
Constrained Data-Driven Parallelism
Tim Harris Yossi Lev Victor Luchangco

Virendra J. Marathe Mark Moir
Oracle Labs

{timothy.l.harris,yossi.lev,victor.luchangco,virendra.marathe,mark.moir}@oracle.com

Abstract
In data-driven parallelism, changes to data spawn new
tasks, which may change more data, spawning yet more
tasks. Computation propagates until no further changes
occur. Benefits include increasing opportunities for fine-
grained parallelism, avoiding redundant work, and sup-
porting incremental computations on large data sets.
Nonetheless, data-driven parallelism can be problematic.
For example, convergence times of data-driven single-
source shortest paths algorithms can vary by two orders
of magnitude depending on task execution order. We
propose constrained data-driven parallelism, in which
programmers can impose ordering constraints on tasks.
In particular, we propose new abstractions for defining
groups of tasks and constraining the execution order of
tasks within each group. We sketch an initial imple-
mentation and present preliminary performance results
suggesting that our approach enables new efficient data-
driven implementations of a variety of graph algorithms.

1. Introduction
Exploiting multicore systems requires parallel computa-
tion, preferably with minimal synchronization. A promis-
ing approach is data-driven parallelism, in which com-
putation is broken into tasks, each of which must run
when some data is modified. Such tasks may modify ad-
ditional data, thereby triggering additional tasks. Thus,
changes to data “drive” the parallel computation.

Consider, for example, the single-source shortest
paths (SSSP) problem: given a weighted graph with no
negative-weight cycles, compute the length of the short-
est paths to each node from a single source node. We
can solve SSSP by assigning the source a distance es-
timate of 0 and every other node a distance estimate of
∞, and then performing relaxation steps on the graph’s
edges until no more are possible. Each relaxation step
considers an edge from x to y, and whether going to x
and then following this edge provides a shorter path than
the current distance estimate to y.

This computation is well-suited for parallelism be-
cause relaxation steps can run in any order, and syn-
chronize only when their edges share a node. It is well-
suited to being data-driven because relaxation steps must
be performed initially only on edges of the source node,

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 4 8 1
6

 3
2

 6
4

 1
28

Ex
ec

ut
io

n
tim

e
(m

s)

#Threads

BF-OMP
DD-Wild

DD-Phased

Figure 1: Time to compute SSSP with OpenMP (BF-
OMP) and data-driven algorithms (DD-Wild, and DD-
Phased).

and thereafter, only on edges of nodes whose distance
estimates have been updated.

Although this computation is correct regardless of the
order in which edges are relaxed, this order can have a
profound impact on execution time: the best order (such
as the one used by the Dijkstra algorithm) requires one
relaxation step per edge; a bad order can induce an ex-
ponential number of relaxation steps. As Figure 1 illus-
trates, this problem is not merely theoretical. The figure
shows three variants of SSSP running on the ca-HepPh
graph from SNAP [23]. BF-OMP is a parallel version of
Bellman-Ford: computation proceeds in rounds, and ev-
ery edge is relaxed once per round using an OpenMP par-
allel for loop. DD-Wild is data-driven: an edge is relaxed
when it is incident on a node whose distance estimate
has changed. This tends to produce a depth-first traversal
of the graph, which is a bad order for computing SSSP.
Thus, although it scales well, with one thread, DD-Wild
is over 200 times slower than BF-OMP. DD-Phased—a
data-driven implementation that uses the abstractions in-
troduced in Section 2 to constrain task execution order—
outperforms BF-OMP at every thread count. We discuss
these results in more detail in Section 4.

We argue that data-driven parallelism benefits signif-
icantly from the ability to constrain the order in which
tasks run. Furthermore, we argue that choosing the ap-

1 2013/5/7

completed task

deferred task

executing task

spawn deferred

spawn immediate

time

Figure 2: Snapshot of a CDDP computation: Tasks spawn
other tasks, either immediately or deferred. Deferred
tasks are not executed until all other tasks complete, im-
plicitly partitioning tasks into phases.

propriate constraints is a property of an algorithm, and
so should be expressed in the source code (rather than by
picking a plug-in scheduler for a whole application).

