
Dynamic Filtering: Multi-Purpose Architecture
Support for Language Runtime Systems

Tim Harris⋆ Saša Tomić† Adrián Cristal† Osman Unsal†

Microsoft Research⋆ BSC-Microsoft Research Center†

tharris@microsoft.com {sasa.tomic, adrian.cristal, osman.unsal}@bsc.es

Abstract

This paper introduces a new abstraction to accelerate the read-
barriers and write-barriers used by language runtime systems. We
exploit the fact that, dynamically, many barrier executions perform
checks but no real work—e.g., in generational garbage collection
(GC), frequent checks are needed to detect the creation of inter-
generational references, even though such references occur rarely
in many workloads. We introduce a form of dynamic filtering that
identifies redundant checks by (i) recording checks that have re-
cently been executed, and (ii) detecting when a barrier is repeat-
ing one of these checks. We show how this technique can be ap-
plied to a variety of algorithms for GC, transactional memory, and
language-based security. By supporting dynamic filtering in the
instruction set, we show that the fast-paths of these barriers can
be streamlined, reducing the impact on the quality of surrounding
code. We show how we accelerate the barriers used for genera-
tional GC and transactional memory in the Bartok research com-
piler. With a 2048-entry filter, dynamic filtering eliminates almost
all the overhead of the GC write-barriers. Dynamic filtering elim-
inates around half the overhead of STM over a non-synchronized
baseline—even when used with an STM that is already designed
for low overhead, and which employs static analyses to avoid re-
dundant operations.

Categories and Subject Descriptors C.0 [General]: Hardware /
software interfaces; D.1.3 [Programming Techniques]: Concur-
rent Programming—Parallel programming; D.3.4 [Programming
Languages]: Processors—Memory management (garbage collec-
tion)

General Terms Languages, Performance

1. Introduction

Programming language implementations frequently interpose on
the reads and writes that an application makes. For instance, con-
current garbage collectors need to detect conflicts between work
by the application and work by the GC. Reference counting GC
needs to record how the number of references to an object changes
as the heap is manipulated. Runtime systems with thread-private
heaps must track when objects in one thread’s heap escape to other
threads. Implementations of software transactional memory (STM)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

must perform logging work to track the accesses that a transac-
tion makes, and to detect conflicts between the accesses made by
different transactions. Language-based security techniques, such as
software fault isolation (SFI), or write integrity testing (WIT), must
check that a thread’s memory accesses conform to a policy.

Managed runtime systems, such as the JVM or CLR, fre-
quently include different kinds of barriers for different purposes—
potentially interposing multiple times on the same memory ac-
cesses. Future runtime systems may employ barriers heavily, using
more complex barriers for soft-real-time concurrent GC, or to par-
tition the heap into portions that can be managed independently on
different clusters of cores.

In this paper we introduce a new abstraction to accelerate a
range of these read/write-barriers. We exploit two observations:

• Dynamically, many barriers perform checks but no “real” work.
For instance, a write-barrier for generational GC must detect
whenever old-to-young references are created. However, such
references occur rarely in many programs.

• Many barriers are self-healing [15], meaning that after a barrier
has executed once on a given set of inputs, then it does not need
to execute again. For instance, after a location has been logged
as an old-to-young reference, then the same location does not
need further checks in the current GC cycle.

Our approach is to accelerate barriers by keeping track, dynami-
cally, of a set of input values on which the barriers have recently
been executed—e.g., locations that have recently been logged by a
write-barrier for generational GC. The self-healing property means
that a barrier can be filtered out if its inputs are already in this set.

We extend the instruction set with an operation, dyfl, to per-
form this kind of dynamic filtering (Section 2). An accelerated bar-
rier implementation uses a dyfl instruction to test if the barrier’s
inputs are already in the set. If so, then the same barrier has al-
ready been executed, and no further work is needed. If not, then the
barrier executes as normal before updating the set.

Each dyfl instruction takes up to two inputs. The inputs are
typically addresses, although they are treated as opaque integers
without any kind of translation or protection check. From these
inputs, it computes a key to probe for in the set: for each input, a
mask supplied to dyfl can select to use either the complete value,
or to quantize it at the granularity of sub-page-size “cards” (512
bytes, as in some card-table-based GC techniques [25]).

This design lets dyfl be used with a wide range of different
barriers: using two addresses lets us track source-target pairs on
reference assignments, and using cards provides a way to exploit
spatial locality when a check performed by one barrier is suffi-
cient to remove checks on nearby addresses. Providing this limited
amount of input processing means that many barriers’ checks can

be expressed as a single dyfl instruction, thereby reducing regis-
ter pressure and improving the quality of surrounding code.

The set maintained by dyfl is lossy: the implementation can
discard any item at any time. These losses can cause a barrier to be
repeated un-necessarily, but they cannot cause necessary work to
be missed. These semantics are designed to enable a wide range of
implementation choices—e.g., over the capacity that underpins the
filters, and whether or not this is shared between cores. This form
of lossy behavior is the opposite sense to Bloom filters [9].

Semantically, dynamic filtering maintains sets on a per-hardware-
thread basis. This is essential for use by applications such as STM:
barrier work is specific to a given thread, rather than shareable
across a whole process. We sketch, in Section 2, how dyfl could
be extended to support a mix of per-thread and per-process state.

In Section 3 we show, through a series of case studies, which
read/write barriers can benefit from dyfl. Dynamic filtering is
most applicable when (i) the checks performed by a barrier are
complex (e.g., they require registers for temporary values, harm-
ing the quality of surrounding code), (ii) the barrier performs addi-
tional, occasional, work (e.g., logging) rather than changing every
memory access (e.g., indirecting all reads via a forwarding pointer).

We evaluate dyfl in Section 4. We use an x86 simulator with
a simple model of a cache hierarchy, and study the use of dyfl
in generational GC and STM. Generally, we model a dyfl im-
plementation that uses a table of 2048 entries, with just 1-way, 2-
way, or 4-way associativity on lookups based on a hash of the key
(rather than needing a CAM). Dynamic filtering eliminates almost
all the overhead of the GC write-barriers. Dynamic filtering elim-
inates around half the overhead of STM over a non-synchronized
baseline (all our results use an STM that is designed for low over-
head, and employs static analyses to avoid redundant operations).

We discuss related work in detail in Section 5. At a high level,
there are two ways in which our design for dyfl generalizes earlier
work (e.g., Saha et al.’s [34]) on eliding read/write barriers by fil-
tering repetitions. First, dyfl allows repetition checks to use pairs
of addresses, rather than single addresses. Second, dyfl allows
addresses to be quantized, rather than treating the entire address as
significant. As our evaluation shows, both of these design choices
are necessary to get a high hit rate in the workloads that we have
studied.

