
STM2: A Parallel STM for High Performance
Simultaneous Multithreading Systems

Gokcen Kestor∗ †, Roberto Gioiosa∗, Tim Harris§, Osman S. Unsal∗, Adrian Cristal∗ ‡, Ibrahim Hur∗ and Mateo Valero∗ †

∗ Barcelona Supercomputing Center
† Univesitat Politecnica de Catalunya

‡ IIIA - Artificial Intelligence Research Institute - CSIC - Spanish National Research Council
§ Microsoft Research

(gokcen.kestor, roberto.gioiosa, osman.unsal, adrian.cristal, ibrahim.hur)@bsc.es
tharris@microsoft.com, mateo@ac.upc.edu

Abstract—Extracting high performance from modern chip
multithreading (CMT) processors is a complex task, especially
for large CMT systems. Programmers must efficiently parallelize
performance-critical software while avoiding deadlocks and race
conditions. Transactional memory (TM) is a promising program-
ming model that allows programmers to focus on parallelism
rather than maintaining correctness and avoiding deadlock.
Software-only implementations (STMs) are especially compelling
because they run on commodity hardware, therefore providing
high portability. Unfortunately, STM systems usually suffer from
high overheads, which may limit their usage especially at scale.

In this paper we present STM2, a novel parallel STM designed
for high performance, aggressive multithreading systems. STM2

significantly lowers runtime overhead by offloading read-set val-
idation, bookkeeping and conflict detection to auxiliary threads
running on sibling hardware threads. Auxiliary threads perform
STM operations in parallel with their paired application threads
and absorb STM overhead, significantly improving performance.

We exploit the fact that, on modern multi-core processors, sets
of cores can share L1 or L2 caches. This lets us achieve closer
coupling between the application thread and the auxiliary thread
(when compared with a traditional multi-processor systems). Our
results, performed on an IBM POWER7 machine, a state-of-the-
art, aggressive multi-threaded system, show that our approach
outperforms several well-known STM implementations. In par-
ticular, STM2 shows speedups between 1.8x and 5.2x over the
tested STM systems, on average, with peaks up to 12.8x.

I. INTRODUCTION

Chip Multithreading (CMT) processors promise to deliver
higher performance by running more than one stream of
instructions in parallel rather than by increasing the processor’s
frequency. CMT processors may come with different archi-
tectures: Chip Multi-Processor (CMP), Simultaneous Multi-
Threading (SMT), or a combination of them. To exploit CMT’s
capabilities, users have to parallelize their applications. Un-
fortunately, efficiently parallelizing applications is not trivial.
Several proposals focus on how to reduce the effort of paral-
lelizing applications on CMT machines. Fine-grained locking
techniques provide good performance but pose challenges to
programmers. Consequently, automatic parallelization tech-
niques [12], [24] and innovative programming models [11]
have been proposed to reduce programmers’ effort.

Transactional Memory [14] (TM) is one of such novel
programming models. The principal goal of TM is to simplify
synchronization by raising the level of abstraction, breaking
the connection between semantic atomicity and the means
by which that atomicity is achieved. Programmers indicate
atomic section in the source code (e.g., using language
constructs such as atomic blocks, or using macros such as
BEGIN_TRANSACTION and END_TRANSACTION) without
explicitly locking individual shared memory locations. An
underlying TM system executes such transactions concurrently
whenever possible, generally by means of speculation – op-
timistic but checked execution, rollbacking when conflicts
arise. Transactions commit or abort atomically, i.e., either all
memory locations modified during the transaction are updated
(commit) or nothing is modified (abort). Transactions are
allowed to commit only if they have no conflicts or all their
conflicts are resolved positively.

Unfortunately, the performance of the current TM systems
is not always satisfactory, especially for STM proposals: the
overheads introduced by the STM runtime system may well
outweigh the parallelism gained [5]. Some authors report
drastic slow-downs when using STM (e.g., only breaking
even with optimized sequential code after using 8 cores [5]).
Even state-of-the-art TM systems typically require at least
two threads to achieve performance that matches optimized
sequential code [9], [13]. In any parallel program, Amdahl’s
law [3] limits the extent to which parallel execution can
achieve speedups. With TM, if large sections of parallel
code run within transactions, there is a risk that the speedup
possible via Amdahl’s law will never be enough to recover the
overheads of using TM. Transactions execute optimistically in
parallel but may be forced to abort and rollback when conflicts
arise. Moreover, STMs that use bookkeeping may introduce
considerable slowdown due to read- and write-set validation
and transaction state management [5].

In this paper we tackle the problem of reducing the overhead
in STM systems. Performance of several applications among
the most common benchmarks suites, such as STAMP [4],
are limited by STM overhead and provide performance degra-
dation beyond a certain number of threads [5]. On the other

hand, 4- or 8-core architectures with tens of hardware threads
are already available [25], [27] and this count is expected
to increase in the coming years. Since not all applications
are able to effectively use all cores and/or hardware threads,
we propose to perform time-consuming STM operations on
those computing elements that do not provide measurable
performance improvement. The general idea is that using
additional cores/hardware threads to speed up STM operations
may provide higher performance than using these processing
elements to run additional application threads. Specifically,
we offload read-set validation, bookkeeping, transaction state
management and conflict detection to an auxiliary thread
running on a sibling core/hardware thread, i.e., a processing
element that shares some levels of hardware resource (like the
L1 or L2 cache) with the application thread.1

In order to demonstrate our proposal we implemented Soft-
ware Transactional Memory for Simultaneous Multithreading
systems (STM2 - pronounced STM-squared). To the best of
our knowledge, STM2 is the first parallel STM system that
uses secondary hardware threads to leverage STM overhead.
STM2 is essentially a parallel STM system where transactional
operations are divided between application threads (computa-
tion) and auxiliary threads (STM management). With STM2,
application threads optimistically perform their computation
with minimal support from the underlying STM system.
All synchronization and STM management operations are
performed by the paired auxiliary threads. This means that
application threads experience minimal overhead. Auxiliary
threads, instead, validate read-sets, maintain transaction states
and detect conflicts in parallel with the application threads’
computation. STM2 detects conflicts as soon as they occur
(eager conflict detection). If a conflict is detected, the auxiliary
thread interrupts its corresponding application thread and
aborts the transaction. If no conflicts arise during a specific
transaction, the auxiliary thread commits the transaction and
updates the modified shared memory location (lazy update).
Communication between application threads and their corre-
sponding auxiliary threads is performed through a lock-free
circular buffer and simple atomic state variables.