Section 3 describes our prototype. Section 4 shows
the power of constraining data-driven parallelism via our
abstractions in various ways using several benchmarks.
Section 5 discusses related work. Section 6 concludes.

2. Programming Model
Computation is divided into tasks executed by threads.
Each task belongs to a task group. A task may spawn
a new task via a parallel for loop or a trigger, which
specifies data-driven computation:

x triggers [deferred] f(void *d);
*y triggers [deferred] g(void *d);

We say x is a direct trigger for f and y an indirect trig-
ger for g. A trigger is a deferred trigger if it is declared
with the optional deferred keyword; otherwise, it is an
immediate trigger. When such declarations are in effect,
writing to x spawns a task to run f, and modifying data
by dereferencing y spawns a task that runs g. (See Sec-
tion 4.1 for an example.) The functions f and g take a
single argument, which is a pointer to the data that was
modified. This has been sufficient for all use cases we
have explored so far, though additional arguments may
be useful in the future.

A task spawned by a deferred trigger is deferred: it
is not executed until all nondeferred tasks in its task
group have completed. This implicitly partitions the tasks
in a task group into a totally ordered series of phases:
an immediate trigger spawns tasks in the current phase,
a deferred trigger spawns tasks in the next phase, and
no task is executed until all tasks in previous phases
have completed (see Figure 2). Thus, at any time, every
unfinished task is in either the current phase or the next
phase of its task group.

A task group, declared as follows, is a set of tasks.

taskgroup {
// code

} t;

When this block is executed, a new task group t is cre-
ated. Initially, a new task group has a single task, running
the code in the declared block (executed by the thread
that entered the block). A newly spawned task belongs
to the same task group as the task that spawned it. In
our current model, every task belongs to exactly one task
group. There is a single anonymous task group to which
all initial tasks belong.

A task group’s only method—WaitForGroup()—blocks
until every task in that task group has completed. Note
that deadlock cannot arise solely from calls to WaitFor-
Group because the name of a task group is not in scope
in the code block and we provide no mechanism to pass
task groups (i.e., there is no named type for task groups).

3. Implementation Overview
To evaluate constrained data-driven parallelism (CDDP),
we have implemented a simple prototype using C++
macros and a runtime library. We support triggering via
explicit calls to runtime library functions (one for imme-
diate triggering, and one for deferred). These functions
take as arguments the object that triggered the call and
the handler function to run. Our runtime system man-
ages tasks using a work-stealing scheduler based on the
Chase-Lev deque [4].

We implement task groups with a TaskGroup class,
exposing BeginTaskGroup and EndTaskGroup meth-
ods. BeginTaskGroup begins the “scope” of a task group
which owns all tasks spawned until the matching call to
EndTaskGroup. EndTaskGroup returns a pointer to the
task group object, which can be passed to WaitForGroup.

Each task group tracks whether any tasks remain to
be executed in the current and next phases using SNZI
objects [7, 14]. Each thread keeps the deferred tasks that
it spawns in a thread-local deferred-task bag. When no
tasks remain in the current phase of a task group, each
thread moves any deferred tasks it has from the bag of
that task group to its deque. When no thread has any
deferred task for a task group, the task group’s execution
is compete.

4. Evaluation
We evaluate CDDP using SSSP, Communities (a graph
clustering algorithm [20]), and BC (betweenness central-
ity, a social network analysis algorithm [15]). We com-
pare our data-driven solutions against parallel implemen-
tations using OpenMP [17]. CDDP delivers competitive,
or significantly better, performance across most bench-
marks and inputs.

2 2013/5/7

We also ported the discrete-event simulator from the
LoneStar benchmark suite [12], in which the computa-
tion is structured entirely via data dependencies between
tasks. The performance of our CDDP solution is consis-
tent with results reported by Kulkarni et al. [12] (we omit
full details for brevity).

Experiments were run on an Oracle T5140 series ma-
chine, comprising two 1.2 GHz Niagara T2 chips with a
total of 128 hardware thread contexts (8 cores per chip,
8 hardware threads per core). Each chip has an 4MB on-
board L2 cache, and each core has a 8KB L1 data cache
shared between its threads. We use the Oracle Solaris
Studio 12.1 C++ compiler at optimization level xO5.