Throughout this paper, we make design choices that avoid addi-
tional complexity beyond the basic per-thread two-input lossy form
of dyfl. For instance, we maintain fixed-size sets of filter entries
(rather than trying to virtualize the sets), we use a fixed card size
(rather than controlling it dynamically), we expose only a simple
present/absent result when making a filter test (rather than storing
application-supplied meta-data), and we do not examine integration
between the filter mechanism and the caches (for instance, adding
or removing filter entries in response to coherence traffic). One
could imagine relaxing any of these decisions to explore the trade-
off between supporting additional applications for dyfl, versus
additional design complexity. Equally, one could combine per-core
filtering via dyfl with mechanisms for cross-core conflict detec-
tion such as SoftSig [37]. We leave this exploration for future work.

2. Dynamic Filtering

In this section we introduce dyfl using a simple write-barrier for
generational GC. In C-like pseudo-code, the original barrier is:

void writeBarrier(void **addr, void *tgt) {

if (inOldGen(addr) && inYoungGen(tgt)) { // T1

log(addr); // L1

} }

The barrier needs to examine each *addr=tgt assignment. It logs
addr if that address contains an old-to-young reference. In prac-

tice many other forms of write-barrier exist (we discuss examples in
Section 3), but this simple case serves as an illustration. Typically,
an implementation would inline the check (T1) at each assignment,
and keep the logging work (L1) out-of-line. Blackburn et al. pro-
vide thorough studies of implementation techniques [7, 8].

We refer to the check T1 as the “full check” that the barrier per-
forms (to distinguish it from the “accelerated check” that dynamic
filtering will add). We say that the full check “succeeds” when it
determines that there is no further work to do, and the “hit rate” of
a check is the fraction of time it succeeds. We refer to the work L1
as the “slow-path work” of the barrier. When we refer to the “same
barrier” we mean identical input parameters, rather than a specific
barrier in the program code.

In this example, a write-barrier is unnecessary if either of two
conditions holds:

1. If the (addr,tgt) pair has already passed the full check—e.g.,
due to an earlier execution of the barrier.

2. If addr has already been logged by the slow-path work—e.g.,
due to a previous update to the same address.

Both of these conditions are expressed in terms of the repetition of
a full check, rather than in terms of the details of how the full check
itself is implemented—a repetition of the barrier can be removed,
no matter how the internals of the inOldGen and inYoungGen
functions are organized.

Dynamic filtering provides a mechanism for keeping track of
the full checks that have already been made, and for testing for
repetitions of these checks. The example barrier can be rewritten:

void writeBarrierDyfl(void **addr, void *tgt) {

if ((!dyfl_card_pair(addr, tgt, 0x1)) && // A1

(!dyfl_addr(addr, 0x2))) { // A2

if (inOldGen(addr) && inYoungGen(tgt)) { // T1

dyfl_set_addr(addr, 0x2); // S2

log(addr); // L1

} else {

dyfl_set_card_pair(addr, tgt, 0x1); // S1

} } }

This illustrates two forms of dyfl. The first, dyfl card pair,
tests if a full check has already been done on the given (addr,tgt)
pair. The dyfl implementation keeps track of pairs that have been
checked, and the tag 0x1 distinguishes this use of dyfl from other
uses (e.g., from other barriers used by the same thread).

The fact this is a card-pair check means that the inputs are both
quantized to a 512-byte card granularity. Assuming that objects in
the same card are always in the same generation, this quantization
lets us exploit spatial locality: checks done for one pair of addresses
can be reused for subsequent addresses on the same cards. (We
examine the sensitivity of our results to the specific choice of card
size in Section 4.)

The second operation, dyfl addr, is a simple single-address
check on the input address. In this case the entire address is signif-
icant, rather than being quantized. As before, the tag 0x2 distin-
guishes this check from other uses of dyfl.

If either of these checks succeeds then the full-check T1 can
be skipped. If both of these checks fail then the barrier executes
as normal, performing the check T1, and possibly performing the
slow-path work L1. The dyfl set operations are used to update
the filter state that is queried by dyfl. S1 records that a given
(addr,tgt) card-pair has been checked as valid. S2 records that a
given addr has been logged.

For this barrier, it makes sense to check A1 before A2. This is
because most updates to the heap do not create old-to-young refer-
ences and so, once a card-pair has been checked, future executions
will pass A1. The single-address repetition check A2 serves only to
filter out repeated updates to the same old-generation location.

dyfl(i1, i2, mask, tag) // Test dynamic filter

dyfl_set(i1, i2, mask, tag) // Set dynamic filter

dyfl_clear(i1, i2, mask, tag) // Clear specific entry

dyfl_clear(tag) // Clear all with tag

(a) dyfl and associated operations.

23 9 23 9

Key Tag

Key Tag

?

Present/absent

Input i1 Input i2 Mask Tag

(b) Implementation sketch.

Figure 1. Dynamic filtering operations and implementation
sketch. The mask selects which portions of i1 and i2 are signifi-
cant. The result is combined with the tag and tested in the table.

2.1 Dynamic Filtering in the ISA

In this section we discuss detailed design choices, and how we
express dyfl in the concrete x86 instruction set architecture (ISA)
targeted by the compiler we use.

We generalize dyfl card pair and dyfl addr by a single
dyfl operation that takes two input values (i1, i2), and a 4-bit
mask that selects which portions of the inputs are significant. The
mask allows each input to be taken in its entirety, or to be quantized
to a card granularity. Figure 1 shows the complete set of operations
provided. Several masks recur, and so we give distinct names to
operations using them:

• dyfl addr(i1) —using just i1 and ignoring i2.

• dyfl card addr(i1) —selecting just the card portion of
i1, and ignoring the lower bits.

• dyfl addr pair(i1,i2) —selecting the entirety of both
inputs.

• dyfl card pair(i1,i2) —selecting the card portion of
both inputs.

For consistency with existing x86 instructions, and consequently
simplicity in the compiler, we encode dyfl using an ordinary
two-operand format, with one operand an effective address (EA)
providing i1, and the second operand a constant encoding the tag
and mask. When i2 is needed, it is always taken from a fixed
register (edx), as with a few other x86 instructions.

