
STM in the Small: Trading Generality for

Performance in Software Transactional Memory

Aleksandar Dragojević

I&C, EPFL, Lausanne, Switzerland

aleksandar.dragojevic@epfl.ch

Tim Harris

Microsoft Research, Cambridge

tharris@microsoft.com

Abstract

Data structures implemented using software transactional

memory (STM) have a reputation for being much slower

than data structures implemented directly from low-level

primitives such as atomic compare-and-swap (CAS). In this

paper we present a specialized STM system (SpecTM) that

allows the program to express additional knowledge about

the particular operations being performed by transactions—

e.g., using a separate API to write transactions that access

small, fixed, numbers of memory locations. We show that

data structures implemented using SpecTM offer essentially

the same performance and scalability as implementations

built directly from CAS. We present results using hash tables

and skip lists on machines with up to 8 sockets and up to

128 hardware threads. Specialized transactions can be mixed

with normal transactions, allowing fast-path operations to

be specialized for greater performance, while allowing less

common cases to be expressed using normal transactions for

simplicity. We believe that SpecTM provides a “sweet spot”

for expert programmers developing scalable data structures.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: Concurrent Programming—Parallel Program-

ming

Keywords Lock-Free Data Structures, Parallel Program-

ming, Transactional Memory

1. Introduction

Over recent years a great deal of attention has been paid

to the design and implementation of transactional memory

systems. Transactional memory (TM) allows a program to

make a series of memory accesses appear to occur as a single

atomic operation [16, 17, 29].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’12, April 10–13, 2012, Bern, Switzerland.
Copyright c© 2012 ACM 978-1-4503-1223-3/12/04. . . $10.00

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 2 4 6 8

No
rm

ali
ze

d t
hro

ug
hp

ut
(1.

0 =
 se

qu
en

tia
l)

Threads

CAS
SpecTM-Short-TVar-Val (2.4)
SpecTM-Short-TVar (2.3)
SpecTM-Short (2.2)
BaseTM (2.1)

Figure 1. Throughput of operations on a hash table (90%

lookups), normalized to optimized sequential code.

Atomicity can simplify the design of shared memory data

structures. Unfortunately, data structures rarely perform well

when built using software implementations of transactional

memory (STM) [2, 8]. Figure 1 illustrates this for a hash

table benchmark (in Section 2 we return to the details of

the particular experimental setting). The figure shows the

throughput of operations for a hash table built using a state-

of-the-art STM system (labeled BaseTM), and an implemen-

tation built directly from atomic compare-and-swap (labeled

CAS). With a single thread the performance of the base-

line STM system is less than half that of sequential code.

The CAS-based implementation is both faster than the STM-

based implementation, and it scales better.

STM and CAS can be seen as two points in a spectrum

of programming abstractions. On the one hand, STM can be

relatively easy to use, but perform relatively poorly. On the

other hand, CAS can be extremely difficult to use, but can

perform extremely well. In this paper we examine intermedi-

ate points in this spectrum. Compared with STM, how much

simplicity do we lose in order to achieve good performance?

Compared with CAS, how much performance do we lose in

order to make programming appreciably simpler?

Our main contribution is to show that data structures built

using specialized STM systems can match the performance

and scalability of existing CAS-based data structures. We

call our system SpecTM. We explore three kinds of special-

ization (Section 2):

First, SpecTM provides specialized APIs for short trans-

actions. These APIs shift responsibilities from the STM’s

implementer to the STM’s user: for instance, the STM’s user

must provide sequence numbers to their data accesses (one

function for the first read in a transaction, a different func-

tion for the second, etc.). This shift in responsibility removes

book-keeping work from the STM implementation.

Second, SpecTM provides specialization over the place-

ment of STM meta-data, allowing pieces of meta-data to

be located on the same cache lines as the application’s data

structures. In contrast, traditional STM systems often use an

automatic hash-based mapping from data to meta-data, re-

quiring multiple cache lines to be accessed.

Third, SpecTM provides a value-based validation mecha-

nism in which the per-word meta-data is reduced to a single

bit reserved in each data item. Requiring a “spare” bit for

the use of the STM system restricts the kind of data that the

STM can work over. However, on a 64-bit machine, the re-

maining 63 bits can nevertheless accommodate typical inte-

ger values, and pointers to aligned data structures. We show

how, for many workloads, we can use value-based validation

without needing to maintain shared global version numbers.

Importantly, specialized transactions can be mixed with

normal transactions that use a traditional STM interface.

This enables SpecTM to be used in two ways. First, special-

ized transactions can be used to build a new data structure,

with the knowledge that long transactions are available as a

fall-back for any cases that are difficult to write. Second, a

data structure can be built using ordinary transactions, and

then SpecTM can be used to optimize the common cases.

Section 3 illustrates this using a detailed example. We show

how SpecTM is used in building a skip list, using specialized

transactions for the most common forms of insertion and

deletion, and normal transactions for more complex cases.

The kind of specialized interface we provide in SpecTM

is not appropriate for all settings. We are explicitly giving

up some of the generality of TM as a synchronization mech-

anism in order to achieve better performance than existing

implementations. In effect, we are returning to the original

application of TM in building shared memory data struc-

tures, as espoused by Herlihy and Moss [17], and explored

in the first STM design [29]. Another way to view SpecTM

is that it provides a little bit more than early implementa-

tions of multi-word compare-and-swap (CASN) [13, 22].

Unlike CASN, SpecTM transactions are dynamic (allowing

a transaction to atomically read a series of locations, rather

than specifying all of the locations in a single function call).

In addition, unlike early CASN implementations, SpecTM

transactions can be mixed with traditional transactions.

Section 4 describes the implementation of SpecTM, and

evaluates its performance and scalability. In this paper we

focus on building data structures such as the hash tables and

skip lists. The motivation for this focus is the central role

of these data structures in key-value stores and in-memory

database indices. The evaluation uses two systems: a 16-core

machine and a larger 128-core machine. Our experiments

show that specialized STM performs almost as well as ex-

isting lock-free algorithms, with slowdowns of less than 5%.

Also, specialized STM scales as well as the lock-free algo-

rithms on the 128-core machine even when the contention is

high.

We describe related work (Section 5) and conclude (Sec-

tion 6).

2. Specializing the TM Interface

In this section we introduce the interfaces exposed by

SpecTM. We illustrate the use of SpecTM using the run-

ning example of a simple double-ended queue (dequeue).

This queue supports PushLeft, PopLeft, PushRight,

PopRight operations to add and remove items to either

end. We focus on PopLeft and sketch how it would be

written using a traditional STM (Section 2.1), and then how

it would be written using SpecTM (Sections 2.2–2.4). (We

use a basic dequeue as a concise example: a scalable imple-

mentation would be more complex [18].)

To give a feeling for SpecTM’s performance, Figure 1

shows how some variants scale on 1–16 cores. The baseline

TM system (BaseTM) follows the TL2 algorithm of Dice

et al. [4], extended with timebase extension from Riegel et

al. [27], and the hash-based write-set design of Spear et

al. [30]. The CAS-based hash table is implemented from

Fraser’s design [11]. All the implementations use epoch

based memory management, also following Fraser’s design.

Building on BaseTM, we discuss the contributions of

each form of specialization in the corresponding sections

below (Section 2.2–2.4). In Section 4 our main results con-

sider more combinations of design choices, and they exam-

ine scalability on larger machines.

