpos);

  r=lseek(fp->fd, offset, whence);

  

  fp->OS_fpos = r;

  onAbort(undo_lseek, p);

 }

 return r;

}

void undo_lseek(void* p) {

  lseek(p->fd, p->pos, SEEK_SET);

}

// syscall:

int lseek(fd, offset,whence);
 

(a) conflict detection extension for STM (b) conflict detection extension for HyTM

             with a safe-syscall barrier

Figure 3: The conflict detection extension: the variable OS_fpos,
reflecting the current position indicator of the kernel, is
used for tracking the file position and detecting conflicts. A
go_safe_syscall barrier in (b) aborts a hardware transaction
and re-execute it speculatively in software.

To increase the possibility of the parallel execution of

transactions with system calls, we propose a safe-syscall

execution mode. Before each system call inside a trans-

action, we put a safe-syscall barrier (Figure 3(b)) which

will notify HTM about an upcoming system call. HTM

aborts and re-executes the transaction using software fall

back solutions; this allows a high number of software and

hardware transactions to run in parallel.

IV. QUANTIFICATION EFFORT

The significance of the effort needed in modifying diet

libc is in its integration in a complex TM system. Each

TM principle implemented in the system library or used as

an existing TM tool was the result of a time-consuming

investigation, rather than complex code writing. We present

quantified effort in terms of code modifications, transactions

complexity and consumed time.

The number of lines of code (LoC) of C and Assembly

in diet libc implementations is: 64k LoC for the original

diet libc and 71k LoC for TM-dietlibc. Therefore, 7k lines

of code were added for the transactional version of dietlibc.

As an example of modifications, the file operations in the

original diet libc contain 20 critical sections. In comparison,

25 transaction blocks were inserted into TM-dietlibc. The

difference arises from the fact that we mapped original

unsafe functions with transactions as well (described in

III-B).

The type and length of the transactions itself depend on

different code flows. For example, if an fputc operation

is invoked, the character might fit into the internal buffer

leading to the selection of a very short transactional code

path with less than 10 lines of code of interest (LoCI), i.e.

only instrumented and executed code. Otherwise, write

and seek operations will occur leading to longer and more

complex paths, with almost 100 LoCI.

We developed TM-dietlibc during a three-year period. At

the beginning, appropriate TM tools and TM benchmarks

were not mature and needed to include support for building

TM-aware system libraries. In Section V we describe in

detail the major impact on the development.

V. LIMITATIONS OF A “DIET” SYSTEM LIBRARY AND

EXISTING TM TOOLS

Choosing a system library with a small software footprint

can make applying changes and new designs easier and

time-saving. A developer deals with fewer and less complex

structures and functions. On the other hand, the “diet”

library presents additional obstacles, e.g. missing function

implementations, missing thread local storage support, a

small initial stack size, etc. Although the problems might

sound trivial, without being aware of them, the behaviour of

some benchmarks was unpredictable and unclear.

The implementations of some libc functions are not

well suited for optimistic TM concurrency, and cause an

influential contention on shared resources. For instance,

a function fgets that reads a string from a file, first

prefetches and fills a shared buffer with a part of the file,

and then reads characters - one by one - from the buffer, and

increments a shared buffer pointer for each character. As a

result, reading more characters makes the transaction longer,

read/write sets larger, and conflicting situations more likely.

Our optimization consists of reading as many characters

as possible and using local instead of shared variables for

intermediate values.

The lack of debugging and profiling tools for various TM

libraries makes testing, debugging and performance tuning

substantially difficult and time-consuming. Moreover, TM

libraries and TM compilers were developed for the appli-

cation usage, rather than for the usage of system libraries,

and many modifications were needed to ensure a TM-aware

library to be successfully built.

VI. EVALUATION

For the evaluation of TM-dietlibc, we use two different

types of applications: (1) micro-benchmarks with file op-

erations and (2) the red-black tree benchmark [24] with

memory management functions. For compiling TM-dietlibc

and the benchmarks, we use Dresden TM Compiler (DTMC)

[8], based on GCC and LLVM. DTMC ensures that all

code within transactions is either instrumented and executed

in the parallel mode or executed in the irrevocable mode,

which happens only when we explicitly change the execution

mode to irrevocable. This provides correct execution of

transactions in TM-dietlibc. We also executed additional

micro-benchmarks with glibc and TM-dietlibc and compared



0

1

2

3

4

5

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

S
p

e
a

d
u

p

serial TM
HyTM
STM
RTM

fputs/fwritefputcfreadfgetsfgetc

Figure 4: Evaluation of file operations executed by 1, 2, 4 and 8 threads, with various TM implementations and normalized to a lock-based
single-threaded execution. Emulated ASF gives results very close to RTM, therefore they are not shown.

0

1

2

3

4

5

6

1 2 4 8 1 2 4 8 1 2 4 8

S
p

e
a

d
u

p

original
serial TM

STM

75% read50% read25% read

Figure 5: Evaluation of the red-black tree benchmark by 1, 2, 4 and
8 threads, original and with STM, all normalized to the original
single-threaded execution.

their outputs to be sure that our modifications keep the

correctness of a system library6.

We run the benchmarks with STM, HTM and HyTM

implementations. The STM library (TinySTM [20]) and its

variants are a set of lightweight, highly efficient, word- and

time-based STM implementations. The executions involving

HTM [8] and HyTM [21] were conducted using a nearly

cycle accurate CPU simulator PTLSim [25] with ASF ex-

tension from AMD. We emulate Intel’s Haswell by changing

the simulation mode to handle all memory accesses inside an

atomic block as transactional. For benchmarks execution and

to host the simulation environment we used the machines

6This comparison is only for proving the correctness and is not shown
in the paper

featuring 2 Intel Xeon E5405 processors each with 4 cores

and a clock speed of 2.00GHz per core, with 4GiB RAM.