We signal filter hits/misses via the flags register. (We originally
considered using a user-mode trap to a pre-registered handler. How-
ever, that approach prevents the handler from being specialized to a
particular occurrence of a barrier in the program—e.g., depending
on which registers are available for scratch use, or where the inputs
to the barrier are stored. In addition, using the flags register lets us
have different handlers for different operations using the same tag.
We exploit this when using dyfl with STM: we can use a single

tag to track which locations have already been read, but employ a
different miss-handler on indirect accesses which must map interior
pointers to object headers.)

Example. Returning to our example barrier for generational GC,
the x86 fast-path implementation is:

// Assuming the store will be *ecx = edx

dyfl_card_pair [ecx] <- 0x1 // A1

jz L0

dyfl_addr [ecx] <- 0x2 // A2

jnz L1

L0: mov [ecx] <- edx

...

L1: // Out-of-line full-check

jmp L0

Ultimately, for dyfl to speed up a program, there must be a
sufficiently high filter hit rate for the work saved on hits to outweigh
the additional tests and book-keeping on misses. In some examples
– e.g., the STM in Section 3.2 – these savings come both from
the tests themselves, and from improved quality in code around
the barrier. Of course, the dyfl tests must also be faster than the
barrier’s full test.

Tag assignment. In our prototype, we assume that there are 16
tags available. Our choice is somewhat arbitrary: it provides more
than enough tags for our examples, while letting us pack the mask
and tag into a single 8-bit immediate constant (4 bits for the tag and
4 bits for the mask).

In our current implementation, tag numbers occur directly in
the native code generated by our compiler, and we assume that
the assignment of tags for different purposes is something that the
language runtime system’s designer co-ordinates. This is much like
the overall structure of the virtual address space, the use of x86
segment registers, or the choice of calling convention. Ordinary
techniques could combine modules with different conventions; e.g.,
rewriting tags at load-time.

Sharing. We envisage per-core management of dyfl filters.
Where multiple hardware threads share a core, the tag could
be extended implicitly to distinguish each thread. This is nec-
essary in applications where barrier work from different threads
is independent—e.g., thread-private heaps (Section 3.1), or STM
(Section 3.2). Alternatively, sharing could be placed under software
control by adding a mapping from logical tags used by software to
physical tags stored in the table. Different physical tags would be
used when sharing between threads must be prohibited (e.g., STM).
Common physical tags would be used when sharing is useful (e.g.,
generational GC). Of course, threads running code from different
address spaces would need to remain distinct.

Implementation. Several implementations are possible, e.g., as-
sociating key-tag pairs with cache lines that relate to addresses in
the key, or using a separate structure independently from the cache.
There are clearly many trade-offs here, and we focus in this paper
on the use and possible performance of different kinds of filtering.

Our general approach is motivated by allowing dyfl to be im-
plemented independently from the caches, as sketched in Figure 1.
Yen et al. give strong arguments for this [45]. First, cache tags and
arrays are performance-critical; modifications that appear simple
may be difficult to implement without a performance penalty. Sec-
ond, the desire to support multi-threading within processors may
require any additional storage to be replicated many times over.

3. Using Dynamic Filtering

In this section we examine a series of barriers, and discuss whether
or not dyfl could be used to avoid repetition of the checks that
they use. The examples in Section 3.1 are from heap management,

the examples in Section 3.2 are from STM, and the examples in
Section 3.3 are from language-based security. This is not meant
as a complete survey of all existing read/write-barriers. Rather, it
provides some confidence that dyfl applies more broadly than the
two cases we evaluate in detail on our simulator (Section 4).

3.1 Heap Management and Garbage Collection

Classical generational GC. As our running example showed,
dyfl can be used on each assignment *addr=tgt (i) to avoid
repeated tests of the same (addr,tgt) pair, and (ii) to avoid
repeated tests on the same addr once it has been logged.

We examine the performance of this in the Bartok runtime sys-
tem in Section 4. In that setting, a process-wide table records which
generation occupies each page. The GC’s barrier implementation
requires registers for the table base and for temporary values during
lookups. Much of the cost of software write-barriers comes from
this activity and the register pressure that it adds.

The design of Bartok’s generational write-barrier is more com-
plex than other current designs, e.g., those in the Jikes Research
Virtual Machine [4]. Primarily, this is because Bartok’s runtime
system is designed to allow independent applications to co-exist
in a single virtual address space. This is used in the Singularity re-
search operating system [23] in which all processes operate over the
same physical memory without hardware isolation between them.

Blackburn et al. describe the slot-based and object-based write
barriers in the MMTk toolkit used by Jikes [8]. MMTk’s slot-
based barrier determines old-to-young references by comparing the
source and target addresses, placing the young generation at the top
of the process’ virtual address space, and computing the boundary
between the generations by a series of shifts:

void writeBarrierMMTkPtr(void **source, void *tgt) {

if (source < ((tgt>>HEAP_K)<<HEAP_K)) {

log(source);

} }

MMTk’s object-based barrier records complete objects rather than
individual fields. By working at an object granularity, it can use a
per-object header flag to record whether or not a given object has
already been logged:

void writeBarrierMMTkObj(Object source) {

int statusWord = GetObjectStatusWord(source);

if ((statusWord & OBJECT_BARRIER_MASK) != 0) {

logObject(source);

} }

The GetObjectStatusWord operation loads a status word
from the header of the object, and so the complete fast-path test
is extremely straightforward.

Dynamic filtering is typically not effective for these barriers in
Jikes (we experimented using modern x86 hardware, comparing the
execution time of the mutator for DaCapo benchmarks with, and
without, the write-barriers, on a machine with sufficient memory to
avoid collection work). As with Blackburn et al.’s studies [7, 8], the
inclusion of barriers accounted for only a few percent of execution
time. The MMTk barriers’ full checks are much simpler than those
used by Bartok—in terms of their behavior, and register pressure.

However, as we show below, other GC algorithms are more
complex than classical generational GC, and the table-based lookups
performed by Bartok are common with other applications—e.g.,
implementations of thread-local heaps with each thread’s local data
placed on a separate set of pages.

Concurrent mark-sweep (CMS) GC. CMS collectors typically
use a write barrier that records information about updates made
by the mutator during the marking phase of a GC cycle. For a store

*addr=tgt, a Steele-style barrier records addr. A Dijkstra-style
barrier records tgt. A Yuasa-style barrier records the overwritten

value. Vechev and Bacon’s paper summarizes these approaches and
identifies conditions for eliminating barriers [40].