2.1 Traditional STM (BaseTM)

Here is the PopLeft operation implemented using the tra-

ditional STM interface exposed by BaseTM:

void *Items[QUEUE_SIZE] = { NULL };

int LeftIdx = 0;

int RightIdx = 0;

void *PopLeft(void) {

void *result = NULL;

TX_RECORD t;

do {

Tx_Start(&t);

int li = Tx_Read(&t, &LeftIdx);

void *result = Tx_Read(&t, &Items[li]);

if (result != NULL) {

Tx_Write(&t, &(Items[li]), NULL);

Tx_Write(&t, &LeftIdx, (li+1)%QUEUE_SIZE);

}

} while (!Tx_Commit(&t));

return result;

}

The queue is built over an array which holds the items

at indexes LeftIdx–RightIdx-1 (wrapping around the

array, modulo the queue size). Queue elements must be non-

NULL, allowing NULL values to be used to indicate the

presence of empty slots (and to distinguish a completely

empty queue from a completely full queue). Consequently,

PopLeft starts by reading the left index, and reading the

array item at that index. If the item is non-NULL, then the

left index is advanced, and the array slot is cleared.

Compared with a sequential implementation, the STM

adds three main costs: (i) book-keeping required when start-

ing a transaction (e.g., recording a snapshot of the processor

state so that the transaction can be restarted upon conflict),

(ii) managing the transaction record on each read and write

(e.g., incrementing read/write pointers into the transaction’s

logs, and, in the case of reads, ensuring that they see any ear-

lier writes in the same transaction), (iii) visiting meta-data

locations to perform concurrency control.

Our interface for short transactions (Section 2.2) ad-

dresses the first two of these costs. The third cost is ad-

dressed by our interface for explicit transactional data (Sec-

tion 2.3), and for integrating meta-data within application

data structures (Section 2.4).

2.2 Short Transactions

The key ideas for SpecTM’s interface are to require the

programmer to indicate the sequencing of operations within

a transaction, and to require the programmer to avoid write-

to-read dependencies within a transaction. Here is PopLeft

re-implemented using SpecTM:

void *PopLeft(void) {

void *result = NULL;

TX_RECORD t;

restart:

int li = Tx_RW_R1(&t, &LeftIdx);

void *result = Tx_RW_R2(&t, &Items[li]);

if (!Tx_RW_2_Is_Valid(&t)) goto restart;

if (result != NULL) {

Tx_RW_2_Commit(&t, (li+1) % QUEUE_SIZE, NULL);

} else {

Tx_RW_2_Abort(&t);

}

return result;

}

Compared with the previous section, there are five main

changes: (i) The read operations include sequence numbers

in the function signature (R1 for the first read, R2 for

the second, etc.). The first read implicitly starts the trans-

action. (ii) Transactions can access only a small number

of locations (four in our implementation, which can be in-

creased in a straightforward manner). (iii) Each access must

be to a distinct memory location. (iv) The processor state

is not saved implicitly at the start of a transaction and re-

stored upon conflict; the programmer is responsible for call-

ing ... Is Valid to detect conflicts, and for restarting the

transaction if needed. (v) The commit function signature in-

cludes the total number of locations accessed, along with the

new values to be stored at each of them.

This example illustrates the trade-off we are studying.

The specialized interface requires the programmer to be able

to provide sequence numbers on their accesses (and so it

typedef void *Ptr;

// Single read/write/CAS transactions:

Ptr Tx_Single_Read(Ptr *addr);

void Tx_Single_Write(Ptr *addr, Ptr newVal);

Ptr Tx_Single_CAS(Ptr *addr, Ptr oldVal, Ptr newVal);

// Read-write short transactions:

Ptr Tx_RW_R1(TX_RECORD *t, Ptr *addr_1);

Ptr Tx_RW_R2(TX_RECORD *t, Ptr *addr_2);

...

bool Tx_RW_1_Is_Valid(TX_RECORD *t);

bool Tx_RW_2_Is_Valid(TX_RECORD *t);

...

void Tx_RW_1_Commit(TX_RECORD *t, Ptr val1);

void Tx_RW_2_Commit(TX_RECORD *t,

Ptr val_1, Ptr val_2);

...

void Tx_RW_1_Abort(TX_RECORD *t);

void Tx_RW_2_Abort(TX_RECORD *t);

...

// Read-only short transactions:

Ptr Tx_RO_R1(TX_RECORD *t, Ptr *addr_1);

Ptr Tx_RO_R2(TX_RECORD *t, Ptr *addr_2);

...

bool Tx_RO_1_Is_Valid(TX_RECORD *t);

bool Tx_RO_2_Is_Valid(TX_RECORD *t);

...

// Commit combined read-only & read-write transactions:

bool Tx_RO_1_RW_1_Commit(TX_RECORD *t, Ptr val1);

bool Tx_RO_1_RW_2_Commit(TX_RECORD *t,

Ptr val_1, Ptr val_2);

...

// Upgrade a location from RO to RW:

bool Tx_Upgrade_RO_1_To_RW_2(TX_RECORD *t);

...

Figure 2. SpecTM API for short transactions.

would be ill-suited to a series of reads performed in a loop).

In addition, SpecTM requires all of the writes to be deferred

until commit-time. Imposing these restrictions reduces the

book-keeping required by the STM. To see why, consider

the operation of a typical STM system using deferred up-

dates [16] (similar optimizations are possible when com-

pared with STM systems using eager updates, but we omit

the details for brevity). With deferred updates, the STM must

log the new values written by a transaction, and copy them to

target memory locations only upon successful commit. This

logging means that transactional reads need to search the up-

date log so that they see early writes by the same transaction.

SpecTM’s restrictions mean that: (i) There is no need for an

update log, because the values being written are provided

at commit-time. (ii) For the same reason, read-after-write

checks are no longer necessary. (iii) For read-write transac-

tions, the implementation can eagerly acquire a write lock

at the time of the read, eliminating the need for commit-

time read-set validation. (iv) Focusing on short transactions

means that the set of all locations accessed can be held in a

fixed-size array inline in the TX RECORD. Similarly, there is

no need to track operation indices, as they are provided by

statically the program. This is in contrast to traditional STM

systems which must track indices dynamically.

Figure 2 shows the full API for writing short transactions.

In addition to the short read/write transactions that occur in

this example, SpecTM provides:

Single-operation transactions. The Tx Single * func-

tions perform transactions that access a single loca-

tion: either read, write, or compare-and-swap. These op-

erations synchronize with concurrent transactions—e.g.,

a Tx Single Read will not read uncommitted writes.

More generally, the Tx Single * operations are lineariz-

able [19] and so if read r1 sees a value written by a trans-

action TxA then a subsequent read r2 must see all TxA’s

writes. The single-operation API enables further optimiza-

tions, completely eliminating any logging to an explicit

transaction record.

Short read-only transactions. As with the RW transac-

tion in the PopLeft example, SpecTM provides short

read-only transactions. We distinguish read-only transac-

tions from read-write transactions so that an implementa-

tion can handle the two kinds of transaction differently (e.g.,

using encounter-time locking for locations in a short read-

write transaction, but invisible reads for read-only transac-

tions [16]).

A read-only transaction is started with a call to

Tx RO R1, which also performs the first read. Subse-

quent reads are performed using Tx RO R2, The

Tx RO * Is Valid functions test whether or not the trans-

action is currently valid, with variants specialized to the size

of the read set. There are no explicit commit or abort func-

tions. Successful validation serves in the place of commit. If

a program wishes to abort a read-only transaction then it can

simply discard the transaction record.

As with read-write transactions, short read-only transac-

tions avoid the need to dynamically allocate logs and main-

tain log indices.

Combining read-only and read-write transactions. A sin-

gle transaction may mix the Tx RO * operations for the lo-

cations that it only reads, and the Tx RW * operations for

the locations that it both reads and writes. The two sets of

locations must be disjoint. A set of commit functions with

names such as Tx RO x RW y Commit is provided to com-

mit these transactions: x refers to the number of locations

read, and y to the number of locations written. As with the

Tx RW * Commit functions, the values to write are sup-

plied to the commit operation.

Finally, if a transaction wishes to “upgrade” a location

from read-only access to read-write access, then the function

Tx Upgrade RO x To RW y function indicates that index

x amongst the transaction’s existing reads has been upgraded

to form index y in its writes—x may be any of the locations

read previously, and y must be the next write index.