We tested STM2 on an aggressive, high performance SMT
processor, an IBM POWER7 system with a total of 32
hardware threads. To the best of our knowledge, this is the
first study that tests transactional memory on a POWER7 pro-
cessor. Our results show that by overlapping computation and
STM management operations STM2 obtains performance im-
provement, outperforming modern well-known STM systems,
namely TinySTM, NOrec, TML and TL2, for several STAMP
benchmarks. Our experiments show that STM2 achieves, on
average, between 1.8x and 5.2x speedups over state-of-the-art
STM systems, with peaks up to 12.8x.

This paper makes the following contributions:
• Introduces STM2, a novel parallel STM implementa-

tion that reduces the runtime overheads by offloading

1Two hardware threads in a core or two cores sharing the L2 cache are
examples of sibling hardware thread/core, respectively.

time consuming TM management operations to auxiliary
threads running on sibling hardware threads.

• Tests several state-of-the-art STM systems, namely
TinySTM, TL2, NOrec and TML, on an aggressive mul-
tithreading processor designed for high performance.

• We show that, perhaps surprisingly, it is often better to
use hardware threads to parallelize the STM implemen-
tation, than to devote those hardware threads to running
additional application threads.

The rest of this paper is organized as follows: Section II
motivates our work. Section III describes the design of STM2

and provides internal details of the implementation. Section IV
and Section V describe our experimental setup and results,
respectively. Section VI summarizes related work. Finally,
Section VII concludes this paper.

II. MOTIVATION

STM management operations are time-consuming and may
introduce considerable overheads that increase with the num-
ber of threads running in parallel and the size of the read-
and write-set [15]. The result is that STM systems may not
be able to provide satisfactory performance at scale [5]. In
order to understand the overhead introduced by STMs, we
run preliminary experiments instrumenting TinySTM, a widely
used STM system. Figure 1 shows the per-transaction overhead
introduced by TinySTM on STAMP benchmarks running on
an IBM POWER7 system when varying the number of threads
from 1 to 32.2 Since the total number of transactions in
STAMP benchmarks is constant, the number of transactions
per thread decreases with the number of concurrent threads.
We, hence, report the per-transaction overhead of each bench-
mark normalized to the overhead introduced by the STM
when running the same application with one thread. For ex-
ample, Vacation-Low presents large, mostly-read transactions,
therefore, each transaction spends most of its time in the
stm_read() function. When going from 1 to 32 concurrent
threads, the commit rate increases and more read-set valida-
tions need to be performed. For the specific case of Vacation-
Low, the STM overhead with 32 concurrent threads increases
by 5.7x with respect to the instrumented single thread execu-
tion. While Vacation-Low’s and Vacation-High’s transactions
are dominated by read time, Genome and SSCA2 have short
transactions, thus their per-transaction overhead breakdown is
completely different. In particular, Figure 1 shows that the rel-
ative overhead of begin_transaction() and commit()
have a higher impact on SSCA2 than on Vacation-Low in the
instrumented, single thread version. Figure 1 also shows that
for applications with high contention, such as Labyrinth, the
overhead introduced by aborts increases at scale.

Our experiments, in accordance to what was previously
observed [5], [15], [19], show that per-transaction STM over-
head increases with the number of concurrent threads, which
may limit scalability substantially. Note that the actual impact

2In these experiments and in the rest of the paper, we use the default
configuration for TinySTM, eager conflict detection and lazy data versioning.

Fig. 1: TinySTM per-transaction overhead breakdown for STAMP applications with respect to instrumented single thread version. We report per-transaction
overhead because the number of transactions per thread for STAMP applications decreases with the number of threads. We instrumented TinySTM and obtained
per-transaction overhead breakdown for single thread, 2, 4, 8, 16 and 32 concurrent threads versions. STM per-transaction overhead increases with the number
of threads because of the higher pressure on internal STM data structure, more frequent read-set validations and higher contention.

on the applications’ performance may vary depending on the
amount of time each application spends inside transactions.
Section V discusses the impact of STM overhead on each
application’s performance.

III. STM2 DESIGN AND IMPLEMENTATION

Recent studies [16] show that future scientific problems
with large data sets will require higher computational power
(i.e., higher number of cores) than what is currently available.
Processing elements that do not directly provide performance
improvement should be used in a better way, for example,
to leverage the work performed by overloaded cores. STM2

is a novel implementation that goes in this direction: time-
consuming operations (such as read-set validation and conflict
detection) are offloaded to auxiliary threads running on sep-
arate hardware threads. Application threads have fewer STM
management operations to perform and can spend their cycles
on more useful work.

Figure 2 shows how offloading operations to auxiliary
threads may reduce STM overhead, therefore improving per-
formance. Figure 2a shows how a typical eager conflict
detection, lazy data versioning STM system works. Before
actually accessing any memory location, the application thread
performs an stm_read() when reading a memory location,
or an stm_write() when attempting to modify a shared
variable. These two functions notify the STM runtime about
which locations should be inserted into the read-set and the
write-set of that thread. Whenever the STM runtime system
takes control, it may check whether a conflict has occurred
and, if so, abort a conflicting transaction. As Figure 2a shows,
the application thread often runs STM library code rather than
performing its computation, especially if the STM operation
triggers time-consuming activities, such as read-set validation.

We propose to move time-consuming STM operations to
another hardware thread and perform them in parallel with its

application thread. Figure 2b shows our approach: Whenever
an application thread accesses a memory location (either read-
ing or writing), it simply sends a message to its corresponding
auxiliary thread and then keeps performing its computation.
The auxiliary thread, in turn, waits for messages coming from
its corresponding application thread and performs read-set
validation, transaction state management and conflict detec-
tion. Whenever an auxiliary thread detects a conflict, it aborts
its corresponding application thread. As Figure 2b shows,
offloading STM operations to auxiliary threads and performing
transaction management in parallel reduce the transaction’s
execution time, therefore improving performance.