Any of these barriers can be elided if the log entry has already
been recorded; dyfl addr can be used in each case. However,
there are a two further points to consider. First, some implementa-
tions of Dijkstra-style and Yuasa-style barriers require explicit tests
for NULL references—e.g., to prevent an access violation if logging
is done by setting a bit in an object’s header:

void dijkstraBarrier(void **addr, void *tgt) {

if (tgt != null) {

if (!alreadyMarked(tgt)) {

mark(tgt);

} } }

This example motivates the decision for dyfl to treat addresses as
ordinary scalar inputs, without performing access checks on them.
This decision allows filtering to be done before the NULL test:

void dijkstraBarrier(void **addr, void *tgt) {

if (!dyfl_addr(tgt, 0x1)) {

if (tgt != null) {

...

} }

dyfl_set_addr(tgt, 0x1);

} }

The second consideration is that, as with generational GC, concur-
rent GC can use a card-table rather than precise logs of objects or
addresses. This allows a dyfl card addr operation to be used,
assuming that the GC’s card size is not smaller than dyfl’s. Card-
based filtering improves the hit rate if there are multiple barriers on
locations in the same dyfl card. Integration with card-table GC
techniques motivates the use of sub-page-sized cards in dyfl.

Similar uses of dyfl are possible for Levanoni and Petrank’s
concurrent reference counting algorithm [27], and Azatchi et al.’s
CMS collector [5].

Kermany and Petrank’s compacting GC. Kermany and Petrank’s
“Compressor” algorithm is a concurrent, incremental, parallel com-
pacting garbage collector [26]. The compaction phase moves the
reachable objects into a contiguous region of memory. Mutator
threads run concurrently with compaction, and so synchronization
is required to handle accesses to objects being moved.

A process’s heap appears (broadly speaking) to be similar to
a two-space copying collector. However, Compressor uses virtual
memory hardware to take pages out of the from-space (once all of
the objects on them have been removed), and to reassign them to
the to-space. This is done incrementally; initially all pages in to-
space are inaccessible, and so accesses trigger violations. Pages in
to-space are incrementally constructed in response to these access
violations.

Dynamic filtering can be used in place of virtual memory page
protection checks, using a dyfl card addr check on each loca-
tion before it is accessed, followed on a miss by a software check
of whether or not the location is in to-space.

There is a complicated trade-off in performance between an im-
plementation using dynamic filtering, and an implementation us-
ing off-the-shelf page protection hardware. First, dynamic filtering
makes the access checks via explicit dyfl instructions, rather than
implicit on memory accesses. However, the cost of handling a filter
miss is substantially less than an access violation. Second, using
dyfl would avoid the need to manipulate page protection settings;
such hardware is widely used in research prototypes, but there is re-
luctance to use it in production settings. Finally, decoupling Com-
pressor’s access checks from page-level memory protection can en-
able the use of larger page sizes (e.g., 2MB pages rather than 4KB).

Pizlo et al.’s concurrent copying collectors. Pizlo et al. de-
scribe a number of concurrent real-time copying collectors [32].

The “Clover” collector relies on the mutator recognizing a special
marker value (α) that is placed in a location when it is being used
by the collector. A read-barrier performs slow-path work if it sees
α: the barrier must locate the object in to-space, and return the
value present there. A write-barrier must wait if it is trying to store
α while the GC is moving objects. Otherwise, the write-barrier
uses CAS when writing to from-space (to prevent races with the
collector), or it uses an ordinary store when writing to to-space.

Dynamic filtering could be used in various ways here, e.g., to
check that a value read is not equal to α (so that the value may be
returned immediately), and to check that a location being written is
in to-space (so that the location may be updated directly).

It is not clear whether dynamic filtering can be used with Pi-
zlo et al.’s other two concurrent real-time copying collectors. The
“Chicken” and “Stopless” collectors both involve extensive barriers
during some phases of the GC’s work. These do not simply perform
logging work or occasional redirection to a different address. For
example, “Chicken” involves indirection through an object’s header
to find the current copy of an object (before/after copying).

Doligez and Leroy’s thread-local heaps. Doligez and Leroy’s
implementation of thread-local heaps for ML [18] maintains an
invariant that there are no references from shared data to thread-
private data (i.e., it forbids references pointing from shared data
into a thread’s stack, or pointing into a thread’s local heap). This
separation lets each thread perform local collection of its private
heap.

This invariant can be preserved by a write-barrier. For each
store *addr=tgt, the barrier checks that if addr is a location
in the shared heap then tgt is also a shared location. If tgt
is not shared then the object at tgt is promoted to the shared
heap, and a reference to the new location is written accordingly.
At the next GC, information kept at the old location of tgt is
used to fix up any other references to it (so that tgt does not
get permanently duplicated). For immutable objects, the temporary
distinction between the old copy of tgt and the new copy is not
visible to the program. Mutable objects are rare in ML and are
always allocated in the shared heap.

void writeBarrierTLHeap(void **addr, void *tgt) {

if (inSharedHeap(addr) && !inSharedHeap(tgt)) { // T1

new_tgt = promote(tgt);

*addr = new_tgt;

} else {

*addr = tgt;

} }

Dynamic filtering can be used to record pairs of addresses that
have passed test T1. If the heap is organized at a card granularity
(or coarser) then dyfl card pair can be used to exploit spatial
locality.

Unlike the previous write-barriers, the value written to addr is
dependent on whether or not the test T1 succeeds. Consequently, at
the level of assembly language, usage is more complex:

// Assuming the store will be *(ecx+4) = edx

dyfl_card_pair [ecx+4] <- 0x1

jnz L2

L0: mov [ecx+4] <- edx

L1: ...

L2: // Filter miss handler

The filter miss handler performs the full check from the function
writeBarrierTLHeap, branching back to L0 if the test suc-
ceeds, and branching back to L1 if the test fails.

An alternative implementation of thread-local heaps may use
a read barrier that checks that the pointers followed by a thread
refer to the thread’s own local data, or to data in the shared heap.
If a thread encounters a pointer into another thread’s heap then it

synchronizes with the object’s owner to request that the object be
promoted into the shared heap. Dynamic filtering can be used to
track which cards have been tested as valid for the current thread to
access. The slow-path work could use an ownership table similar to
that used to identify generations in the Bartok runtime system.

3.2 Transactional Memory

Transactional memory implementations track the reads and writes
made by transactions, and ensure that if concurrent transactions
conflict then at most one of them will be committed.

STM with eager updates. Several STM implementations use ea-
ger updates, meaning that a transaction updates memory directly,
while keeping an undo log to roll back its effects if a conflict is de-
tected [20, 33]. Such designs typically use optimistic concurrency
control for reads, and locking for writes. When a transaction reads
from a location, the STM records meta-data to a thread-private log,
and then re-checks this log for conflicts at the end of the transac-
tion. Concurrency control is performed on a per-object basis, and
so the same object’s meta-data can be accessed repeatedly—e.g., if
different elements of the same array are accessed.