4.1 Single-Source Shortest Paths (SSSP)
As discussed in the introduction, relaxation algorithms
such as SSSP are well-suited for data-driven paralleliza-
tion. To reduce the overhead of spawning tasks, we
spawn a single task that relaxes all the edges of a node
whose distance estimate is updated, rather than spawn-
ing a separate task for each edge. We also introduce a
per-node pendingRelaxation flag that indicates whether
the node’s distance estimate has been modified since its
edges were most recently relaxed, and trigger relaxation
when this flag is set to true, rather than when the dis-
tance estimate is updated. This allows multiple succes-
sive updates to be handled by a single task that calls the
following function:

1 void RelaxNeighbors(Node *n)
2 n->pendingRelaxation = false
3 forall (Node *k in neighbors(n))
4 newDist = n->dist + weight(n,k)
5 bool* pendingFlagP = &k->pendingRelaxation
6 *pendingFlagP triggers RelaxNeighbors(k)
7 currDist = k->dist
8 while (newDist < currDist)
9 if (CAS(&k->dist, currDist, newDist))

10 // Triggers on successful CAS
11 CAS(pendingFlagP, false, true)
12 break
13 currDist = k->dist

Note the use of an indirect trigger to trigger RelaxNeigh-
bors when the flag changes from false to true at line 11,
but not when it is set to false at line 2. We use CAS at
line 11 so that RelaxNeighbors is triggered only when
the flag changes (i.e., when the CAS is successful).

We experimented with three versions of this algo-
rithm. DD-Wild uses “classical” work-stealing, in which
each thread pushes and pops tasks on one end of its
deque, and thieves steal from the other end. With only
a single worker thread, this implies LIFO execution of
tasks. DD-Phased uses the same algorithm and runtime,
but with deferred triggering (adding the deferred key-
word at line 6). Finally, DD-Fifo uses immediate trig-
gering with a modified version of the runtime system
in which threads access their deques in FIFO order with

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 4 8 1
6

 3
2

 6
4

 1
28

Ex
ec

ut
io

n
tim

e
(m

se
cs

)

Number of Threads

Dijkstra
Seq-DD-Fifo

BF-OMP
DD-Wild
DD-Fifo

DD-Phased

 1

 10

 100

 1000

 10000

1 2 4 8 16 32 48 64 72 96 11
2

12
7

#N
od

es
 p

ro
ce

ss
ed

 re
la

tiv
e

to
 D

ijk
st

ra

Number of Threads

Seq-DD-Fifo
BF-OMP
DD-Wild
DD-Fifo

DD-Phased

Figure 3: Top: SSSP execution time (mean of 10 runs
with different source nodes, error bars showing min/-
max). Bottom: Work performed, normalized to Dijkstra.

self-stealing (pushing on one end, but with workers and
thieves popping from the other end).

Figure 3 compares these data-driven algorithms with
three alternative algorithms: BF-OMP is an OpenMP-
based parallel version of the Bellman-Ford algorithm that
avoids write-write conflicts by having a task relax all in-
coming edges of a node. Dijkstra is the classic sequential
SSSP algorithm. Seq-DD-Fifo is a sequential version of
DD-Fifo that uses a sequential queue to store the nodes
to be processed instead of our abstractions (we used it to
estimate the overhead imposed by our runtime system).
The figure uses the ca-HepPh collaboration network from
SNAP [23] (12,008 nodes and 237,042 edges). Graphs
from a variety of benchmark suites show qualitatively
similar results. Results are shown in a log-log scale.

As these results illustrate, the order in which tasks
are executed has a huge effect: For single-thread runs,
DD-Wild, which runs tasks in LIFO order (i.e., traverses
the graph depth-first), is 250x slower than BF-OMP,
whereas DD-Phased and DD-Fifo, which approximate
a breadth-first traversal, are about 2x faster than BF-
OMP. Dijkstra, which relaxes nodes in an optimal order

3 2013/5/7

and avoids the overhead of spawning and synchronizing
tasks, is about 6x faster than BF-OMP. Comparing Seq-
DD-Fifo and DD-Fifo shows that the overhead of our
system is about 50%.