This form of upgrade is used when the value read from

one location determines whether or not another location will

be updated. For instance, consider a double-compare-single-

swap operation which checks that two locations a1 and a2

hold expected values o1 and o2 respectively and, if they do,

writes n1 to a1. This function can be written:

bool DCSS(void **a1, void **a2,

void *o1, void *o2,

void *n1) {

TX_RECORD t;

restart:

if (Tx_RO_R1(&t, a1) == o1 &&

Tx_RO_R2(&t, a2) == o2 &&

Tx_Upgrade_RO_1_To_RW_1(&t)) {

if (Tx_RO_2_RW_1_Commit(&t, n1)) return true;

} else if (Tx_RO_2_Is_Valid(&t)) return false;

goto restart;

}

This DCSS function reads from a1 and a2. If the values seen

match o1 and o2 then it upgrades a1 to be the first location

in the write set. If this upgrade succeeds, then DCSS attempts

to commit the short transaction, with 2 entries in the read set

and the single location in the write set.

Building data structures using short transactions. Our

implementations of data structures using short transactions

can be seen as a mid-point between building directly from

CAS and building with a traditional TM interface. On the

one hand, when compared with traditional TM, SpecTM bur-

dens the programmer with adding sequence numbers to their

reads and writes, and ensuring that the read-set and write-

set remain disjoint. On the other hand, when compared with

CAS, SpecTM provides the programmer with an abstraction

for making multi-word atomic updates.

In practice, when using SpecTM, we start by splitting

operations into a series of short atomic steps, each of a

statically-known size. As we show in the case study in Sec-

tion 3, in our skip list implementation we use short RW

transactions to atomically add and remove an item when it

appears only at level-1 or level-2 in the skip list. We use gen-

eral purpose transactions for the (rarer) cases of nodes that

appear at higher levels. Short and general purpose transac-

tions can be mixed as they use the same STM meta-data.

Our hash table and skip list implementations are more com-

plex than ones built using traditional TM implementations.

However, they are simpler than the equivalent lock-free al-

gorithms as the use of multi-word atomic updates simplifies

the most complex parts of these data structures.

Code complexity. Using short SpecTM transactions inter-

face from Figure 2 can easily result in mistakes by program-

mers (e.g. using a wrong function name or a wrong index).

Incorrect uses of the SpecTM interface can typically be de-

tected at runtime. For performance, we do not implement

such checks in non-debug modes. Furthermore, short trans-

actions do not compose as well as traditional transactions,

as they require static operation indices. Short transactions

are intended for performance critical code and programmers

are often willing to sacrifice composability of such code, so

this is not a major limitation. For example, code using CAS

or locks is routinely used when performance is important,

despite its poor composability.

Performance. The “SpecTM-Short” line in Figure 1 shows

the impact on performance of using short transactions. In

particular, note how short transactions remove much of the

Application data Ownership record table

W1
W2

W3
W4

...

Version / Owner L
Version / Owner L

W1 Version / Owner L

W2 Version / Owner L

W3 Version / Owner L

W4 Version / Owner L

TVars, incorporating application data and STM meta-data

W1

W2

W3

W4

Combining lock-bits with application data

L

L

L

L

(a) Meta-data held in a table of ownership

records, indexed by a hash function.

(b) Meta-data co-located with application

data in TVars (Section 2.3).

(c) One lock-bit of meta-data held in

each data item (Section 2.4).

Figure 3. Different ways of organizing STM meta-data in variants of SpecTM.

overhead at 1-thread without harming scalability. This fol-

lows from our focus on designing the SpecTM API to re-

move much of the book-keeping of typical STM systems:

we are performing the same synchronization work.

2.3 Explicit Transactional Variables

The second way in which SpecTM specializes the STM in-

terface is to allow transactional data to be located alongside

meta-data. Typical STM systems for C/C++ are built with-

out control over data structures, and instead place their meta-

data in a table of ownership records (“orecs” [17]), using a

hash function to map from a location in the heap to the orec

used for that location. This traditional design means fetching

two cache-lines on each data access. It can also introduce

false conflicts when distinct data items can hash to the same

orec. Even with a few false conflicts, this traditional design

can increase book-keeping overheads, as more complex data

structures need to be used for handling updates to several

locations that map to the same orec.

With SpecTM, we follow STM-Haskell [15] in using a

TVar data type which encapsulates both (i) the meta-data

required by the TM system, and (ii) a word of the applica-

tion’s data. If the TVar is aligned to a 2-word boundary, then

the complete structure will be held on a single cache line.

TVars do not significantly change the short transaction

API in Figure 2: the calls simply take addresses of TVars

instead of memory words. However, using TVars reduces

the cache miss rates thus improving STM’s performance and

scalability. Also, as each memory location maps to a single

orec, the book-keeping overheads are reduced.

Figure 3 illustrates these different approaches. Figure 3(a)

shows the use of a table of ownership records, with applica-

tion data words W1 and W3 both mapping to the first own-

ership record, and W2 and W4 to the second. In contrast, in

Figure 3(b), each TVar includes an application word and the

ownership record.

Performance. The “SpecTM-Short-TVar” line in Figure 1

shows the impact on performance of using short transactions

and TVars in the hash table workload. The difference be-

tween these results and the earlier “SpecTM-Short” results

follows from the placement of the orecs within TVars, and

the consequent changes in cache behavior.

2.4 Combined Meta-Data with Value-Based Validation

The final form of specialization in SpecTM is to combine

the STM’s meta-data with the application’s own data. From

the point of view of the SpecTM API, data structures are

still maintained using TVars. However, rather than having

each TVar include two words, each TVar now consists of

a single word of the application’s data, within which one bit

is reserved for the use of the STM (Figure 3(c)). Eliminat-

ing the additional orec word further reduces STM overheads.

For example, traditional STMs need to perform a sequence

of three reads (orec, data word and then orec again) to get

a correct snapshot of data and the corresponding orec [16].

When data and meta-data are held in the same word, this se-

quence becomes a single atomic read. Similarly, at commit-

time, the entire TVar can be updated by an atomic write.

Reserving a bit restricts the programmer to storing point-

ers to aligned addresses (where the alignment guarantees

that some low-order bits are spare), or storing small integer

values (shorter than a full word). These restrictions would

not be palatable in general-purpose code, but they can be ac-

commodated in our pointer-based data structures.

Validation with Version Numbers. Before introducing

how SpecTM operates using a single bit per word, we briefly

summarize how BaseTM works when using full orecs (Fig-

ure 3(a)–(b)). With full orecs, as with TL2 and other STM

systems [16], the orecs combine a lock-bit and either a ver-

sion number or a reference to a transaction record. If the

lock-bit is set then the orec is locked by a transaction that is

writing to the orec’s data (and the body of the orec points to

this owning transaction). Otherwise, if the lock-bit is clear,

then the body of the orec contains a version number that is

incremented whenever a transaction commits an update to

the orec’s data. As in other STM systems, these version num-

bers are used for validating locations that are read by a trans-

action: a transaction records the version numbers of orecs

when first reading from them, and it validates by checking

that these version numbers are unchanged.

Version-Free Validation. We use the single bit of meta-

data as a lock-bit: it is locked by the Tx RW * operations

in read-write transactions, and during the commit phase of

normal transactions. To acquire the lock, a transaction atom-

ically tries to set the lock bit and to replace the rest of the

word with a pointer to the owner’s transaction record. As in

other STM systems, deadlock is avoided conservatively by

aborting if the lock is not free.

However, having only a single bit of meta-data introduces

a problem when handling transactions that read from a loca-

tion but do not wish to write to it. The problem is that, with-

out version numbers, a transaction cannot check for conflict-

ing writes to the locations that it has read from. In general, it

is incorrect for it to simply re-read the values in each of these

locations and to check that each of these matches the values

seen by the transaction. This is because there is no guarantee

that these reads see a consistent view of memory, given that

there may be concurrent writes in progress.