STM2 is an eager conflict detection, lazy update STM
system. Given that we are using an auxiliary thread that
runs in parallel with the application thread, it makes sense
to perform as many operations as possible in parallel. In this
scenario, lazy conflict detection would delay most of the work
at commit stage, serializing the execution of the application
thread (that would mainly run during the transaction) and the
auxiliary thread (that would be idle during the transaction and
overloaded at commit time) and indeed invalidate most of the
benefit of our approach. On the other hand, the main drawback
of eager conflict detection is the extra overhead caused by the
STM management operations (Figure 2a). This overhead is
exactly what STM2 reduces. Eager conflict detection increases
the parallelism of STM2 and decreases the amount of work
to be done at commit stage, which is a synchronization
point and critical for the STM2 performance (see Figure 2b).
Eager updates, instead, would require extra communication
among the auxiliary threads. Memory locations modified by
aborted transactions must rollback to their original values,
hence, all transactions that have read those invalid values
may have to rollback too. In STM2, memory updates and
aborts are handled by auxiliary threads, hence they should
also take care of restoring memory locations modified by

begin_transaction()

stm_read()

stm_write()

stm_read()

commit()

R0

R1

W0

C0

C1

C2

ti
m

e

Application thread

B

E

(a) Standard STM system

begin_transaction()

stm_read()

stm_write()

stm_read()

commit()

ti
m

e

W0

R1

R0

C0

C1

C2

R0

W0

R1

MSG_READ

MSG_WRITE

MSG_READ

SIG_READYTOCOMMIT

Application thread Auxiliary thread

E

B
P

P

F

MSG_COMMIT

(b) STM2

Fig. 2: STM2 offloads time-consuming STM operations to sibling hardware threads. In this Figure the application thread performs two read (R0 and R1)
and a write (W0) operations. C denotes computational phases that do not access shared memory locations. begin_transaction() and commit() are
marked with B and E, respectively, while P denotes polling and F denotes commit phase at the auxiliary thread’s side. Offloading STM operations to auxiliary
threads reduces the overall execution time.

aborted transactions. This, in turn, would require auxiliary
threads to exchange messages among themselves. Although
eager updates is a possible solution, lazy updates minimize
communication among auxiliary threads.

Offloading time-consuming STM operations to a secondary
processing element is particularly appealing for multithreading
architectures (like IBM POWER, Intel with Hyper-Threading
or SUN Niagara). In STM2, application and auxiliary threads
are paired on the same core, i.e., they are pinned to two
separate hardware threads of the same core. While application
and auxiliary threads could run on different cores, running
on the same core is advisable for the following reasons: 1)
the cost of a hardware thread (in terms of space, resources
and power consumption) is lower than that of a core; 2) even
though extra cores may improve performance linearly, extra
hardware threads usually provide only between 1.2x and 1.6x
speedup [2], and 3) application and auxiliary threads running
on the same core share more resources (for example, the L1
cache), which allows lower-latency communication.

In the current implementation, STM2 supports a basic TM
programming model in which a transaction that aborts does
not necessarily see a consistent view of memory, and in which
there is no conflict detection between transactional and non-
transactional memory accesses. Consequently, the programmer
or compiler using STM2 must sandbox the effects of “zombie”
transactions, and must ensure that data is accessed in a
consistent way (e.g., using the fence techniques of Spear et
al. [22], or using the memory protection isolation mechanisms
of Abadi et al. [1]). This is the programming model typically
used in STAMP and other TM applications (e.g., Labyrinth
explicitly restarts inconsistent transactions) therefore no extra
support is required to run STAMP benchmarks.

The following subsections describe with more detail the
main components of STM2: application and auxiliary threads
synchronization (Section III-A), transactional write (Section
III-B) and read (Section III-C) operations.

A. Application/Auxiliary Thread Synchronization

Application and auxiliary threads communicate through
a communication channel and atomic status variables. Ap-
plication threads send messages to their paired auxiliary
threads to notify read and write operations. These operations
require extra parameters and cannot be implemented by a
simple shared variable (see in following subsection). Auxiliary
threads, instead, only need to send two signals3 to applica-
tion threads: SIG_READYTOCOMMIT and SIG_ABORT. We
thus implemented a single-producer/single-consumer, circular,
lock-free queue where the application thread (producer) posts
read and write messages that the auxiliary thread (consumer)
retrieves and processes. The SIG_READYTOCOMMIT and
SIG_ABORT signals do not need extra information and are
implemented through atomic status variables shared between
application and auxiliary threads. These variables are ac-
cessed and modified using atomic operations. An extra signal
(SIG_START) and message (MSG_COMMIT), are sent to aux-
iliary threads when a transaction begins or ends. When an ap-
plication thread is not involved in a transaction, its correspond-
ing auxiliary thread waits in a spinning loop. As the applica-
tion thread enters a transaction (begin_transaction()),
the auxiliary thread receives the SIG_START signal and starts
polling the communication channel for incoming messages.
When an application thread reaches the end of a trans-
action and attempts to commit (commit()), it sends the
MSG_COMMIT message and waits for the auxiliary thread to
complete its work by spinning on the SIG_READYTOCOMMIT
signal. If the auxiliary thread succeeds resolving all conflicts
and validating its read-set, it commits the transaction by updat-
ing all shared memory locations modified by the application
thread and sets the SIG_READYTOCOMMIT signal.

Finally, all shared atomic variables are modified only by one
of the two threads during a transaction. For example, auxiliary
threads set SIG_READYTOCOMMIT and SIG_ABORT signals
while application threads only read the status of these vari-

3Note that these are different from operating system signals.

void s t m w r i t e (Addr , Val)
{

i f (w r i t e s e t . i n s e r t (Addr , Val) == p r e s e n t)
re turn ;

e l s e
c h a n n e l . send (MSG WRITE, Addr , Val) ;

}

(a) Application thread transactional write

void a u x s t m w r i t e (Addr , Val)
{

i f (v a l i d a t e () == f a i l) a b o r t () ;
i f (a c q u i r e o w n e r s h i p (Addr))

o w n e d l i s t . add (Addr) ;
e l s e

r e t = cm . o n c o n f l i c t () ;
i f (r e t == CM ABORT)

a b o r t () ;
}

(b) Auxiliary thread transactional write

Fig. 3: Pseudo-code for application and auxiliary thread STM write

ables. Similarly, only application threads set the SIG_START
signal, while auxiliary threads only poll on its value. The
result is that the communication involved is minimal and
we believe that a small extra hardware buffer between two
hardware threads may eliminate the need of using the L1
and increase performance. In this paper we take a software-
based approach using off-the-shelf hardware and we leave
extra hardware support for future work.