The data-driven algorithms all scale well up to 32
threads, with DD-Phased and DD-Fifo slightly improv-
ing their lead over Bellman-Ford (and outperforming Di-
jkstra with 4 or more threads), and DD-Wild rapidly
catching up. Although DD-Fifo is 27% slower than DD-
Phased with one thread, DD-Fifo outperforms it by 42%
at 127 threads. Perhaps surprisingly, DD-Wild exhibits
superlinear speedup, and with 72 or more threads, it out-
performs all the other algorithms.

We can understand these results better by looking
at Figure 3 (bottom), which shows the total amount of
work done by each algorithm, measured by the number
of nodes processed. With a single thread, DD-Wild does
500x more work than DD-Fifo, and 125x more than BF-
OMP, its closest competitor, because of its LIFO exe-
cution of tasks. With more threads, the LIFO execution
is increasingly disrupted by work-stealing, resulting in
a better order for computing SSSP, and a correspond-
ing reduction in total work. For all other parallel algo-
rithms, the work increases slightly as the thread count
increases, with DD-Phased doing the least work at all
thread counts, explaining its relatively good performance
at low thread counts. However, at high thread counts, the
waiting due to phases limits its scalability, and DD-Fifo
and DD-Wild outperform it. Although DD-Wild does
more work than DD-Fifo, it outperforms DD-Fifo at high
thread counts because it avoids the synchronization over-
heads that DD-Fifo incurs due to self-stealing.

4.2 Community-based Graph Clustering
Our final example is a clustering algorithm that parti-
tions a graph into communities, each comprising nodes
that are relatively strongly connected to each other and
relatively weakly connected to nodes in other communi-
ties. We build on the sequential round-based algorithm of
Raghavan et al. [20] (Serial). Each round, the algorithm
iterates over all nodes in a random order, and assigns each
node to the community with a plurality of its neighbors
(ties are broken arbitrarily). The algorithm terminates af-
ter a round in which no node changes community.

OMP is a parallel version of this algorithm that uses
an OpenMP parallel for loop to iterate over the nodes
at each round. Both Serial and OMP can perform a lot
of unnecessary work: a node changes its community in
a round only if at least one of its neighbors changed its
community recently (in the last or the current round),
but these algorithms recompute each node’s commu-
nity every round even if none of its neighbors has since
changed its community. Tseng and Tullsen made simi-

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 1 2 4 8 1
6

 3
2

 6
4

 1
28

Ex
ec

ut
io

n
tim

e
(m

se
cs

)

Number of Threads

Serial
OMP

DD-Wild
DD-Fifo

DD-Mixed
DD-Phased

 10

 100

 1000

1 2 4 8 16 32 48 64 72 96 11
2

12
7

#N
od

es
 p

ro
ce

ss
ed

 re
la

tiv
e

to
 S

er
ia

l (
%

)

Number of Threads

OMP
DD-Wild
DD-Fifo

DD-Mixed
DD-Phased

Figure 4: Top: Communities clustering execution times
(mean of 5 runs, error bars showing min/max). Bottom:
Work performed, normalized to Serial.

lar observations for other applications in their work on
data-triggered threads [25, 26].

Based on this observation, we built four data-driven
variants of this algorithm: DD-Wild, DD-Fifo, DD-
Phased, and DD-Mixed. In all of them, updating a node’s
community triggers tasks for its neighbors. To begin the
computation, we use a parallel for loop to assign a unique
community to each node, triggering computation across
the graph. The first three variants are similar to the corre-
sponding SSSP variants. In DD-Mixed, a task to process
a node is triggered in the current phase if that node has
not already been processed in the current phase; other-
wise, the task is deferred to the next phase. This more
closely imitates Serial, with DD-Mixed’s phases corre-
sponding to rounds in Serial.