Our observation is that, although the general case of

version-free validation is incorrect, we can identify a series

of special cases in which it can nevertheless be employed

safely:

• Many read-modify-write transactions update all of the

locations that they read. In SpecTM these transactions

are expressed using the Tx RW * API. Version numbers

are not needed in these transactions because all of the

orecs are locked before making the updates. For instance,

a transaction to add a node into a doubly-linked list will

lock and update all four of the locations involved.

• “Mostly-read-write” transactions read from only one lo-

cation that they do not update—e.g., in the skip list in

Section 3, an insertion must read from a location that

records the maximum height of the list nodes. For these

transactions it is correct to validate their single read-only

access with a value-based comparison. The transaction

proceeds by locking the locations being updated, check-

ing that the value in the location read has not changed,

and then making the updates and releasing the orecs. The

single read forms the linearization point.

• Finally, some locations satisfy a “non-re-use” property

in which a given value is not stored in a given location

more than once. In this case, if a transaction reads values

v1, v2, . . . from a series of locations a1, a2, . . ., and then

it subsequently sees these same values upon validation,

then the non-re-use property means that the complete set

of values was present at those locations at the instant of

the start of the validation. In effect, the values themselves

are taking the place of version numbers. This kind of non-

re-use property often occurs when the values are pointers

to dynamically allocated data managed by mechanisms

such as those of Herlihy et al. [21] and Michael [25].

These three special cases cover many of the transactions

used in shared memory data structures; indeed they cover

all of the cases that occur in our hash table and skip list

workloads. In fact, we initially identified these cases after we

were surprised that value-based validation worked correctly

for our workloads, even though it should not work in general.

Exploiting these special cases requires care on the part of

the programmer—the first two cases can be checked auto-

matically by the SpecTM implementation, but we have not

yet investigated checking tools or proof methods for the non-

re-use property. In order to support general-purpose transac-

tions that do not fit in any of these special cases, a global

version number can be used to track the number of transac-

tions that have committed. This can be used, as Dalessandro

et al. show [3], to make value-based validation safe without

requiring a non-re-use property.

If this general-purpose case occurs rarely then, rather

than having a single, shared, version number on which each

thread contends, each thread can maintain a separate ver-

sion number. These per-thread numbers are updated on each

transactional commit on the given thread. This design makes

it fast to (logically) increment the shared counter, at the cost

of reading all of the threads’ counters in the general case.

Performance. The “SpecTM-Short-TVar-Val” line in Fig-

ure 1 shows the impact on performance of using short trans-

actions, with TVars, and with value-based validation ex-

ploiting the three special cases described above. For this

workload, the additional performance above the “SpecTM-

Short-TVar” line is slight; however, it closes the gap with the

performance of the CAS-based implementation.

3. SpecTM Case Study

To illustrate the use of SpecTM in more detail, we now show

how it can be used to implement a skip list (Figure 4). For

brevity, we simplify the skip list to store only integer values

and to provide search, insert, and remove operations

(the pseudo-code shows only the former two). We also omit

memory-management code—many now-conventional tech-

niques can be used [11, 21, 25].

Each skip list node stores an integer value, and an array of

forward pointers, with one pointer for each level of the skip

list the node belongs to (line 2). The skip list is represented

by a head node that points to the first node in each level of

the list (line 7). To iterate the list, a window of pointers for

all skip list levels is used (line 10).

The function for searching the skip list (line 15) traverses

the nodes by reading their forward pointers (line 19). It starts

at the highest level in the skip list, moving successively

lower whenever the level would skip over the integer be-

ing sought. As in lock-free linked list and skip list imple-

mentations [11, 18], a “deleted” bit is reserved in all of a

node’s forward pointers to indicate that the node has been

deleted. The search function ignores deleted notes (line 20).

The search terminates once it reaches the bottom level.

Adding a new node (line 30) starts with a search for the

value being inserted (line 35). The skip list does not permit

duplicate elements, so false is returned if the value is

found (line 36) Otherwise, the search returns an iterator that

can be used for the insertion. The level of the new node

is generated randomly, with the probability of node being

1 const int MAX_LEVEL = 32;

2 struct Tower {

3 int id;

4 TmPtr next[MAX_LEVEL]

5 int lvl;

6 };

7 struct Skiplist {

8 Tower head;

9 };

10 struct Iterator {

11 Tower *prev[MAX_LEVEL];

12 Tower *next[MAX_LEVEL];

13 };

14

15 Tower *Skiplist::Search(int id, Iterator *it, int lvl)

{

16 Tower *curr, *prev = &head;

17 while(--lvl >= 0) {

18 while(true) {

19 curr = Tx_Single_Read(&(prev->next[lvl]));

20 curr = Unmark(curr);

21 if(curr == NULL || curr->id >= id)

22 break;

23 prev = curr;

24 }

25 it->prev[lvl] = prev;

26 it->next[lvl] = curr;

27 }

28 return curr;

29 }

30 bool Skiplist::Add(Tower *data) {

31 Iterator it;

32 bool restartFlag;

33 restart:

34 int headLvl = PtrToInt(Tx_Single_Read(&head.lvl));

35 Tower *curr = Search(data->id, &it, headLvl);

36 if(curr != NULL && curr->id == id)

37 return false;

38 data->lvl = GetRandomLevel();

39 if(data->lvl == 1)

40 restartFlag = !AddLevelOne(data, &it))

41 else

42 restartFlag = !AddLevelN(data, &it);

43 if(restartFlag)

44 goto restart;

45 return true;

46 }

47 bool Skiplist::AddLevelOne(Tower *data, Iterator *it) {

48 TmPtrWrite(&(data->next[0]), it->next[0]);

49 return Tx_Single_CAS(&iter->prev[0]->next[0],

50 it->next[0], data) == it->next[0];

51 }

52 bool Skiplist::AddLevelN(Tower *data, Iterator *it) {

53 bool ret;

54 STM_START_TX();

55 int headLvl = STM_READ_INT(&(head.lvl));

56 if(data->level > headLvl) {

57 STM_WRITE_INT(&(head.lvl), data->level);

58 for(int lvl = headLvl;lvl < data->level;lvl++) {

59 it->prev[lvl] = head;

60 it->next[lvl] = NULL;

61 }

62 }

63 for(int lvl = 0;lvl < data->level;lvl++) {

64 Ptr nxt = STM_READ_PTR(&win->prev[lvl]->next[lvl]);

65 if(nxt != it->next[lvl]) {

66 ret = false;

67 STM_ABORT_TX();

68 }

69 STM_WRITE_PTR(&(it->prev[lvl]->next[lvl]), data);

70 TmPtrWrite(&(data->next[lvl]), win->next[lvl]);

71 }

72 ret = true;

73 STM_END_TX();

74 return ret;

75 }

Figure 4. Skiplist implementation using SpecTM.

assigned a level l equal to 1

2l . The node is then inserted

atomically into all of the lists up to this level. The nodes with

level one are inserted using a short specialized transaction

(lines 40) and the nodes with higher levels are inserted using

an ordinary transaction (line 42). If the insertion does not

succeed due to the concurrent changes to the skip list, the

whole operation is restarted (line 44). Otherwise, the insert

succeeds and true is returned to indicate its success.

Removals proceed in a similar manner to insertions. The

node is first located using the search function. A single

transaction is used to atomically mark the node at all levels,

and to remove it from all of the lists it belongs too. Removal

of nodes at level one is performed using a short specialized

transaction, and the removal of nodes with higher levels is

performed using ordinary transactions.

These insertion and removal operations typify the way we

use SpecTM. The common cases are expressed using short

transactions, and less frequent cases are expressed with more

general, but slower, ordinary transactions. If developers see

the need to further improve performance, they can further

specialize the implementations. The skip list implementation

used in our evaluations uses short transactions for levels 1–

2, leaving only 25% of insert and remove operations to be

executed using ordinary transactions.