B. Writing to a shared memory location

Memory locations modified by application threads during
transactions are not visible to other threads until the transaction
commits. On the contrary, conflicts are detected as soon as they
occur, avoiding unnecessary computation for transactions that
will be aborted and reducing the overhead at commit time.

To guarantee correctness, only one application thread at a
time is allowed to change the value of a particular shared mem-
ory location, although several threads can modify different
memory locations at the same time. Before altering a memory
location, application threads need to be sure that no other
thread is currently attempting to modify the same location.
STM2 uses ownership records to identify which thread is
entitled to change the value of a given shared memory location.
Once a thread owns a location, it is allowed to modify its
content. Any other thread that needs to alter the content of the
same location and, therefore, tries to acquire its ownership,
will fail (conflict) and will restart the transaction. STM2

maintains a per-thread write-set buffer to temporarily store
values modified during a transaction but not yet committed.
If the transaction commits successfully, STM2 will publish
its write-set. The updated values will then become visible
to the other application threads. STM2 uses versioning based
on extendable timestamps to detect conflicts [21]: every time
a shared memory location is updated with a new value, the
current timestamp is used as version number and associated
with that location. A conflict arises when an application thread
has read a value from a memory location whose version
number is lower than the current one.

Whenever an application thread wants to modify a shared
memory location, it issues an stm_write() call, passing
the address of the memory location and the new value as ar-
guments. Figure 3 shows the pseudo-code for stm_write()
on both application and auxiliary thread sides. On the applica-

tion thread side (Figure 3a), stm_write() checks whether
the location is already in the write-set, in which case the
application thread simply updates the value and returns. If
the location is not in the write-set, the application thread will
still optimistically write the new value to its write-set but it
will also send an MSG_WRITE message to its corresponding
auxiliary thread. Upon receiving an MSG_WRITE message, the
auxiliary thread first validates its read-set and then tries to ac-
quire the ownership of the target memory location (Figure 3b).
If both operations are successful, the auxiliary thread adds
the location to its list of owned shared memory locations. At
commit stage, these locations will be updated in memory and
the new values will become visible to the other application
threads. Note that, on success, no other message is sent to
the application thread because it had optimistically already
proceeded with the transaction. If the auxiliary thread detects
a conflict while trying to acquire the ownership of the location,
the contention manager will decide which transaction has to
abort. In case the contention manager returns CM_ABORT, the
auxiliary thread notifies its corresponding application thread
by setting the status of the transaction to aborted. The auxiliary
thread then removes all entries in the read-set, releases all
owned locations, and rolls back. Whenever an STM operation
is issued, application threads check their transaction’s status
and restart the transaction if they find out that the transaction
has been aborted by their paired auxiliary threads. Note that,
besides resetting the write-set, no other actions are required
from the application thread on abort.

We minimized synchronization overhead by using a lock-
free data structure for the communication channel described in
Section III-A, and by clearly dividing data structures between
application and auxiliary threads. Auxiliary threads own the
read-set and the list of owned locations. Application threads,
on the other hand, own the write-set. Since application threads
never access auxiliary threads’ data structures (and vice versa)
there is no need to protect them with locks.

C. Reading from a shared memory location

Application threads read shared memory locations by call-
ing the stm_read() function and passing the address of the
target memory location as argument. The stm_read() has
three main goals: 1) locate the current version of the shared
value to return, 2) insert the address of the shared location in

void s t m r e a d (Addr)
{

found = w r i t e s e t . f i n d (Addr) ;
i f (found)

re turn from w r i t e s e t ;
e l s e

c h a n n e l . send (MSG READ, Addr) ;
re turn from memory ;

}

(a) Application thread transactional read

void aux s tm read (Addr)
{

i f (i s owned (Addr))
r e t = cm . o n c o n f l i c t () ;
i f (r e t == CM ABORT) a b o r t () ;

i f (v a l i d a t e () == f a i l)
a b o r t () ;

e l s e
r e a d s . i n s e r t (Addr) ;

}

(b) Auxiliary thread transactional read

Fig. 4: Pseudo-code for application and auxiliary thread STM read

the transaction’s read-set (unless it is already present), and 3)
perform read-set validation, if required. These operations are
divided between the application and the auxiliary threads.

Figure 4 shows how application and auxiliary threads oper-
ate when reading a memory location. The application thread
(Figure 4a) locates the current version of the value to be
read. The current value is either stored in the transaction’s
write-set or in the original memory location. In the former
case, the application thread has already issued at least one
write operation on that location at the time of reading the
value. In this case STM2 returns the value modified by the last
write operation contained in the transaction’s write-set. If the
address is not found in the write-set, STM2 returns the current
version from memory and sends an MSG_READ message to the
auxiliary thread together with the address of the target memory
location. Note that other threads may be modifying the same
memory location but those threads have not committed their
transactions yet, hence those modifications are not visible to
the current thread.

When the auxiliary thread receives the MSG_READ message,
it performs conflict detection. A conflict occurs when 1)
the memory location is locked by another thread or 2) the
version read by the application thread is different from the
current version, i.e., some other thread has committed a new
version (validate() returns fail). In the former case,
the auxiliary thread calls the contention manager which may
decide to abort either the current transaction or the one that has
locked the location. In the latter case, the transaction aborts.
If no conflicts are detected, the auxiliary thread inserts the
memory location’s address into the read-set and moves to the
next message.

IV. EXPERIMENTAL SETUP

This section describes the setup environment, the bench-
marks and the STM systems used in our experiments.