We ran all the algorithms on various SNAP [23]
graphs, using the modularity metric [16] to confirm that
the “quality” of the results achieved by the parallel algo-
rithms are similar to or better than those of Serial. The
top chart of Figure 4 shows, on a log-log plot, the exe-
cution times for the amazon0505 graph (10,236 nodes,
3,356,824 edges, converted to an undirected graph by

4 2013/5/7

adding the reverse edges, as the above algorithm requires
an undirected graph). The data-driven algorithms outper-
form Serial and OMP algorithms in every case. As with
SSSP, constraining task execution order substantially im-
proves performance. In particular, DD-Wild performs
considerably worse than all other data-driven variants.
This is explained by the bottom chart of Figure 4, that
shows that, at all thread counts, DD-Wild performed sig-
nificantly more work than the other data-driven variants
(about 40% versus 15%, normalized to Serial). Single-
threaded OMP does the same amount of work as Serial,
and at higher thread counts, it usually even does 14–50%
more work than Serial. This is why it performs worse
than DD-Wild.

Because DD-Mixed was designed to imitate the be-
havior of Serial, we also compared the number of rounds
for Serial to converge and the number of phases taken by
DD-Mixed. Indeed, the two numbers were very similar
for most graphs. However, for one graph, web-BerkStan,
the number of serial rounds was an order of magnitude
higher than the number of data-driven phases, regardless
of the random order in which Serial processed the nodes,
resulting in a serial execution time that is 40x longer than
that of DD-Mixed. This suggests that for some graphs,
the data-driven order of processing can lead to faster con-
vergence than that achieved with most random orders.

4.3 Betweenness Centrality (BC)
BC is a measure of the importance of each node in a
graph in terms of the number of shortest paths going
through that node. Hong et al. wrote a Green-Marl pro-
gram (bc-GM) that approximates BC [10], based on an
algorithm by Madduri et al. [15]. Briefly, bc-GM does
a BFS traversal rooted at a randomly selected node,
recording the number of shortest paths from the root to
each node, and then does a reverse-BFS (rBFS) traversal,
recording at each node the number of shortest paths from
the root to other nodes that go through it. This process is
repeated several times.

We developed a data-driven variant (bc-DD) in which
the BFS traversals are done using task group phases, and
the rBFS traversals are done in classic data-driven fash-
ion. The BFS and rBFS tasks in bc-DD can be overlapped
to some degree, improving overall parallelism. Note that,
in contrast to SSSP, executing the tasks in phases is re-
quired for correctness, to ensure BFS traversal.

The Green-Marl compiler does source-to-source trans-
formation, converting a Green-Marl program into an
equivalent OpenMP program. The resulting bc-GM Open-
MP program dynamically constructs sets of nodes visited
at each level in the BFS traversal, and within each BFS
level, employs an OpenMP parallel for loop to visit each
graph node at that level. We believe that our experimen-
tal comparison between bc-GM and bc-DD reflects trade

offs between the OpenMP and CDDP implementations,
rather than Green-Marl and CDDP abstractions. Further-
more, because OpenMP provides numerous options for
how loop iterations are scheduled, we experimented with
the static scheduling policy, the dynamic scheduling pol-
icy with multiple for loop chunking factors.

We conducted experiments with several input graphs
and report performance results for two graphs–a social
network graph (soc-LiveJournal1) and a web graph (web-
Google)–that represent behaviors of all the graphs we
have experimented with. Performance results are shown
in Figure 5. We show the performance of the static
scheduling policy (bc-GM), and the dynamic scheduling
policy (bc-GM-dy-*) with different loop iteration chunk-
ing factors (128, 1K, and 4K). The chunking factors help
us understand the potential impact of varying task gran-
ularity. bc-DD does not employ any chunking. We note
that, unlike other benchmarks reported here, CDDP’s
data driven execution model does not reduce the amount
of real work done in BC.

Because bc-DD tasks are far more fine grained (one
task per graph node) than bc-GM work items, bc-DD in-
curs significant overheads for single-thread runs (up to
50%). However, this overhead diminishes rather quickly
with increasing thread count, presumably because of
the better load balancing achieved by our work-stealing
scheduler.