Dynamic filtering can be used to check whether or not a location
has already been accessed in the current transaction: if it has been
accessed, then additional concurrency control work can be avoided.
We have prototyped the use of dynamic filtering with Bartok-STM,
and examine its performance in Section 4.

STM with deferred updates. Rather than making eager updates,
some STMs use deferred, or lazy updates. These STMs keep a
“redo” log of tentative changes that must be written to the heap
when a transaction commits.

Dynamic filtering is less applicable to STMs with deferred
updates than to STMs with eager updates. This is because the slow-
path work of the barriers is needed on most accesses (to make sure
that the redo log is consulted on reads, and updated on writes),
rather than being performed before the first access whereupon
memory can be used directly.

It would be possible to use dynamic filtering to track which
locations have not been written within the current transaction: a
filter entry would indicate that a check has already been done that
a location is not in the redo log. Such a read could access memory
directly. A subsequent write would clear the filter entry.

3.3 Language-Based Security

In this section we consider software security techniques, e.g., for
defending native code from buffer-overflow problems.

Control flow integrity (CFI). CFI checks that a program’s dy-
namic control flow is consistent with a statically-computed safe
control flow graph [1]. A static analysis determines the possible tar-
gets for each control flow instruction, assigning markers to control
flow instructions and to their targets such that all possible targets
of a given instruction are assigned the same marker—e.g., all pos-
sible branch targets from instruction B1 might be assigned marker
0x12345. Dynamically, a control flow instruction is preceded by a
check that its target has the marker that is expected. Budiu et al. in-
vestigated architecture support for CFI via a special form of branch
instruction that encodes the expected marker value [10].

Dynamic filtering can be used in one of two ways. First, filters
could record target-marker associations. A branch at B1 would
check whether its particular target address is already associated
with marker 0x12345. If so, then the branch has already been
checked. If not, then the filter miss handler would check whether
or not the target has the marker that is required.

Alternatively, filters could record valid source-target address
pairs. A branch at B1 would then check whether the target address

Total Dynamic filtering operations Usage of atomic blocks

allocation / MB GC STM # blocks Log size % exec.

Crafty, chess program translated to C#:

5.1 161 699 0 0 0 0
204.1 3 599 112 0 0 0 0

Delaunay triangulation following Scott’s description [36]:

24.1 6 937 117 0 0 0 0
833.1 81 821 274 0 0 0 0

Genome, sequencing benchmark from STAMP, translated to C#:

29.3 738 194 3 095 340 74 283 17 59
1587.1 8 893 286 31 081 914 752 406 17 56

Go, the commonly seen Go playing program:

8.5 5 082 0 0 0 0
714.5 182 775 0 0 0 0

JBBAtomic, JBB ported to C#, with a fixed number of tx, each in an atomic block:

15.4 853 968 3 400 174 2 000 407 82
523.1 38 715 672 217 039 332 100 000 600 79

Labyrinth, maze routing benchmark from STAMP, translated to C#:

0.3 240 5 765 360 130 10 940 89
1.8 1 229 91 737 215 514 44 091 99

MaxFlow, max-flow algorithm based on preflow-push:

4.8 1 175 084 5 728 503 1 158 724 5 77
322.8 81 937 962 426 208 098 81 378 071 5 86

Othello, the commonly seen Othello program:

0.2 260 0 0 0 0
15.0 13 914 0 0 0 0

SatSolver, SAT satisfiability program:

6.0 282 751 0 0 0 0
181.4 7 786 473 0 0 0 0

Vacation, travel reservation system model from STAMP, translated to C#:

4.1 167 871 4 880 521 40 000 50 63
83.3 3 594 324 113 875 772 819 430 57 68

XLisp, the commonly seen LISP implementation:

6.4 5 633 942 0 0 0 0
235.4 168 249 042 0 0 0 0

Figure 2. Benchmark characteristics. We list the statistics for the
simulation workload (first line) and normal workload (second line).

is already associated with B1. If so, then the branch is valid. If not,
then a full check is needed. This alternative approach may permit
more precise checks than using a single marker for all targets—
e.g., a separate lookup structure could encode the exact source-
target address pairs to allow. Whether or not this is worthwhile
will depend on the control-flow attacks to be prevented (increased
precision may detect more attacks), and on the hit rate achieved by
the filter (a high hit rate reduces the impact of a more complex,
precise lookup on misses).

CFI motivates supporting dyfl with two inputs, both at full-
address granularity, rather than just card-pairs.

XFI. XFI extends CFI with checks on data accesses [38]. The
idea is to constrain which memory regions a given module is per-
mitted to write into. This can be implemented as checks before each
store, with fast-paths used for common cases (e.g., a module with
a single contiguous range). Static analyses can remove redundant
checks (e.g., before a series of stores to nearby locations). Budiu
et al. investigated architectural support for XFI [10] via a form of
access-check that compares an address against a pair of bounds.

We can use dynamic filtering based on address-pairs that record
which instructions have been tested for access to which memory lo-
cations. We can use card-level associations for any complete cards
that the range covers. Different tags would distinguish different
kinds of access (read, write, execute).

Data flow integrity (DFI) and write integrity testing (WIT).
DFI [11] and WIT [3] are both based on instrumenting code with
dynamic checks that a given data access is permitted according to
the results of a static analysis of a program’s correct behavior.

DFI involves instrumenting loads and stores. A store updates a
shared table that associates an ID with each memory location. A
load checks that a location’s current ID is in a set of IDs permitted

by the static analysis. Some special cases may be identified by
dynamic filtering, but it is not clear that these will be common—
e.g., a store’s update to the table may be elided if the table in
memory is already known to contain a given value.

WIT uses a global “color table” that is initialized when memory
is allocated, and checked on every store. Each store instruction may
only write to memory of a specific color. As with DFI, repeated
initializations to the same color may be elided.

With WIT, a check on a store can be elided if the table must
already hold the required value. In principle this could be done by
tracking address-color pairs. However, in multi-threaded programs,
such filter entries would need to be cleared whenever addr is
updated, including updates on other processors. Some kind of cache
integration might be possible, but it would seem to complicate the
semantics and possible implementations.

3.4 Discussion

These examples illustrate some general principles of where dy-
namic filtering may be useful, and where it is not.

In the successful examples, the structure of the barrier is either
(i) additional slow-path work before a normal access (e.g., logging
concurrency control information before an STM’s first access to a
location), or (ii) alternative occasional slow-path work in place of
a normal access (e.g., reading a from-space copy of an object via a
level of indirection, rather than reading a to-space copy directly).