We performed our experiments on an IBM POWER7 [2],
[27], an out-of-order, 8-core design where each core is 4-
way SMT (32 hardware threads in total). Each core region
(or “chiplet”) contains a 32 KB 4-way set associative L1
I-cache and a 32 KB 8-way set associative L1 D-cache, a
private per-core 256 KB L2 cache and a 4 MB portion of
the shared 32 MB L3 cache. Since POWER7 is capable of
running 32 threads concurrently, we limit our experiments

to 32 threads without over-provisioning the system (i.e., we
run as many threads as available hardware threads). Each
POWER7 core can run in single-thread (ST) mode, SMT2
(two threads executing on a core concurrently) or SMT4
(three or four threads executing on a core) mode. For capacity
computing (i.e., multiple independent, serial jobs running in
parallel), both SMT2 and SMT4 modes are expected to provide
benefits. For capability computing (i.e., parallel applications
with high degree of parallelism), SMT4 may not show extra
benefits [2]. STM2 uses the SMT4 mode and offloads time-
consuming TM operations to secondary hardware threads that,
otherwise, may not provide extra performance improvement.

We compare STM2 to several well-known, publicly available
and mature STM proposals, namely TML [23], NOrec [9],
TinySTM [21], and TL2 [10], using the STAMP benchmark
suite [4] compiled with gcc 4.3.4 and -O3 settings.

TML is an eager conflict detection, eager versioning system
with a single sequence lock [17]. TML allows concurrent
read-only transactions with no logging overhead, but only one
writer, system-wide, is allowed. This approach is effective in
workloads where reads are the common case. However, using
a single sequence lock without logging means that conflict
detection is extremely conservative: any writer conflicts with
any other concurrent transaction.

TL2 is a lazy versioning system. A transaction begins by
reading the value t in a global “clock.” Ownership records
(orecs), found by address hashing, indicate the last time at
which one of the corresponding locations was modified. If a
transaction encounters a location that was written after t, it
assumes it is inconsistent, aborts, and retries. At commit time,
the transaction locks the orecs for all locations that need to
be modified, checks to make sure that all of the locations it
read still have a timestamp earlier than t, increments the global
time, stores the new time into all the locked orecs, writes out
all the updates, and then unlocks the orecs.

TinySTM is an eager conflict detection, lazy versioning
system with extendable timestamps. Extendable timestamps
avoid false positives in which a transaction is aborted despite
having seen a consistent view of memory. If a transaction
accesses a location that was written after start time t, it checks
to see whether any previously read location has been modified
since t. If not, it re-reads the global clock and continues,
pretending it started at this new time t ′ instead of t.

NOrec extends TML with lazy updates and value-based
conflict detection. NOrec uses a single sequence lock, but
unlike TML, it acquires the lock only when updating memory
at commit time, which increases concurrency. NOrec uses a
single-writer commit protocol, which may limit its scalability
in workloads with many writers. Moreover, value-based con-
flict detection requires to store both the address and the value
of the read location.

We selected these STM systems because they reflect popular
but divergent points in the STM design space. Several of these
STM systems have not been officially ported on POWER ar-
chitectures (e.g., TL2, NOrec). We ported those STM systems
on POWER processors4 to be able to fairly evaluate STM2 but
some of the STAMP benchmarks (namely Intruder, Kmeans
and Yada) did not execute correctly with some of the tested
STMs due to bugs in STAMP code [6]. We omit these results
for those benchmarks for fairness. Finally, in order to evaluate
the effect of increasing the read-set size on the performance of
the STMs, we run two versions of Vacation (i.e., Vacation-Low
and Vacation-High).

V. EXPERIMENTAL RESULTS

In this Section we analyze the performance of STM2 and
the other tested STM systems. Figure 5 shows performance
of STAMP benchmarks running on the IBM POWER7 system
previously described. We report the execution time of each
STAMP benchmark when varying the number of threads from
2 to 32. In the first set of experiments, we compare STM
systems running STAMP benchmarks when using the same
number of application threads: we, thus, compare STMs with
N threads to STM2 running N application threads plus N
auxiliary threads (N+N), for N=2, 4, 8, 16. While in these
experiments STM2 uses double the number of threads (N+N)
than the other STMs (N), the extra hardware threads are
available and there is no reason why they should be left idle if
an STM can take advantage of them. Moreover, in this set of
experiments, the number of transactions per application thread
is the same. In the second set of experiments, we analyze the
performance of STM2 and the other STMs using the same
amount of hardware resources: we compare STM systems
with 32 threads to STM2 with 16 application threads and 16
auxiliary threads (16+16). We report STM2 speedups for this
experiment (32 threads versus 16+16 threads) in Figure 6.

As we can see from Figures 5 and 6, STM2 reduces
runtime overhead by offloading time-consuming operations to
dedicated hardware threads. The reduced overhead directly
translates to better performance (lower execution time).

TinySTM Both TinySTM and STM2 use eager conflict
detection and lazy versioning. TinySTM is, thus, the ideal
STM system to be compared with in order to analyze the
effect of offloading transaction state maintenance, read-set val-
idation and conflict detection to secondary hardware threads.
As Figure 5 shows, STM2 performs better or equal than

4No further modifications to the original implementations have been ap-
plied.

TinySTM in all cases. If the level of contention is low and
the read-set size are small (Genome and SSCA2), STM2 and
TinySTM behave similarly, especially at small scale (N=2
or N=4 threads). When the read-set becomes larger, STM2