The scalability results are mixed. While bc-DD per-
forms significantly better than bc-GM on the soc-Live-
Journal1 graph (top Figure 5), the bc-GM-dy-* versions
with coarse chunking appear to outperform bc-DD by a
small margin. Both bc-DD and the coarse-grained bc-
GM-dy-* versions outperform bc-GM, presumably be-
cause they offer better load balancing. The finer-grained
bc-GM-dy-128 appears to suffer with the consequences
of too fine a granularity, which leads to worse commu-
nication to computation ratios on our experimental plat-
form.

Interestingly, for web-Google (bottom Figure 5), bc-
GM appears to perform best. We believe this to be a
function of the graph structure. In particular, because the
average degree of graph nodes in web-Google is much
smaller than soc-LiveJournal1 graph nodes, the amount
of work done in each bc-DD task for webGoogle is cor-
respondingly much smaller. This significantly increases
communication to computation ratio for the dynamic
scheduling schemes on webGoogle. Because OpenMP
static scheduling comes with essentially no communica-
tion between worker threads (except for communication
happening via application data), it appears to outperform
all the dynamic scheduling alternatives (including bc-
DD), all of which encounter communication overheads
while enforcing dynamic scheduling. bc-DD appears to

5 2013/5/7

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 1 2 4 8 16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(m
se

cs
)

Number of Threads

bc-GM
bc-GM-dy-128
bc-GM-dy-1K
bc-GM-dy-4K

bc-DD

 512

 1024

 2048

 4096

 8192

 16384

 32768

 1 2 4 8 16 32 64 128

Ex
ec

ut
io

n
Ti

m
e

(m
se

cs
)

Number of Threads

bc-GM
bc-GM-dy-128
bc-GM-dy-1K
bc-GM-dy-4K

bc-DD

Figure 5: Betweenness Centrality performance results
on two graphs: (i) a social network graph (soc-Live-
Journal1), with approximately 4.8 million nodes and 137
million edges (top half); and (ii) a web graph (web-
Google) with approximately 1 million nodes and 10 mil-
lion edges (bottom half). Both the graphs, taken from the
SNAP dataset [23], were converted to undirected graphs
by adding reverse edges.

be competitive with the best performing dynamic bc-GM
version.

We believe that the various bc-GM versions we ex-
perimented with benefit significantly from chunking of
loop iterations. However, we do not have support for such
chunking in our CDDP scheduler. Implementing a strat-
egy of dynamically consolidating several CDDP tasks
into a bigger task can potentially significantly boost per-
formance of some of our benchmarks. We plan to inves-
tigate this direction in future work.

5. Related Work
Data-flow systems. Data-driven parallelism stems from
early work on data-flow computation [2, 6], in which data
dependencies between instructions drive execution. We
work at a coarser grain—typically, tasks access locations
and perform local computation. The StarSs programming

model [19] provides a form of data-flow computation us-
ing coarse-grained tasks. Synchronization is provided via
barriers which wait until all spawned tasks are complete;
CDDP phases avoid the need to wait for all tasks to com-
plete before new tasks can be spawned. Gajinov et al. [8]
and Seaton et al. [22] explored combinations of data-flow
programming models and atomic tasks. These systems do
not provide CDDP’s control over the scheduling order of
parallel tasks. Our current system does not require tasks
to be atomic (although we discuss future work in this di-
rection in Section 6). The Habanero project [24] includes
data-driven tasks. In that model, tasks are spawned ex-
plicitly. Futures allow synchronization on tasks as they
complete. In CDDP, our focus is constraining the order
of tasks as they run, rather than waiting for specific tasks
to finish.

Incremental and self-adjusting computation. Re-
cent work on incremental [5, 18] and self-adjusting com-
putation [1, 9] has explored the ability to avoid repeating
unnecessary work. Tseng and Tullsen demonstrate sub-
stantial speed-ups using data-triggered threads [25, 26].
CDDP benefits from the same ability to avoid repeated
work, but provides additional control over how parallel
work is scheduled.

Domain-specific scheduling. Researchers have often
observed that different workloads perform best under dif-
ferent schedulers [13, 21]. In contrast, CDDP’s abstrac-
tions allow the programmer to constrain task ordering
without requiring a full scheduler to be written, or requir-
ing a single policy to be applied to a complete process.