In the unsuccessful examples, the structure of the barrier in-
volves work on most memory accesses, with few cases in which
the underlying location may be accessed directly.

4. Evaluation

In this section we evaluate the use of dyfl in the implementation
of barriers for generational garbage collection and for STM. Our
work is based on Bartok, an optimizing ahead-of-time research
compiler and runtime system [2, 20, 32].

Section 4.1 describes the workloads that we run. Section 4.2 de-
scribes the simulator that we built to model dyfl. Section 4.3 eval-
uates the use of dyfl for generational GC. Section 4.4 evaluates
the use of dyfl in the STM implementation. Section 4.5 evaluates
both uses of dyfl in the same program. Finally, Section 4.6 eval-
uates the sensitivity of the results to the particular parameters we
use in the simulated hardware.

4.1 Workloads

Figure 2 shows the benchmarks we use. These are a combination
of ones used in earlier work on GC and STM with Bartok. The
majority of the STM workloads come from the publicly-available
STAMP benchmark suite [29] and from Scott et al.’s implementa-
tion of Delaunay triangulation using transactions [36]. In each case,
we converted these to C#, following the structure of the original
C/C++ implementations (primarily, replacing struct definitions
with classes, and grouping related functions into methods on those
classes). In previous work, we reported that, given Bartok’s whole-
program optimization, the C# versions of the STM benchmarks per-
form broadly similar to the original versions of these programs [2].

For each program we use two differently-sized workloads. On
real hardware, the smaller workloads each take around 100ms to
run and require only a few MB heap allocation. We use these work-
loads for simulated results. The larger workloads take several sec-
onds to run. We discuss, throughout this section, how we validate
that behavior seen during the shorter runs is representative of the
larger ones.

4.2 Simulator

Most of our evaluation is based on an x86 simulator. The simu-
lator hosts a single multi-threaded user-mode process, emulating

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d

 e
x
e

c
u

ti
o
n

 t
im

e Real, large

Real, small

Sim, small

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d

 e
x
e

c
u

ti
o
n

 t
im

e Real, large

Real, small

Sim, small

Figure 3. Validation, comparing STM performance on different
platforms normalized against unsynchronized performance.

instructions from each thread, and scheduling them according to a
timing model. We use a simple timing model which includes a con-
figurable cache-hierarchy: each instruction takes 1 cycle, plus the
number of cycles spent on any memory accesses that it performs.
All of our results are presented using this timing model (our exper-
imental harness also gathers results in terms of instruction counts,
but instruction counts show dyfl in an artificially favorable light
because many of the software barriers involve several simple arith-
metic operations, e.g., shifting and masking).

We configure the simulator to model a 32KB L1-cache with 4-
way associativity, over a 4MB L2-cache with 16-way associativity.
The line size is 64 bytes. An L1 hit takes 2 cycles, an L2 hit takes
16 cycles, and a main-memory access takes 200 cycles. Both caches
are write back. The parameters are broadly based on current Intel
Core 2 Duo processors.

We assume that the dyfl implementation is separate from the
caches (in future work, it may be worthwhile to investigate more
complicated designs which combine filter information with related
cache entries).

Unless otherwise stated, we model dyfl implementations us-
ing a 2048-entry filter. To examine the effect of associativity, we
configure this as 2048x1-entry sets, 1024x2-entry sets, and 512x4-
entry sets. Our model assumes that all dyfl operations take 2 cy-
cles, given that the filter lookup is comparable to a lookup on a
cache tag array with a similar size and associativity.

The mapping of key-tag pairs to sets depends on all bits of the
key and all bits of the tag. Preliminary results showed that this was
essential for low levels of associativity to be effective—otherwise,
conflicts occur when multiple tags are associated with the same
key, or when the mask leaves portions of the key 0. All our results
use LRU replacement of entries within each set (irrespective of the
tag involved). We have also collected all our results using random
replacement; there is no appreciable difference for the workloads
we have studied.

Within the instruction set, we encode a dyfl operation as:

ud2 ; Raise undefined-opcode exception

mov [EA] <- tag_mask ; Store immediate constant to EA

The simulator recognizes this sequence and executes it directly as a
dyfl operation. For faster turn-around time, during development,
we run the program directly and use an in-process handler to re-
spond to the undefined-opcode exception. The handler decodes the
dyfl operation and models its effect.

To gain confidence in the simulator’s results, we compared per-
formance metrics from a series of executions of the benchmarks.
We examined (i) executions with large input sets, running on real
hardware, (ii) executions with simulation input sets, running on real
hardware, and (iii) executions with simulation input sets, running
on simulated hardware. In each case we look at the ratio of execu-

20%

40%

60%

80%

100%

H
it
 r

a
te

Short (unbounded)

Short (32MB)

Short (4MB)

Long (4MB)

0%

20%

40%

60%

80%

100%

H
it
 r

a
te

Short (unbounded)

Short (32MB)

Short (4MB)

Long (4MB)

(a) One-address repetition check (dyfl addr)

20%

40%

60%

80%

100%

H
it
 r

a
te

Short (unbounded)

Short (32MB)

Short (4MB)

Long (4MB)

0%

20%

40%

60%

80%

100%

H
it
 r

a
te

Short (unbounded)

Short (32MB)

Short (4MB)

Long (4MB)

(b) Two-card check (dyfl card pair)

20%

40%

60%

80%

100%

H
it
 r

a
te

Short (unbounded)

Short (32MB)

Short (4MB)

Long (4MB)

0%

20%

40%

60%

80%

100%

H
it
 r

a
te

Short (unbounded)

Short (32MB)

Short (4MB)

Long (4MB)

(c) Two-card check, followed by one-address repetition check

Figure 4. Generational write-barrier hit rates.

tion time using STM to the underlying sequential execution of the
program without synchronization. The comparison between (i) and
(ii) illustrates whether or not the use of a smaller workload effects
our results (e.g., because the heap size is reduced), and the compar-
ison between (ii) and (iii) illustrates whether or not the simulator’s
results are faithful to reality.

Figure 3 shows these results. For the real runs we collect the
median and min/max over 7 runs. For the simulated runs, the re-
sults are stable from one run to the next and so we omit error bars
(we vary random seeds used by the language runtime system, and
the base address of the heap). The simulation results are reasonably
close to the timed results, even though the simulator uses a simplis-
tic in-order timing model. These workloads perform large numbers
of memory accesses in the STM implementation, and so the major
determinant of performance is how these accesses interact with the
caches. We would need a more detailed model of the processor core
for CPU-bound computational workloads.