Code Complexity. The code of the SpecTM skip list is

clearly more complex than a traditional transactional im-

plementation. However, it is simpler than the code of the

lock-free skip list based on CAS, such as one by Fraser [11].

There are two main reasons for this simplicity:

First, because specialized transactions can co-exist with

ordinary transactions, the more complex operations can still

be expressed as ordinary transactions. This limits the amount

of code that must be written using SpecTM.

Second, although the API for SpecTM is more complex

than for traditional transactions, conceptually it still provides

the abstraction of atomicity. Experience with the bounded-

size Rock Hardware TM [5, 6, 9] has shown that short trans-

actions are simpler to use than CAS—e.g., without multi-

word atomic operations, Fraser’s CAS-based skip list must

handle nodes which are partially-removed and partially-

inserted.

4. Evaluation

In this section we evaluate the performance of SpecTM.

We first describe the details of the implementation (Sec-

tion 4.1), and summarize the different STM systems that

we use in our evaluation (Section 4.2). We then examine

the performance of SpecTM in single-threaded executions

(Section 4.3). This lets us assess the sequential overheads

of different approaches. Then, we evaluate the performance

and scalability of hash table and skip list data structures im-

plemented using SpecTM, and compare it to lock-free im-

plementations (Section 4.4). We do so on two systems that

support 16 and 128 hardware threads respectively.

4.1 Implementation

Our implementation of SpecTM operates on 64-bit systems.

Consequently, we ignore the possibility of version number

overflow. Existing techniques could be used to manage over-

flow on 32-bit systems if needed [10, 14].

We use a conventional epoch-based system for memory

management, based on that described by Fraser [11]. This

mechanism ensures that a location is not deallocated by one

thread while it is being accessed transactionally by another

thread. Epoch-based reclamation works well in our setting.

However, it would be straightforward to use alternatives such

as tracing garbage collection, or lock-free schemes [21, 25].

Our baseline STM implementation uses the TL2 algo-

rithm [4], timebase extension [27], and hash-based write

sets [30]. The approach is typical of C/C++ STM sys-

tems [4, 7, 10, 28, 30]. It performs well for our workloads,

matching the performance reported by Dragojević et al. [8].

BaseTM provides opacity [12], guaranteeing that a run-

ning transaction sees a consistent view of the heap. BaseTM

provides weak isolation, meaning that it does not detect con-

flicts between concurrent transactional and non-transactional

accesses to the same location (if strong isolation is needed,

then many implementation techniques exist [16]). BaseTM

does not provide privatization safety (barriers such as those

of Marathe et al. [24] could be added, if needed).

As illustrated in Figure 3(a), we use a global table of own-

ership records, indexed by a hash function. We use commit-

time locking (CTL), where orecs are locked only during

commit, rather than during a transaction’s execution. We use

invisible reads (so the implementation of Tx Read does not

write to any shared data). We use deferred updates (mean-

ing that updates are held in a write log during execution,

and flushed to the heap on commit). We use a simple con-

tention manager: upon conflict, a transaction aborts itself,

and waits for a randomized linear time before restarting (as

in the first phase of SwissTM’s two-phase contention man-

ager [7]). With BaseTM, all transactions executed by the

same thread use the same per-thread transaction descriptor

that is allocated and initialized at thread start-up.

BaseTM can use two version management strategies.

Both strategies are conventional, but they offer different per-

formance characteristics:

Global version numbers. We can use a global version

number, held in a 64-bit integer that is incremented by non-

read-only transactions. As with TL2, we sample the global

version number at the start of a transaction, and obtain opac-

ity by ensuring that all orecs accessed by the transaction have

versions no later than this starting number.

Local (per-orec) version numbers. Alternatively, we can

use per-orec version numbers, without reference to a global

version. This avoids contention on a shared global counter,

but instead requires read-set validations after every read in

order to ensure opacity.

�

�

�

�

�

�

�

���������	
 ����� ������ ������ ����� ������

��
��

��
��	

�
��
�
	

�	
�	���� ��	�������� ��	�������� ���������� �������� ���������� ��������

(a) 128 elements

�

�

�

�

�

�

�

�

���������	
 ����� ������ ������ ����� ������

��
��

���
�	

�
��
�
	

(b) 1024 elements

�

�

�

�

�

��

��

���������	
 ����� ������ ������ ����� ������

��
��

��
��	

�
��
�
	

(c) 32k elements

Figure 5. Single thread performance of SpecTM.

4.2 STM Variants

We summarize the labels used on our graphs:

sequential is optimized sequential code; it is not safe for

multi-threaded use, but it provides a reference point of the

cost of an implementation without concurrency control.

lock-free are lock-free implementations of the data struc-

tures, based on the designs from Fraser’s thesis [11].

orec-* implementations use a shared table of orecs, as shown

in Figure 3(a).

tvar-* implementations use per-data-item ownership

records, as shown in Figure 3(b).

val-* implementations use per-data-item lock-bits with

value-based validation, as shown in Figure 3(c).

-full- implementations use the normal STM interface

(Section 2.1).

-short- implementations use specialized interfaces for

short transactions (Section 2.2).

*-g implementations use a global version number.

*-l implementations use local (per-orec) version numbers.

�

�

�

�

�

�

�

�

	

� � 	 �� ��

��
���

��
��

�	
�
��

��
�

�������

��������	
��
����
	��������	��
	����������
��
�����	��
��
�������
��
�������������
	����������

(a) 90% lookups

�

�

�

�

�

�

�

� � � �� ��

��
���

��
��

�	
�
��

��
�

�������

��������	
��
����
	��������	��
	����������
��
�����	��
��
�������

(b) 10% lookups

Figure 6. Skip list, 64k values, 16 cores.

For instance, orec-full-g denotes our BaseTM implementa-

tion using a TL2-style global version number, whereas tvar-

short-g denotes an implementation using specialized short

transactions, without an orec table. Our experimental har-

ness explores the full set of variants. However, we omit some

of the lines from the graphs for clarity.

4.3 Single-Threaded Performance

We evaluate single-threaded performance using a synthetic

workload on a single-socket system with a 2.26GHz Intel

Xeon E5520 quad-core CPU.

The synthetic workload allocates an array of pointers,

with each pointer aligned to a L2 cache-line boundary. We

then measure the time needed to execute a large number of

short transactions on randomly chosen items in the array.

We repeat the experiment for Tx Single Read transac-

tions, read-only (RO) transactions that access 2 and 4 con-

secutive items in the array, and read-write (RW) transac-

tions that access 1, 2, and 4 consecutive items. (The val-full

RO transactions assume the non-re-use property from Sec-

tion 2.4 and perform value-based validation.) We run the ex-

periments with different sizes of the array, thereby control-

ling how much of the array fits in data caches, and conse-

quently how frequently cache misses occur.

�

��

��

��

��

��

��

��

	�

� � 	 �� ��

��
���

��
��

�	
�
��

��
�

�������

��������	
��
����
	��������	��
	��������	��
��
�����	��
	����������
��
�������

(a) 90% lookups

�

�

��

��

��

��

��

��

��

��

��

� � � �� ��

��
���

��
��

�	
�
��

��
�

�������

���������
	
������
	
��������
	
��������
�����������
	
��������
�����������

(b) 10% lookups

Figure 7. Hash table, 64k values, 16k buckets, 16-cores.

Figure 5 shows the normalized execution time of the dif-

ferent STM implementations for array sizes of 128 elements

(half the size of 32KB L1 cache), 1024 elements (half the

size of 256KB L2 cache) and 32 768 elements (half the

size of 8MB L3 cache). We normalize the read-only results

against sequential code that reads from 1, 2, and 4 items us-

ing ordinary load instructions. We normalize the RW results

against sequential code that performs a single-word CAS in-

struction on each of the 1, 2, and 4 items. Comparison with

these baselines illustrates the costs that SpecTM implemen-

tations add in order to obtain transactional guarantees.