BSP. The idea of phases in task groups builds on ideas
in the classic BSP programming model [27], but BSP
targets different kinds of computations than CDDP.

6. Conclusion and Future Work
In this paper, we have described constrained data-driven
parallelism. In CDDP, parallel task execution is driven
by changes to data, and the programmer can impose
additional constraints on the order in which tasks run.

Our preliminary exploration has focused on a sim-
ple set of abstractions for expressing parallelism and for
imposing constraints on execution order. Our initial re-
sults suggest that these abstractions can provide signif-
icant performance improvements. Compared with “un-
constrained” approaches, CDDP enables the programmer
to avoid pathologically bad scheduling orders. Compared
with non-data-driven algorithms, CDDP avoids repeating
computation when data does not change.

We are encouraged by these preliminary results, and
hope to extend our work in several directions. We wish
to study the use of CDDP for additional algorithms and
workloads. Our initial exploration has focused on graph
algorithms on different kinds of input (e.g., planar graphs
versus small-world graphs. We would like to study a

6 2013/5/7

broader range of algorithms, and to characterize where
CDDP is an appropriate solution (e.g., for which of the
“dwarfs” of Asanovic et al. [3] it is an appropriate fit).
This study will help us identify whether our current ab-
stractions of task groups and phases are sufficient for a
wide range of algorithms, or whether additional or alter-
native abstractions are needed.

We have considered whether CDDP should include a
notion of atomic tasks. These tasks would execute atom-
ically and in isolation from one another. In addition to
CDDP’s existing constraints, tasks would have to execute
after the atomic task that triggered them. This builds on
aspects of atomic dataflow models [8, 22], and of the au-
tomatic mutual exclusion system [11]. Introducing atom-
icity simplifies programming by preventing tasks from
observing each others’ intermediate state. In addition, it
is possible that implementations may be able to use one
mechanism for detecting conflicts between tasks and for
detecting when a new task should be spawned.

As we gain experience with CDDP, we want to refine
the syntax for expressing constraints, and to investigate
the trade-offs in providing language support. Introducing
atomicity may push us toward compiler support. We have
not yet tried to define a formal semantics for CDDP.

Finally, our initial implementation supports execution
only within a single shared memory system. With in-
creasing interest in large data sets, we plan to extend
our implementation so that it supports similar program-
ming abstractions but is not limited to use a single shared
memory system. This will enable exploration of a num-
ber of interesting issues, such as adapting (perhaps dy-
namically) to use more systems when there is sufficient
parallelism available, without requiring programmers to
rewrite their applications.

References
[1] U. A. Acar. Self-adjusting computation: (an overview).

In Proceedings of the 2009 ACM SIGPLAN workshop on
Partial Evaluation and Program Manipulation, pages 1–6,
2009.

[2] Arvind and D. E. Culler. Dataflow Architectures. Annual
review of computer science, 1:225–253, 1986.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick. The land-
scape of parallel computing research: A view from Berke-
ley. Technical Report UCB/EECS-2006-183, EECS De-
partment, University of California, Berkeley, Dec. 2006.

[4] D. Chase and Y. Lev. Dynamic circular work-stealing
deque. In Proceedings of the 17th Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures,
pages 21–28, 2005.

[5] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu,
F. Yang, L. Zhou, F. Zhao, and E. Chen. Kineograph:
Taking the pulse of a fast-changing and connected world.

In Proceedings of the 7th ACM European Conference on
Computer Systems, pages 85–98, 2012.

[6] J. B. Dennis and D. P. Misunas. A preliminary architecture
for a basic data-flow processor. In Proceedings of the
2nd International Symposium on Computer Architecture,
pages 126–132, 1975.

[7] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scal-
able NonZero Indicators. In Proceedings of the 26th An-
nual ACM symposium on Principles of Distributed Com-
puting, pages 13–22, 2007.

[8] V. Gajinov, S. Stipic, O. S. Unsal, T. Harris, E. Ayguade,
and A. Cristal. Integrating dataflow abstractions into the
shared memory model. In Proc. 2012 IEEE 24th Inter-
national Symposium on Computer Architecture and High
Performance Computing, SBAC-PAD ’12, pages 243–
251, 2012.