4.3 Generational GC with Dynamic Filtering

We employ dynamic filtering in Bartok’s generational collector
following the design in Section 2. We examine three different
kinds of filtering. First, we use only single-address dyfl addr

repetition filtering of addresses being accessed (adding an entry to
the filter when an address is logged, or when it is checked to be in
the young generation). Second, we use dyfl card pair filtering

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n

 t
im

e

S/W

Accel: 2048x1

Accel: 1024x2

Accel: 512x4

Accel: unbounded

No GC

0.6

0.7

0.8

0.9

1.0

Crafty Delaunay Genome Go JBBAtomic Labyrinth MaxFlow Othello SatSolver Vacation XLisp

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n

 t
im

e

S/W

Accel: 2048x1

Accel: 1024x2

Accel: 512x4

Accel: unbounded

No GC

Figure 5. GC acceleration performance, normalized against the original software implementation. The right-most bar in each cluster shows
the best possible case, with all write-barriers removed. Accelerated implementations lie between these extremes.

of source-target pairs that have been checked to be valid. Finally,
we combine these, as with our pseudo-code in Section 2.

Hit rate. First, we examine the hit rate achieved by the different
forms of filtering (Figure 4). The purpose of this is twofold: (i) to
see whether or not the more complex dyfl card pair filtering
provides a quantitative advantage over the simpler dyfl addr

check, and (ii) to see whether or not the hit rate achieved by short
simulation runs is typical of the hit rate achieved by runs that are
too long to run on the simulator.

For each kind of filtering we plot the hit-rate achieved by four
runs: “Short (unbounded) ” uses the short workload, an unbounded
filter size, and a 32MB heap that is sufficient to avoid GC on these
short workloads. This provides a limit on the hit rate that could be
achieved: in practice the hit rate will be lower because filter entries
are lost (due to limited capacity) and cleared (due to GC).

“Short (32MB) ” and “Short (4MB) ” show the hit rate for the
short workload with a fixed-size 512x4-entry filter. No GC occurs
in the short 32MB runs, and so the difference between these and
the unbounded runs shows the effect of conflict and capacity misses
introduced by using a fixed-size filter. The difference between the
32MB and 4MB runs show the additional effect of reducing the
young generation size (and consequently of clearing the filter upon
each of the resulting GCs).

“Long (4MB) ” shows the hit rate for the long workload with a
512x4-entry filter. A comparison between the long and short results
shows whether or not the workload size affects the hit rate.

Figure 4(a) shows the results for using dyfl addr. The hit rate
achieved in realistic settings is much worse than the unbounded
case. Consequently, the simple repetition check does not seem
appropriate for this write-barrier.

Most strikingly, with Delaunay and XLisp, there is a loss going
from an unbounded filter to a 512x4-entry filter, and a further
loss from a 32MB heap to a 4MB heap. With Crafty, Delaunay,
and XLisp there is a loss from the short workload to the long
workload. This suggests that there is substantial repetition in the
underlying workload (indicated by the hit rate for the unbounded
runs), but the repetitions are sufficiently far apart in time that
either (i) information from an earlier barrier has been lost from
the filter before a later barrier (indicated by a higher hit rate in
the unbounded case than in others), or (ii) a GC has occurred
between the barriers, causing all entries to be flushed from the filter
(indicated by a higher hit rate in the 32MB heap without GC, than
the 4MB heap).

Figure 4(b) shows the results for the card-pair check. Aside
from SatSolver, the results remain close to the unbounded runs: the
card-pair check allows a 2048-entry filter to cover a large amount of
the heap (reducing the difference between unbounded runs and the
other runs), and the use of cards also allows filter state to exploit

spatial locality to recover more quickly after a GC (reducing the
difference between 32MB and 4MB runs).

We examined why SatSolver performs poorly with 4MB heaps.
It frequently updates a set of fields in objects that are allocated near
the start of execution. Once these are tenured in the old generation,
each update potentially generates an old-to-young reference, and
so the addresses cannot be added to the card-pair filter. The effect
is more pronounced in the long workload because this phase of
execution is proportionately larger.

Figure 4(c) shows the results when we combine two filters. The
combination performs well: most access hit in the card-pair filter,
and hot fields hit in the repetition filter once they have been logged.
For all of the workloads we have studied, the “Long (4MB) ” hit rate
is close to the unbounded rate, and the hit rate on short, simulation
runs is essentially the same as on long runs. We therefore use card-
pair checks followed by repetition checks in subsequent GC results.

Performance. We now examine the performance of dynamic fil-
tering for GC. We run all of these tests with sufficient heap space to
avoid any GC work. Avoiding GC lets us focus only on the impact
of write-barriers on the mutator.

Figure 5 shows the results (note the false origin). We compare
three different configurations for each benchmark. The first config-
uration “S/W ” uses ordinary software write-barriers. We normalize
the results against this case. The second configuration “Accel ” uses
dynamic filtering, with 2048-entries (2048x1, 1024x2, 512x4), and
with an unbounded filter size. The third configuration “No GC ”
is compiled without any support for GC, and consequently with-
out including write-barriers in its implementation. This shows the
maximum possible speed-up that could be achieved by accelerating
the write-barriers. The only difference between the three configu-
rations is the implementation of the barriers (if any): all three con-
figurations use the same bump-pointer allocator, and the compiler
was configured to ignore the size of any barriers when considering
whether or not to inline methods.

The 2048x1 results are close to the “No GC ” results for all of
the benchmarks. This shows that dynamic filtering comes close to
the ideal. The total possible impact is dependent on the number of
heap updates in the program, and the benchmarks where dynamic
filtering has the largest impact are those where there are most
updates (Figure 2). There is little additional benefit from more
associativity, or from a hypothetical unbounded filter size.

4.4 STM with Dynamic Filtering

Bartok-STM [2, 20] uses eager version management (that is, trans-
actions make updates directly to the heap, and roll them back on
conflict). It uses encounter-time object-based locking for updates,
keeping a per-transaction log of objects that have been locked. It
uses version-number-based validation for objects that are read by

0.5

1.0

1.5

2.0

2.5

3.0
N

o
rm

a
liz

e
d

 e
x
e
c
u
ti
o
n

 t
im

e S/W: no filter

S/W: filter

S/W: inline filter

Accel: 2048x1

Accel: 1024x2

Accel: 512x4

Accel: unbounded

No logging
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Genome JBBAtomic Labyrinth MaxFlow Vacation

N
o
rm

a
liz

e
d

 e
x
e
c
u
ti
o
n

 t
im

e S/W: no filter

S/W: filter

S/W: inline filter

Accel: 2048x1

Accel: 1024x2

Accel: 512x4

Accel: unbounded

No logging

Figure 6. STM acceleration performance, normalized against the unsynchronized version of each benchmark. The extreme right-most bar
bounds performance by treating each operation as a filter hit, causing no logging to be performed.

a transaction: the version number is logged before the transaction
reads from the object, and then the version number is checked again
when the transaction commits. An undo-log records the individual
words that a transaction overwrites.