The I/O experiments are conducted on a single 380 GB

SATA hard drive. The sizes of the test files are 2GiB.

The main difference for an application programmer with-

out a TM-aware system library would be going irrevocable

(serial) before calling library functions. To compare our

implementation with the previous approach, we compiled

two versions of our TM-aware library: (1) transactional and

linked with various TM implementations (HTM, STM and

HyTM), and (2) transactional with switching irrevocable at

the beginning of a transaction (serial TM).

The benchmarks we use for the TM-dietlibc evaluation

include different file operations: fgetc, fgets, fread,

fputc, fputs and fwrite (although the last two have

the same implementation in diet libc). Multithreaded file

accesses are done using a shared file descriptor and its

associated FILE structure. They illustrate possible multi-

threaded accesses to the same file and usage of the output

of the file operations. Figure 4 shows that all transactional

versions perform better than the irrevocable version, which

is the only option without proper TM support in the system

library. The benchmarks we use for the TM-dietlibc evalua-

tion show high scalability and provide on average a 1.1, 2.6,

3.7 and 3.6x performance speedup for 8 cores for functions

running with HyTM, STM, ASF and RTM, respectively. Two

HTM implementations (ASF and RTM) perform similarly

and we show only RTM.

The red-black tree benchmarks7 (Figure 5) performs read,

write and remove operations over the elements of a balanced

tree structure, where reads are parallel and writes serial. For

a smaller number of read operations, the number of write and

7We used a 32bit version, ASF hardware TM extension is only usable
for 64bit.



remove operations including memory allocation/deallocation

is higher. Therefore, general performance is lower in com-

parison to more read-dominated benchmarks. However, the

differences for speedups between the transactional and irre-

vocable versions are larger for the benchmarks with many

memory operations in comparison to the more lightweight

runs.

VII. RELATED WORK

A preliminary version of our work [26] was presented

at the non-archiving ACM SIGPLAN Workshop on Trans-

actional Computing, and we showed the first progress in

the transactification of a system library. The current work

extends it by presenting different design choices for the inte-

gration of a system library and TM. We show how to support

transactions with system calls in HTM, and we improve the

evaluation of the library with various benchmarks and TM

implementations including emulated Intel’s RTM.

TM-dietlibc is the first standard C system library with

transactional semantics. Different proposals handle I/O and

other system calls within transactions, but all of them require

some changes of the software that use these features. For

instance, Volos et al. [11] provide system call execution

within transactions by implementing wrappers for system

calls and acquiring a lock before accessing a kernel resource

which hurts parallelism. Demsky et al. [12] provide a Java

library with an API extended with several functions, which

ensures that file changes remain local until commit time.

Porter et al. [13] implement transactions on the operating

system level which require invocation of specific system

calls in the user transaction. On the other hand, we keep

the standard C API so an application developer does not

have to modify his code, and provide parallel execution of

majority of transactions.

In related work [22], [27], [11] the authors suggest that

some critical actions should be deferred until commit time.

However, for nested transactions8 it can be a pitfall causing

certain side effects. In flat nesting, all nested transactions are

combined into a single one; therefore, deferred actions will

be executed after the outer-most transaction commits. The

problem occurs when the result of the deferred operation is

needed inside the outer one. Only actions with no influence

on the rest of the program’s execution can be postponed,

e.g. memory deallocation.

Regarding the interaction of locks and transactions, there

are proposals to dynamically decide whether a critical sec-

tion should be transactional or lock-based by Usui et al.

[28] or for a new type of lock (transaction-safe) by Volos

et al. [7]. Similar to that, Rossbach et al. [29] introduce

cooperative transactional locks. Gottschlich and Chung [30]

describe how to statically encode the conflicts between

8a very likely case - a TM-based applications invoking a call from a
TM-based library

locks and transaction. In contrast, we take the path of full

static separation which is the safest approach for any TM

implementation.

Ultimately, this is the first proposal that detects kernel

space conflicts on the user level and compensates their side

effects. No other related work mentions the possibility of

such conflicts to remain undetected, although some of them

propose compensation and deferral actions [22], [31] or

irrevocable execution [32], [23] for handling system calls

and I/O inside transactions. Pankratius et al. [33] analyzing

their students’ work on a lock-based and a TM-based search

engine development concluded that TM needs better support

for I/O operations since running transactions irrevocably

limits concurrency and scalability.

VIII. CONCLUSION

This paper presents the first real-world TM-aware stan-

dard C implementation with the API unchanged. We de-

scribe various design choices for integrating a system library

with TM and explain what decisions we made for diet

libc. We propose static separation of locks and transac-

tions as a safe way to handle the interaction of these two

inherently different synchronization concepts. We discuss

handling system calls inside transactions and reveal a pitfall

in detecting kernel space conflicts which would require many

transactions to execute only as irrevocable. For this case,

we propose a technique which enables detection of such

conflicts in the scope of the system library, rather than

involving complex kernel modifications.

Our results for memory management and file operations

show that we achieve much better performance in our pro-

posal over lock-based and irrevocable execution, we provide

support for HTM, STM and HyTM, and we provide the first

comparison with emulated Intel’s RTM from the upcoming

processors.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for

their useful comments. This work was partially supported

by the cooperation agreement between the Barcelona Super-

computing Center and Microsoft Research, by the Ministry

of Science and Technology of Spain and the European

Union (FEDER funds) under contracts TIN2007-60625 and

TIN2008-02055-E, by the European Network of Excellence

on High-Performance Embedded Architecture and Compi-

lation (HiPEAC) and by the European Commission FP7

project VELOX (216852). Vesna Smiljković is also sup-
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