[9] M. A. Hammer, U. A. Acar, and Y. Chen. CEAL: a C-
based language for self-adjusting computation. In Pro-
ceedings of the 2009 ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation, pages
25–37, 2009.

[10] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun. Green-
Marl: a DSL for easy and efficient graph analysis. In Pro-
ceedings of the 17th international conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 349–362, 2012.

[11] M. Isard and A. Birrell. Automatic mutual exclusion.
In HotOS ’07: Proc. 11th Workshop on Hot Topics in
Operating Systems, May 2007.

[12] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali.
Lonestar: A suite of parallel irregular programs. In IEEE
International Symposium on Performance Analysis of Sys-
tems and Software, pages 65–76, 2009.

[13] M. Kulkarni, P. Carribault, K. Pingali, G. Ramanarayanan,
B. Walter, K. Bala, and L. P. Chew. Scheduling strategies
for optimistic parallel execution of irregular programs. In
Proceedings of the 20th annual symposium on Parallelism
in Algorithms and Architectures, pages 217–228, 2008.

[14] Y. Lev, V. Luchangco, V. J. Marathe, M. Moir, D. Nuss-
baum, and M. Olszewski. Anatomy of a scalable software
transactional memory. In 2009, 4th ACM SIGPLAN Work-
shop on Transactional Computing (TRANSACT09, 2009.

[15] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and
D. Chavarria-Miranda. A faster parallel algorithm and ef-
ficient multithreaded implementations for evaluating be-
tweenness centrality on massive datasets. In Proceed-
ings of the 2009 IEEE International Symposium on Par-
allel&Distributed Processing, pages 1–8, 2009.

[16] M. E. Newman and M. Girvan. Finding and evaluating
community structure in networks. Physical review E,
69(2):026113, 2004.

[17] OpenMP. http://www.openmp.org/.

[18] D. Peng and F. Dabek. Large-scale incremental processing
using distributed transactions and notifications. In Pro-
ceedings of the 9th USENIX conference on Operating Sys-
tems Design and Implementation, pages 1–15, 2010.

7 2013/5/7

http://www.openmp.org/

[19] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hi-
erarchical task-based programming with StarSs. Interna-
tional Journal of High Performance Computing Applica-
tions, 23(3):284–299, Aug. 2009.

[20] U. N. Raghavan, R. Albert, and S. Kumara. Near linear
time algorithm to detect community structures in large-
scale networks. Physics Review E, 76, 2007.

[21] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible ar-
chitectural support for fine-grain scheduling. In ASP-
LOS 2010: Proc. 15th Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 311–322, 2010.

[22] C. Seaton, D. Goodman, M. Luján, and I. Watson. Apply-
ing dataflow and transactions to Lee routing. In MULTI-
PROG 2012: Proc. 5th Workhop on Programmability Is-
sues for Heterogeneous Multicores, 2012.

[23] SNAP: Stanford Network Analysis, http://snap.

stanford.edu/.

[24] S. Tasirlar and V. Sarkar. Data-driven tasks and their
implementation. In Proceedings of the 2011 International
Conference on Parallel Processing, pages 652–661, 2011.

[25] H.-W. Tseng and D. M. Tullsen. Data-triggered threads:
Eliminating redundant computation. In Proceedings of the
2011 IEEE 17th International Symposium on High Perfor-
mance Computer Architecture, pages 181–192, 2011.

[26] H.-W. Tseng and D. M. Tullsen. Software data-triggered
threads. In OOPSLA 2012: Proceedings of the ACM
International Conference on Object Oriented Program-
ming Systems Languages and Applications, pages 703–
716, 2012.

[27] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, Aug. 1990.

8 2013/5/7

http://snap.stanford.edu/
http://snap.stanford.edu/

	Introduction
	Programming Model
	Implementation Overview
	Evaluation
	Single-Source Shortest Paths (SSSP)
	Community-based Graph Clustering
	Betweenness Centrality (BC)

	Related Work
	Conclusion and Future Work