Comparing the sequential bars with BaseTM (orec-full-

g) shows a 3x–10x overhead for the baseline transactions

compared with sequential code. Most variants of SpecTM

out-perform BaseTM. The exception is val-full in which the

read-set validation costs incurred on each transactional read

dominate execution time.

The best performing SpecTM variants are those that use

short transactions. Comparing orec-short-g (Figure 3(a)),

tvar-short-g (Figure 3(b)), and val-short (Figure 3(c)), the

value-based implementation is slightly faster because it

avoids the atomic increment on a shared global timestamp.

For a single read, the fastest SpecTM variants are compa-

rable to sequential code. For RW transactions, the overhead

of val-short is 10%–30% on 1-item, and 15%–30% on 2 or 4

items. This is substantially less than the 3x-10x overheads of

BaseTM. The overheads of RO transactions are higher than

those of RW transactions; we believe this is due to the more

complex control flow in by validation.

When cache misses are rare (Figure 5(a)), the use of short

transactions helps more than the use of TVars and value-

based validation. This is because the meta-data remains res-

ident in the L1 cache, and so the reduced number of in-

structions executed is significant. In contrast, for workloads

which are not L1-resident, the use of more compact meta-

data is as important as the use of short transactions.

4.4 Multi-Threaded Performance

We evaluate scalability using integer set benchmarks, with

threads performing a random mix of lookups, insertions and

removals. For each of the operations, threads pick a key uni-

formly at random from a predefined range. In the experi-

ments, we used the range 0–65 535, and we varied the mix

of operations to control the contention between threads. Be-

fore the experiment starts, the set is initialized by inserting

half of the elements from the key range. In order to keep the

size of the set roughly constant, the ratio of insert and re-

move operations is equal. During the execution, about half

of the insert operations fail because the value they are try-

ing to insert is already in the set. Similarly, about half of the

remove operations fail because the value they are trying to

remove is not in the set.

We use hash table and skip list integer set implementa-

tions in our experiments. By default, we set the number of

bucket chains in the hash table to 16k, which makes the aver-

age length of the bucket chain 2. We set the maximum height

of the skip list nodes to 32.

We use two different multi-core systems. First, a machine

with 4 quad-core AMD Opteron 8374HE CPUs clocked at

2.2GHz. Second, a machine with 8 Intel Xeon x7560 CPUs

clocked at 2.26GHz. Each of the CPUs has 8 cores and each

core can run 2 hardware threads; hence the entire system

supports 128 hardware threads. Both systems run Windows

Server 2008 R2 Enterprise operating system. Our results are

the mean of 6 runs with the lowest and the highest discarded.

In each of the figures below, we omit the implementations

that do not perform well to improve readability. In particular,

we do not include results for all *-g implementations where

the impact of contention on the shared global version is high.

This typically occurs with short transactions and systems

with many hardware threads. Likewise, we do not include

results for all *-l implementations where the cost of incre-

mental validation is high. This typically occurs with longer

transactions and systems with fewer hardware threads.

4.4.1 Performance on the 16-way system.

Skip list. Figure 6 shows the throughput of the skip list

experiment on the 16-way machine with a read-mostly

workload (90% lookups) and write-heavy workload (10%

lookups).

Figure 6(a) shows the read-mostly workload. The val-

short implementation performs as well as the lock-free

implementation, and it outperforms BaseTM orec-full-g

by 60%–80%. The tvar-short-g implementation is slightly

slower than the lock-free algorithm (7–10%). For this work-

load, the use of the val-* and tvar-* variants is more impor-

tant than the use of short transactions (note that orec-short-g

is only slightly faster than orec-full-g). The tvar-full-l imple-

mentation performs poorly because of the cost of incremen-

tal read-set validations to ensure opacity without a global

version number.

Figure 6(a) also shows the performance of a skip list im-

plementation using BaseTM, but splitting each lookup/in-

sert/remove operation into a series of fine-grained transac-

tions that are implemented over the ordinary STM interface

rather than using short transactions. This is labeled orec-full-

g (fine). Comparing this fine-grained implementation with

the ordinary orec-full-g implementation shows that we do

not obtain performance benefits by using fine-grain trans-

actions without the specialized implementation for them in

SpecTM: without the specialized implementation, the over-

heads of the fine-grain transactions are prohibitive.

Figure 6(b) shows performance under the write-heavy

workload. The overall performance is lower than the read-

mostly workload. However, the relative performance of dif-

ferent variants is approximately the same (in the figure we

omit some of these lines for clarity). The val-short results

perform roughly the same as the lock-free implementation,

and outperform base SpecTM by 60–70%.

To summarize, we get a slight benefit from splitting larger

transactions into fine-grain short transactions (orec-full-g to

orec-short-g), but in doing so we enable the specializations

from orec-short-g to val-short, that let us achieve the same

level of performance as the CAS-based implementation.

Hash table. Figure 7 shows the throughput of various hash

table implementations on the 16-way machine.

If a hash table is lightly loaded, as in our setup, then

operations on it are much shorter than those on a skip list.

Consequently, the hash table workload stresses SpecTM in a

different way to the skip list because the use of centralized

data has a higher impact on scalability.

The impact of the shared global counter in the *-g vari-

ants is apparent in the read-mostly workload (Figure 7(a)),

and even more so in the write-heavy workload (Figure 7(b)).

On this machine, we see little scaling beyond 4 threads

for the *-g variants without specialized short transactions.

(With more than 4 threads, two or more CPUs must be used,

which significantly increases the cost of cache-misses.)

In the read-mostly workload (Figure 7(a)), the val-short

results match the performance of the lock-free hash table.

This implementation outperforms the baseline orec-full-g

implementation between 2.5 and 3 times and the baseline

�

��

��

��

��

���

���

� �� �� �� �� �� �� ��� ���

��
���

��
��

�	
�
��

��
�

�������

���������
	
������
	
��������
�����������
	
��������
�����������

(a) 98% lookups

�

��

��

��

��

��

��

��

	�

� �� �� �	 �� 	�
� ��� ��	

��
���

��
��

�	
�
��

��
�

�������

���������
	
������
	
��������
	
��������
�����������
	
��������
�����������

(b) 90% lookups

�

�

��

��

��

��

� �� �� �� �� �� 	� ��� ���

��
���

��
��

�	
�
��

��
�

�������

���������
	
������
�����������
	
��������
	
��������
	
��������
�����������

(c) 10% lookups

Figure 8. Skip list, 64k values, 128-way system.

implementation with local per-orec timestamps orec-full-l

between 1.6 and 3.5 times (not shown in the figure). The

tvar-short-* results are slightly lower than the val-short re-

sults. The other SpecTM variants perform and scale less

well. The *-l variants typically have lower single-threaded

performance (due to incremental validation), but scale better

than the *-g variants.

In the write-heavy workload (Figure 7(b)) the val-short

implementation matches the performance of the lock-free

implementation, despite a much higher update rate. The

main difference between the read-mostly and write-heavy

results is that the orec-* and tvar-* implementations with

�

���
���

���

���
���

���

���
	��

��

����

� �� �� �	 �� 	�
� ��� ��	

��
���

��
��

�	
�
��

��
�

�������

��������	
��
����
	��������	��
��
�����	��
	����������
��
�������
	��������	��

(a) 98% lookups

�

��

���

���

���

���

���

���

���

���

���

� �� �� �� �� �� 	� ��� ���

��
���

��
��

�	
�
��

��
�

�������

��������	
��
����
	��������	��
	��������	��
��
�����	��
��
�������
	��������	��

(b) 90% lookups

�

��

��

��

��

���

���

���

���

� �� �� �� �� �� �� ��� ���

��
���

��
��

�	
�
��

��
�

�������

��������	
��
����
	��������	��
	����������
��
�����	��
��
�������
	��������	��

(c) 10% lookups

Figure 9. Hash table, 64k values, 16k buckets, 128-way.

shared timestamp scale poorly because of contention on the

shared timestamp.