clearly outperforms TinySTM. For example, STM2 performs
considerably better when running Vacation-Low (7x faster)
and Vacation-High (12.3x faster) with 32 hardware threads.
Vacation-Low exhibits large, mostly-read transactions, thus its
read-set size is considerably larger than other applications.
Eager conflict detection requires scanning read-sets to identify
possible conflicts during the execution of each transaction.
In this scenario, larger read-sets introduce higher runtime
overhead. Moreover, as reported by Cascaval et al. [5] and
confirmed by our experiments (Figure 1), runtime overhead
increases with the number of concurrent threads. STM2 is able
to absorb transaction state maintenance, read-set validation
and conflict detection overheads with the secondary hardware
threads. In our experiments, TinySTM is not always able to
scale beyond N=16 threads: Vacation-Low takes about 24.24
seconds with N=16 threads and 96.88 seconds with N=32
threads. STM2 instead is able to make a better use of the
last 16 hardware threads by accelerating STM operations and
reducing the execution time to 13.79 seconds (7x faster) when
using 16 applications threads and 16 auxiliary threads (16+16).
Moreover, STM2 is also faster than the best TinySTM perfor-
mance obtained with N=16 threads (1.8x). We conclude that
the STM overhead introduced by TinySTM on Vacation-Low
is completely absorbed by the auxiliary threads in STM2. The
effects of offloading STM operations to secondary hardware
threads become more evident when increasing the number of
read operations performed during each transaction or the level
of contention in the application. Vacation-High performs the
same algorithm as Vacation-Low but its transactions operate
on more items (i.e., larger read-sets). Figure 5f shows that
TinySTM does not provide performance improvement beyond
N=4 threads (in fact, performance constantly reduces with the
number of threads). STM2, instead, efficiently scales up to 32
hardware threads (16+16), providing a final speedup of 12.3x
over TinySTM with 32 hardware threads.

Bayes and Labyrinth exhibit a high level of conflict, even
though their read- and write-sets are not as large as in
Vacation-Low. STM2 performs better than any other STM in
these two cases and, in particular, shows a 1.9x and 1.1x
speedup over TinySTM with 32 hardware threads for Bayes
and Labyrinth, respectively.

For SSCA2 eager conflict detection, multiple-writers STMs
(STM2 and TinySTM) perform considerably better than the
other STMs. This seems to indicate that early detection of con-
flicts reduces the STM overhead for this application. SSCA2
differs from the other benchmarks in that it shows a bursting
and irregular behavior with higher number of short, read-
write transactions per second (high commit rate). Lazy conflict
detection STMs (TL2 and NOrec) fail to acquire all required
locks at commit time because other transactions commit in
the meantime. Even if these commits do not generate actual
conflicts, NOrec still needs to re-validate the elements in

0 2 4 8 16 32
0

10

20

30

40

50

60

70

E
x
e

c
u

ti
o

n
 t

im
e

16+16 16+168+82+2 4+4

(a) Bayes

0 2 4 8 16 32
0

5

10

15

20

25

E
x
e

c
u

ti
o

n
 t

im
e

TinyStm

NORec

TML

TL2

STM
2

16+16 16+168+82+2 4+4

(b) Genome

0 2 4 8 16 32
0

20

40

60

80

100

120

140

160

180

200

E
x
e

c
u

ti
o

n
 t

im
e

16+16 16+168+82+2 4+4

(c) Labyrinth

0 2 4 8 16 32
0

5

10

15

20

25

30

E
x
e

c
u

ti
o

n
 t

im
e

16+16 16+168+82+2 4+4

(d) SSCA2

0 2 4 8 16 32
0

20

40

60

80

100

120

E
x
e

c
u

ti
o

n
 t

im
e

16+16 16+168+82+2 4+4

(e) Vacation-Low

0 2 4 8 16 32
0

50

100

150

200

250

E
x
e

c
u

ti
o

n
 t

im
e

16+16 16+168+82+2 4+4

(f) Vacation-High

Fig. 5: STAMP benchmarks with different STMs. The x-axis reports the number of used threads, which is N for the standard STMs and N+N for STM2, for
N=2,4,8,16. For N=32, we compare STMs performance to STM2 using 16+16 threads (we repeat this value in correspondence of N=16 and N=32 to facilitate
comparison with the other STMs having equal hardware resources). In the graphs, lower is better.

Bayes Genome Labyrinth Ssca2 Average
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

S
p
e
e
d
u
p

NORec

TL2

TML

TinyStm

Vacation
High

Vacation
Low

Fig. 6: Speedups of STM2over tested STMs for STAMP applications using
the same amount of hardware resources (32 hardware threads).

the read-sets. Increasing the number of concurrent threads
also raises the probability that a transaction commits while
another thread is validating its read-sets. The result is that
commit time increases with the number of threads. Conversely,
TinySTM and STM2 acquire ownership of shared memory
locations when a thread issues a write operation and maintain it
throughout the execution of the short transaction, which proves
to be a good choice for this particular case.

NOrec Unlike TinySTM, TL2 and STM2, NOrec does not
perform any bookkeeping. Runtime overhead is negligible and
limited to the initialization and finalization of transactions.
However, NOrec only allows one active writer transaction in
the system at a time. We, thus, expect NOrec to perform better
than STMs with bookkeeping when the level of contention
is limited, but to gradually reduce performance when the
number of writers per transaction increases (which depends
on the application and the number of concurrent threads).
Indeed, NOrec scales nicely for all applications except Bayes
and SSCA2. On the other hand, bookkeeping allows STM2 to
support several concurrent writer transactions at a time. The
result of combining concurrent writers and reduced runtime
overhead is that STM2 usually performs better or equal than
NOrec. For applications with limited contention (Genome) or
with a limited number of concurrent writers (Vacation-Low and
Vacation-High), STM2 and NOrec perform similarly. When
the level of contention increases or there are several writers
per transaction, STM2 outperforms NOrec. This happens with
Bayes (high contention) with N=32 threads (1.7x speedup)
and with SSCA2 (high number of concurrent writers) beyond
N=4 threads (up to 6.4x speedup). In these cases, STM2 keeps
scaling up to 32 hardware threads, while rollbacks and re-
validation limit NOrec’s performance.

NOrec and STM2 perform similarly for Labyrinth, which
presents large transactions and a high conflict rate. For this
kind of application, lazy conflict detection STMs usually have
a disadvantage with respect to eager conflict detection STMs.
NOrec, however, is able to make up for this disadvantage with
its value-based conflict detection. The results is that NOrec
introduces fewer false aborts than TL2.

STM2 provides, on average, 2.1x speedup over NOrec (see
Figure 6). Since NOrec has a low runtime overhead, our results

prove that eager conflict detection and bookkeeping overhead
is effectively absorbed by the auxiliary threads.

TL2 Both TL2 and STM2 perform lazy data versioning,
though TL2 detects conflicts at commit stage while STM2

detects conflicts during a transaction’s execution. Lazy con-
flict detection STMs introduce negligible validation runtime
overhead but they may suffer from higher abort overhead,
caused by the “wasted” time spent executing transactions that
will abort, and high commit overhead (lock acquisition). Our
experiments show that, indeed, TL2 performs well for appli-
cations with low contention, like Vacation-Low and Vacation-
High (which perform mainly read operations) or Genome
(limited contention). While STM2 and TL2 are essentially
equivalent for Genome, TL2 performs better than STM2 when
running Vacation-Low and Vacation-High. Applications with
high contention or high commit rate, instead, pose challenges
to TL2 due to frequent modifications of a centralized data
structure [18]. For these kinds of applications, STM2 outper-
forms TL2: with 32 hardware threads, STM2 achieves 1.5x
speedup over TL2 for Bayes, 1.6x speedup for Labyrinth, and
5.4x speedup for SSCA2 (Figure 6). Note that, while STM2

performs significantly better than TL2 for high contention
applications, TL2 does not substantially outdistance STM2 for
applications with low-contention or applications with mostly-
read transactions. The results show that, on average, STM2

shows a 1.8x speedup over TL2.
TML STM2 performs consistently and substantially better

than TML for all STAMP benchmarks. While a global lock
provides low runtime overhead and intrinsically guarantees
serialization, performance is usually poor for applications with
high contention and/or large transactions. Our experiments
show that the serialization overhead induced by the use of
a global lock with a high number of threads considerably re-
duces overall performance. As Figure 6 shows, STM2 exceeds
TML for applications with high contention, like Bayes (1.7x
speedup) and Labyrinth (12.8x speedup), large read-sets, like
Vacation-Low (5.8x speedup), and read-write transactions, like
SSCA2 (4.6x speedup).

Summary Our results show that, on average, STM2 outper-
forms all tested STMs. For applications with high contention
(Bayes and Labyrinth) or bursting and irregular transactions
with a high number of concurrent writers (SSCA2), STM2

provides high speedups over lazy conflict detection STMs (up
to 6.4x) or single global lock STM (12.8x). For applications
with low contention and mostly-read transactions (Vacation-
Low, Vacation-High and Genome), STM2 performs well with
respect to lazy conflict detection and no bookkeeping STMs:
Only TL2 outperforms STM2 when running Vacation-Low and
Vacation-High, while STM2 still outperforms NOrec and TML
for Vacation-Low and Vacation-High and NOrec, TML and
TL2 for Genome. STM2 provides the same performance, or
even outperforms, lazy conflict detection and no-bookkeeping
STMs for applications where lazy conflict detection provides
advantages. Finally, STM2 exceeds TinySTM with all the
applications and provides speedups up to 12.3x over TinySTM
for applications that are critical for eager conflict detection

STMs, such as Vacation-High.
Our proposal largely overlaps computation and STM man-

agement operations and effectively reduces runtime overhead.
STM2 remarkably improves performance and provides the
advantages of eager conflict detection STMs with the limited
runtime overhead of lazy conflict detection STMs. Note that,
given that all STMs run the same number of transactions
and that STM2 is faster than the other STMs (between 1.8x
and 5.2x with 32 hardware threads, on average), it follows
that STM2’s throughput (measured in number of transactions
per second) is higher, despite the use of dedicated hardware
threads to run STM operations.

VI. RELATED WORK

The use of extra threads to help the computation of main
threads has been previously proposed, though for different
goals. Auxiliary threads are usually employed to resolve
unpredictable branches or cache misses that the main threads
would have to stall upon otherwise [7], [8], [26] or to prefetch
data from memory. Zilles et al. [28] explore using separate
threads in a multithreading processor for exception handling
to avoid squashing in-flight instructions.

Mehrara et al. [19] and Milovanovic et al. [20] propose the
use of an auxiliary thread in lazy conflict detection STMs.
Both proposals, however, use a centralized dedicated thread.
Mehrara et al. [19] present STMlite, a software transactional
memory that aims to automatically parallelize sequential ap-
plications. In this work, all the application threads send their
memory modifications to the auxiliary thread, which, at com-
mit time, serially performs the updates. This approach provides
benefits when the lock contention is high by serializing the
memory updates in one thread. Milovanovic et al. [20] propose
a combined OpenMP and STM runtime system based on an
STM library, which performs lazy conflict detection and lazy
versioning management. The authors introduce an additional
separate thread for asynchronous eager conflict detection that
aims to detect conflicts before the commit time and, there-
fore, reduce wasted time for doomed transactions. However,
the authors did not implement an advanced synchronization
mechanism between transactions and the associated dedicated
thread. This unnecessarily forces the system at commit phase
to repeat several checks already performed during the eager
conflict detection phase. Both proposals suffer from a lack
of scalability: the centralized auxiliary thread may become a
bottleneck, especially for a high count of threads.

Casper et al. [6] use an FPGA connected to the AMD Hy-
perTransport bus to accelerate conflict detection using bloom
filters. Conflict detection is performed at commit phase by the
accelerator and it is synchronous with the threads running on
the normal cores which have to wait for the accelerator to
complete conflict detection.

In contrast to previous work, STM2 is a fully parallel STM:
STM2 assigns a dedicated auxiliary thread to each application
thread for managing validation and bookkeeping involved
in the main computation. These threads run on dedicated
cores/hardware threads. Since each application thread has its

own auxiliary thread for their transactional operations, unlike
STMlite [19] and the approach proposed by Milovanovic
et al. [20], we avoid having a single point of serialization.
Finally, STM2 and the work proposed by Casper et al. [6]
are orthogonal: STM2’s auxiliary threads could be accelerated
through dedicated hardware, such as FPGAs.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we have presented STM2, a parallel STM
system that offloads STM time-consuming management op-
erations to auxiliary threads running on separate hardware
threads. To the best of our knowledge, STM2 is the first parallel
STM that takes advantage of secondary hardware threads to
accelerate STM functions and reduces overall overhead.

We tested STM2 on an IBM POWER7 system, an ag-
gressively multithreading processor designed for high per-
formance. By overlapping computation and STM operations,
STM2 generally outperforms current, state-of-the-art STMs,
namely TinySTM, TL2, NOrec and TML. Our experiments
show average speedups between 1.8x and 5.2x over the tested
STMs, with peaks up to 12.8x, with 32 hardware threads.
We conclude that auxiliary threads effectively absorb the
overhead of transactional bookkeeping and conflict detection,
considerably improving the overall performance.