4.4.2 Performance on the 128-way system.

Skip list. Figure 8 shows the results of the skip list ex-

periment on the 128-way system with 98%, 90% and 10%

lookup operations.

With 98% lookups (Figure 8(a)), the rate of update op-

erations is not high enough for contention on the shared

timestamp counter to be significant. The most notable dif-

ference from the previous experiments is that val-short per-

forms slightly less well than the lock-free implementation:

it achieves 95%–97% of the lock-free skip list’s throughput,

and it outperforms the baseline STM by 2–2.5 times. Unlike

the 16-way case, the tvar-short-g is less competitive with

the lock-free algorithm and with val-short. Interestingly, also

unlike the 16-way case, the use of short transactions helps

significantly, even when a shared table of orecs is used (com-

paring orec-full-g and orec-short-g).

With 90% lookups (Figure 8(b)), contention on the shared

timestamp counter results in the *-l variants outperforming

*-g variants. For this reason, we focus on *-l variants in the

figure. Once again, the val-short and tvar-short-l implemen-

tations have the best performance and scalability.

With 10% lookups (Figure 8(c)), all implementations

scale poorly—including the lock-free implementation. Nev-

ertheless, the relative performance of the SpecTM variants

follows that of Figure 8(b).

Hash table. Figure 9 shows the hash table results on the

128-way machine with 98%, 90% and 10% lookups.

Figure 9(a) shows the performance with 98% lookups.

The val-short implementation matches the performance of

the lock-free hash table implementation, and it outperforms

BaseTM between 60% and 70%. We see roughly equal gains

from co-locating data and meta data, and from using the API

for short transactions.

Figure 9(b) shows the performance with 90% lookups.

With more update operations the scalability is slightly im-

pacted for all hash table variants (including the lock-free

variant). As in previous experiments, val-short matches the

performance of the lock-free algorithm.

Figure 9(c) shows performance with only 10% lookups.

As contention increases, the performance of orec-short-l

drops to offer little or no benefit above orec-full-l. The main

reason for the lower scalability of SpecTM variants with

short transactions is the use of encounter-time locking (ETL)

in short RW transactions, when compared with commit-

time locking (CTL) in long transactions. As the contention

increases, the ETL implementation leads to more locks being

acquired by later aborted transactions, whereas the CTL

implementation does not acquire the locks in the first place.

Finally, we examined the performance of the hash table

under workload with short chains of buckets (0.5 entries

per bucket on average), and with long chains of buckets (32

entries per bucket on average). Figure 10(a) shows the short-

chain results, and Figure 10(b) shows the long-chain results.

The overall result, that val-short matches the performance

of the lock-free implementation, remains from the earlier

experiments. With longer chains, the *-full-l variants scale

poorly: their read sets become large, increasing costs of

incremental validation.

4.5 Summary

We evaluate a number of SpecTM variants across a range

of workloads on two parallel systems. In all cases, the best

performing SpecTM variant was val-short. It either matched

�

���

���

���

���

����

����

����

� �� �� �� �� �� �� ��� ���

��
���

��
��

�	
�
��

��
�

�������

��������	
��
����
	��������	��
	����������
��
�����	��
��
�������
	��������	��

(a) 98% lookups, 64k buckets (0.5-entry chains)

�
��

��

��

��
���

���

���
���

���

���

� �� �� �� �� �� �� ��� ���

��
���

��
��

�	
�
��

��
�

�������

���������
	
������
	
��������
�����������
	
��������
	
��������
�����������

(b) 90% lookups, 1k buckets (32-entry chains)

Figure 10. Hash table, with short and long chains in each

bucket, 128-way system.

the performance of the lock-free implementations of the

same data structure or was marginally slower (typically 3%–

5%). It also outperformed BaseTM substantially across all

workloads.

The results suggest that both the specialized API for short

transactions, and the control over the STM meta-data, are

very useful in achieving good performance. Exactly how

much each type of specialization helps depends on the work-

load and on the target system. In addition, the performance

gain of the variants that use both types of specialization is of-

ten higher than the simple combination of the performance

gains by each type of specialization in isolation. This is be-

cause the co-location of STM meta-data with application

data allows the implementation of short transactions to be

further simplified.

5. Related Work

Transactional memory was first proposed by Herlihy and

Moss [17] as a way to simplify lock-free programming by

allowing programmers to define short, customized, read-

modify-write operations. The first STM of Shavit and

Touitou [29] had a similar aim, albeit a simpler, static in-

terface. The first dynamic STM in which transactions do not

have to access predetermined sets of objects was STM by

Herlihy et al. [20]. Dynamic STMs are more flexible than the

static ones as the transactions can choose which object to ac-

cess based on the values read in the current transaction; this

flexibility motivates our use of a dynamic interface for short

transactions. Harris et al. provide a recent survey of TM im-

plementations [16]. Our BaseTM implementation builds on

many techniques from previous work, particularly those of

Dice et al. [4], Riegel et al. [27], and Spear et al. [30].

Current hardware typically implements single-word syn-

chronization primitives, such as compare-and-swap (CAS),

load-link/store-conditional (LL/SC), fetch-and-add, and

similar. Lock-free algorithms are often much easier to de-

velop if less restrictive forms of the synchronization primi-

tives are available.

The restrictions of current hardware have led researchers

to investigate software implementations of multi-word

atomic primitives, such as multi-word compare-and swap

(e.g. [13, 22]), and k-compare-single-swap primitive [23].

Our view is that it is easy to implement CASN over short

transactions, but it is difficult to implement short transac-

tions over CASN: Our interface for short transactions is dy-

namic (unlike typical interfaces for CASN), and it provides

the programmer a consistent view of the heap during a trans-

action. Unlike CASN implementations, our implementations

support inter-operation with general-purpose STM.

Recently, HTM systems have started to emerge from

industry [5, 26]. Typically, these support limited forms

of transactions to enable practical implementations in

hardware. The HTM feature of the Rock CPU from

Sun Microsystems [5] supports only “best-effort” trans-

actions, where each transaction can fail repeatedly for

implementation-dependent reasons. The recently announced

Intel TSX [26] instructions support a “restricted transac-

tional memory” mode that is subject to implementation-

defined size constraints. Despite weak guarantees, short and

simple transactions make it possible to use HTM to simplify

and speed-up concurrent code [6, 9].

As with these HTM systems, SpecTM promotes the use

of short transactions. Because of the short maximum size

of SpecTM’s transactions, most algorithms developed for

SpecTM can be run on the bounded HTMs and vice-versa.

This means that SpecTM allows us to better understand how

to design algorithms for the future HTMs, but it also enables

us to benefit from these new algorithms even before HTMs

are widely available.

Attiya recently examined the complexity of TM systems

from a theoretical viewpoint [1] and proposed the use of

“mini-transactions” in which a data structure’s implemen-

tation would be built over a series of small transactions. At-

tiya’s arguments are motivated by complexity lower bounds

on implementations of general purpose transactions. How-

ever, the proposal matches our practical experience that a se-

ries of optimized short transactions can perform better than

a single, longer transaction.

6. Conclusions and Future Work

We developed SpecTM to explore the use of optimized short

transactions and the co-location and specialization of STM

meta-data with application data. These specializations trade

the generality of traditional STMs for performance. The tar-

get users of SpecTM are experienced programmers that can

exploit it in their algorithms to atomically access a handful

of locations instead of developing more complex algorithms

based on the synchronization primitives available today in

hardware. Our experience shows that this ability of SpecTM

can result in much simpler algorithms, and our results sug-

gest that the most specialized version of SpecTM (val-short)

lets us write concurrent hash table and skip list algorithms

that perform and scale as well as the lock-free versions of

the same algorithms on systems with up to 128 hardware

threads.

Our work on SpecTM opens several interesting directions

for future work. One direction is to use SpecTM to imple-

ment new, efficient, concurrent data structures—for instance,

looking at structures such as B-Trees which are more com-

plex than those studied in typical research on lock-free algo-

rithms. This work would let us better understand the kinds

of trade-offs STM designers can make when building sup-

port for efficient concurrent data structures.

It is possible that some of the techniques used in SpecTM

could be employed automatically by STM compilers to op-

timize transactions, and that software checking tools could

be used to ensure that programmers correctly follow the re-

quirements for using SpecTM.

We certainly have not explored the full space of special-

ized STM designs. For instance, it might be beneficial to ex-

plore pointer-only STM designs which use additional spare

bits in the pointers as orecs (typically, in 64 bit systems,

the processor or OS does not support virtual address spaces

that exploit the entire 64-bit space). In addition, a value-

based STM that locks words when reading could be used to

simplify the programming model in our designs which use

value-based validation. Of course, more sophisticated con-

tention managers could improve the performance in some

workloads.

Finally, developing algorithms using SpecTM has impor-

tant implications as HTM systems become available [26].

With the exploration of HTM support in CPUs, it is worth-

while considering the integration of SpecTM and HTMs—

both to accelerate aspects of SpecTM, and to provide a soft-

ware fall-back path for use with best-effort HTMs.

Acknowledgements

We would like to thank the anonymous reviews and our

shepherd Bryan Ford along with Richard Black, Austin Don-

nelly, Miguel Castro, Cristian Diaconu, Steven Hand, Orion

Hodson, Paul Larson, Dimitris Tsirogiannis, and Marcel van

der Holst for their feedback on earlier drafts of this paper,

and for their assistance with conducting the experiments.

References

[1] H. Attiya. Invited paper: The inherent complexity of trans-

actional memory and what to do about it. In Distributed

Computing and Networking, volume 6522 of Lecture Notes

in Computer Science, pages 1–11. 2011.

[2] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu,

S. Chiras, and S. Chatterjee. Software transactional memory:

why is it only a research toy? Communications of the ACM,

51(11):40–46, Nov. 2008.

[3] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Stream-

lining STM by abolishing ownership records. In PPoPP ’10:

Proc. 15th ACM Symposium on Principles and Practice of

Parallel Programming, pages 67–78, Jan. 2010.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In

DISC ’06: Proc. 20th International Symposium on Distributed

Computing, pages 194–208, Sept. 2006. Springer-Verlag Lec-

ture Notes in Computer Science volume 4167.

[5] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experi-

ence with a commercial hardware transactional memory im-

plementation. In ASPLOS ’09: Proc. 14th International Con-

ference on Architectural Support for Programming Languages

and Operating Systems, pages 157–168, Mar. 2009.

[6] D. Dice, Y. Lev, V. J. Marathe, M. Moir, D. Nussbaum, and

M. Oleszewski. Simplifying concurrent algorithms by exploit-

ing hardware transactional memory. In SPAA ’10: Proc. 22nd

Symposium on Parallelism in Algorithms and Architectures,

pages 325–334, June 2010.

[7] A. Dragojević, R. Guerraoui, and M. Kapałka. Stretching

transactional memory. In PLDI ’09: Proc. 2009 ACM SIG-

PLAN Conference on Programming Language Design and Im-

plementation, pages 155–165, June 2009.

[8] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui. Why

STM can be more than a research toy. Communications of the

ACM, 54(4):70–77, April 2011.

[9] A. Dragojević, M. Herlihy, Y. Lev, and M. Moir. On the

power of hardware transactional memory to simplify mem-

ory management. In PODC ’11: Proc. 30th ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing,

PODC ’11, pages 99–108, June 2011.

[10] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance

tuning of word-based software transactional memory. In

PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, pages 237–246,

Feb. 2008.

[11] K. Fraser. Practical lock freedom. PhD thesis, Cambridge

University Computer Laboratory, 2003. Also available as

Technical Report UCAM-CL-TR-579.

[12] R. Guerraoui and M. Kapałka. On the correctness of trans-

actional memory. In PPoPP ’08: Proc. 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Program-

ming, pages 175–184, Feb. 2008.

[13] T. Harris, K. Fraser, and I. A. Pratt. A practical multi-word

compare-and-swap operation. In DISC ’02: Proc. 16th Inter-

national Symposium on Distributed Computing, pages 265–

279, Oct. 2002.

[14] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing

memory transactions. In PLDI ’06: Proc. 2006 Conference on

Programming Language Design and Implementation, pages

14–25, June 2006.

[15] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Com-

posable memory transactions. Communications of the ACM,

51(8):91–100, Aug. 2008.

[16] T. Harris, J. Larus, and R. Rajwar. Transactional Memory, 2nd

edition. Morgan & Claypool, 2010.

[17] M. Herlihy and J. E. B. Moss. Transactional memory: archi-

tectural support for lock-free data structures. In ISCA ’93:

Proc. 20th Annual International Symposium on Computer Ar-

chitecture, pages 289–300, May 1993.

[18] M. Herlihy and N. Shavit. The art of multiprocessor program-

ming. Morgan Kaufmann, 2008.

[19] M. Herlihy and J. M. Wing. Linearizability: a correctness con-

dition for concurrent objects. TOPLAS: ACM Transactions on

Programming Languages and Systems, 12(3):463–492, July

1990.

[20] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.

Software transactional memory for dynamic-sized data struc-

tures. In PODC ’03: Proc. 22nd ACM Symposium on Princi-

ples of Distributed Computing, pages 92–101, July 2003.

[21] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Non-

blocking memory management support for dynamic-sized

data structures. TOCS: ACM Transactions on Computer Sys-

tems, 23(2):146–196, May 2005.

[22] A. Israeli and L. Rappoport. Disjoint-access-parallel im-

plementations of strong shared memory primitives. In

PODC ’94: Proc. 13th ACM Symposium on Principles of Dis-

tributed Computing, pages 151–160, Aug. 1994.

[23] V. Luchangco, M. Moir, and N. Shavit. Nonblocking k-

compare-single-swap. In SPAA ’03: Proc. 15th Annual Sym-

posium on Parallel Algorithms and Architectures, pages 314–

323, June 2003.

[24] V. J. Marathe, M. F. Spear, and M. L. Scott. Scalable tech-

niques for transparent privatization in software transactional

memory. In ICPP ’08: Proc. 37th International Conference

on Parallel Processing, Sept. 2008.

[25] M. M. Michael. Hazard pointers: safe memory reclamation

for lock-free objects. IEEE Transactions on Parallel and

Distributed Systems, 15(6):491–504, June 2004.

[26] J. Reinders. Transactional synchronization in Haswell,

Feb. 2012. http://software.intel.com/en-us/

blogs.

[27] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional

memory with scalable time bases. In SPAA ’07: Proc. 19th

ACM Symposium on Parallelism in Algorithms and Architec-

tures, pages 221–228, June 2007.

[28] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. Cao Minh,

and B. Hertzberg. McRT-STM: a high performance software

transactional memory system for a multi-core runtime. In

PPoPP ’06: Proc. 11th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, pages 187–197,

Mar. 2006.

[29] N. Shavit and D. Touitou. Software transactional memory.

In PODC ’95: Proc. 14th ACM Symposium on Principles of

Distributed Computing, pages 204–213, Aug. 1995.

[30] M. F. Spear, L. Dalessandro, V. J. Marathe, and M. L. Scott.

A comprehensive strategy for contention management in soft-

ware transactional memory. In PPoPP ’09: Proc. 14th ACM

SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pages 141–150, Feb. 2009.