As future work we plan to investigate hardware (dedi-
cated communication buffer) and software (message packing)
techniques to reduce the communication overhead between
application and auxiliary threads.

ACKNOWLEDGMENT

Our thanks to the anonymous reviewers and to Robert
W. Wisniewski from IBM, Nehir Sonmez and Vasileios
Karakostas from BSC for their helpful comments. This work
is supported by the cooperation agreement between the
Barcelona Supercomputing Center and Microsoft Research,
by the Ministry of Science and Technology of Spain and the
European Union (FEDER funds) under contracts TIN2007-
60625, JCI-2008-3688, 2009501052, and TIN2008-02055-E,
by the European Network of Excellence on High-Performance
Embedded Architecture and Compilation (IST-004408) and
by the European Commission FP7 project VELOX (216852).
Gokcen Kestor is also supported by a scholarship from the
Government of Catalonia.

REFERENCES

[1] M. Abadi, T. Harris, and M. Mehrara. Transactional memory with
strong atomicity using off-the-shelf memory protection hardware. In
Proceedings of the Symposium on Principles and Practice of Parallel
Programming, pages 185–196, 2009.

[2] J. Abeles, L. Brochard, L. Capps, D. DeSota, J. Edwards, B. Elkin,
J. Lewars, E. Michel, R. Panda, R. Ravindran, J. Robichaux, S. Kan-
dadai, and S. Vemuganti. Performance guide for HPC applications on
IBM power 755 system, 2010.

[3] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the Spring Joint
Computer Conference, pages 483–485, 1967.

[4] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:
Stanford transactional applications for multi-processing. In Proceedings
of The International Symposium on Workload Characterization, 2008.

[5] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software Transactional Memory: Why is it only a
research toy? ACM Queue, pages 46–58, 2008.

[6] J. Casper, T. Oguntebi, S. Hong, N. G. Bronson, C. Kozyrakis, and
K. Olukotun. Hardware acceleration of transactional memory on
commodity systems. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 27–38, 2011.

[7] R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt, and Y. N. Patt.
Simultaneous subordinate microthreading (SSMT). In Proceedings of
the Annual International Symposium on Computer Architecture, pages
186–195, 1999.

[8] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y. Lee, D. Lavery,
and J. P. Shen. Speculative precomputation: long-range prefetching of
delinquent loads. In Proceedings of the Annual International Symposium
on Computer Architecture, pages 14–25, 2001.

[9] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining STM
by abolishing ownership records. In Proceedings of the Symposium on
Principles and Practice of Parallel Programming, pages 67–78, 2010.

[10] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. In
Proceedings of the International Symposium on Distributed Computing,
pages 194–208, 2006.

[11] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of
the Cilk-5 multithreaded language. In Proceedings of the Conference
on Programming Language Design and Implementation, pages 212–223,
1998.

[12] L. Hammond, M. Willey, and K. Olukotun. Data speculation support for
a chip multiprocessor. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
systems, pages 58–69, 1998.

[13] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory
transactions. In Proceedings of the Conference on Programming Lan-
guage Design and Implementation, pages 14–25, 2006.

[14] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. In Proceedings of the Annual
International Symposium on Computer Architecture, pages 289–300,
1993.

[15] G. Kestor, V. Karakostas, O. S. Unsal, A. Cristal, I. Hur, and M. Valero.
RMS-TM: A comprehensive benchmark suite for transactional memory
systems. In Proceeding of the International Conference on Performance
Engineering, pages 335–346, 2011.

[16] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, J. Hiller, S. Karp,
S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli, S. Scott,

A. Snavely, T. Sterling, R. S. Williams, and K. A. Yelick. ExaScale
computing study: Technology challenges in achieving exascale systems.
Technical Report DARPA-2008-13, DARPA IPTO, September 2008.

[17] C. Lameter. Effective synchronization on Linux/NUMA systems. In
Proceedings of the Gelato Federation Meeting, 2005.

[18] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum, and M. Ol-
szewski. Anatomy of a scalable software transactional memory. In
Workshop on Transactional Computing, 2009.

[19] M. Mehrara, J. Hao, P. Hsu, and S. Mahlke. Parallelizing sequential
applications on commodity hardware using a low-cost software trans-
actional memory. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 166–176, 2009.

[20] M. Milovanović, R. Ferrer, V. Gajinov, O. S. Unsal, A. Cristal,
E. Ayguadé, and M. Valero. Multithreaded software transactional
memory and OpenMP. In Proceedings of the Workshop on MEmory
performance: DEaling with Applications, systems and architecture,
pages 81–88, 2007.

[21] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional memory
with scalable time bases. In Proceedings of the Annual Symposium on
Parallel Algorithms and Architectures, pages 221–228, 2007.

[22] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott. Privatization
techniques for software transactional memory. In Proceedings of the
Annual Symposium on Principles of Distributed Computing, pages 338–
339, 2007.

[23] M. F. Spear, A. Shriraman, L. Dalessandro, and M. L. Scott. Transac-
tional mutex locks. In Workshop on Transactional Computing, 2009.

[24] J. Steffan and T. Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. In Proceedings of the
International Symposium on High-Performance Computer Architecture,
pages 2–13, 1998.

[25] SUN Microsystem. OpenSPARCTM T2 Core Microarchitecture speci-
fication.

[26] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slipstream processors:
improving both performance and fault tolerance. In Proceedings of
the International Conference on Architectural Support for Programming
Languages and Operating systems, pages 257–268, 2000.

[27] M. Ware, K. Rajamani, M. Floyd, B. Brock, J. Rubio, F. Rawson, and
J. Carter. Architecting for power management: The IBM POWER7
approach. In Proceedings fo the IEEE International Symposium on High
Performance Computer Architecture, 2010.

[28] C. B. Zilles, J. S. Emer, and G. S. Sohi. The use of multithreading
for exception handling. In Proceedings of the Annual International
Symposium on Microarchitecture, pages 219–229, 1999.