Transaction management operations are eligible for inlining in
the usual way. Data logging operations are made using manually-
written sections of the compiler’s intermediate code (which make
calls to non-inlined slow-path operations on log overflow or lock
contention). There are three data-logging operations:

OpenForRead(Object x)

OpenForUpdate(Object x)

LogForUndo(Object x, int field_offset)

The Open* operations must be placed before the first read/update
access to an object. A LogForUndo operation must be placed be-
tween OpenForUpdate, and the first write to a particular word.
All three of these operations are only needed before the first ac-
cess to a given object or location—subsequent repetitions can be
removed. (Concretely, similar operations exist for access to stat-
ics, and indirect access to by-ref parameters. For brevity we do not
discuss these further.)

Existing static analyses. The Bartok compiler uses simple intra-
procedural data flow analyses to remove STM operations that are
redundant [20]. It also identifies transactional reads that dominate
writes to the same object, and obtains write access before the
read (avoiding recording the same object in both logs). Logging
operations on loop-invariant locations can be hoisted from loops
(e.g., if each iteration reads from a different element of the same
array, then the array can be logged outside the loop). The compiler
identifies methods that always read/write the object that one of their
parameters refers to and, for these methods, the Open operation is
moved to the call site. Once at the call site, the Open operation may
be redundant—e.g., because one method calls a series of simple
get/set accessor methods on the same object.

Taken together, these existing analyses reduce the dynamic
number of logging operations by 24% (Genome), 44% (JBBAtomic),
92% (Labyrinth), 36% (Maxflow), and 38% (Vacation). The analy-
ses are enabled for all our results.

Dynamic filtering. The existing STM read/write-barrier imple-
mentations include a software fast-path which filters redundant op-
erations [20]. This fast-path is implemented using per-thread tables,
indexed by the bottom-few significant bits of the object’s address or
field’s address. A stand-alone barrier would typically produce x86
native code as follows:

// Assume address to filter in eax

mov ebx <- fs:[filterBase]

mov ecx <- eax

and ecx <- 0x1ffc

cmp [ebx + ecx], eax

jnz slow_path

In this code, the load from filterBase accesses a location in
the thread-local fs segment. Masking with 0x1ffc converts the
address in eax into an offset into a table of 2048 pointer-sized
values. The comparison succeeds if the address eax was the last
one to be logged at that offset. The slow-path stores eax into
the table before doing any STM logging work. The table must
be cleared on each transaction. To do this efficiently, the existing
software (i) allocates a double-sized table, (ii) uses a sliding section
of this, indexed by filterBase, (iii) increments filterBase
by one entry on each transaction, and (iv) clears the double-size
table on reaching the end of it. (Adjusting the base means that,
with this simple direct-mapped scheme, entries written by one
transaction will not be misused by a second transaction.)

To use hardware dynamic filtering, we replace this sequence
with a dyfl instruction. We use tags to distinguish reads from
writes, adding both filter entries on an OpenForUpdate miss.
We perform dynamic filtering based on object header addresses for
OpenForRead and OpenForUpdate. We use filtering based on
field addresses for LogForUndo.

Performance. As with GC, we compare three kinds of STM im-
plementation: ordinary software implementations, accelerated im-
plementations using dyfl, and a bounding case with logging work
removed. We look at single-threaded performance, letting us fo-
cus on the overheads introduced by the different barrier implemen-
tations. (The actual logging and conflict detection is identical for
all implementations, so scaling is unchanged). Results are normal-
ized against the performance of an unsynchronized version of the
program—that is, one without any kind of concurrency control, nei-
ther locking nor TM. This baseline is not safe for parallel execution,
but serves as a bound on the possible sequential performance (un-
like a lock-based version, whose performance is dependent on the
lock’s implementation, as well as the underlying program).

Figure 6 shows the results for the benchmarks that use trans-
actions. The first set of bars show software implementations. “S/W:
no filter ” shows direct use of the STM library, without the fast-path
software filtering. “S/W: filter ” shows the effect of adding the fil-
tering, but in a separate function rather than inlined in the applica-
tion. “S/W: inline filter ” shows the default software configuration,
with the barrier fast-paths inlined. The second set of bars (start-
ing with the black bar) shows the performance of implementations
using dyfl. These use a 2048-entry filter configured as 2048x1,
1024x2, and 512x4-entry sets. The third set of bars provide bounds
on performance. “Accel: unbounded ” uses a filter of unbounded
size. Comparing this with the previous “Accel ” results shows how
much performance is lost by having a fixed-sized filter and by hav-
ing limited associativity. “No logging ” uses an unsound dyfl im-
plementation in which every filter access is treated as a hit. This
shows the residual effect of the transaction management operations
(start/commit).

Hit rate Dynamically polarized instructions

(%) never-log (%) always-log (%)

Genome
59.8 7.6 9.4
59.6 7.7 9.5

JBBAtomic
77.0 48.4 6.9
73.2 21.9 9.0

Labyrinth
75.3 51.6 1.0
75.3 22.3 0.1

MaxFlow
1.4 0.0 96.5
1.2 0.0 96.8

Vacation
59.1 17.5 3.6
58.8 16.8 3.8

Figure 7. Redundancies exploited by dynamic filtering. A polar-
ized instruction is one which always hits or always misses.

Dynamic filtering substantially reduces the cost of STM in 4 of
the 5 benchmarks. Looking at the cost above the 1.0 normalized
baseline, the 512x4 results show a reduction of 47% in Genome,
64% in JBBAtomic, 55% in Labyrinth, and 40% in Vacation when
compared against the inlined software barriers.

Dynamic filtering is less effective in MaxFlow. The equivalent
performance reduction is 14%. MaxFlow comprises a vast number
of short, simple transactions. The static analyses remove all the
redundant operations, and so the inlined barriers with software
filtering are slower than simply using the STM library directly.
In the longer term, this kind of short-transaction workload could
be handled by the support for limited-size hardware transactions
which is emerging in industrial designs [13].

Comparing the unbounded results with the 512x4-entry filters
shows that there is little additional benefit in using a larger filter
size, or from having greater associativity.

Redundancies exploited by dynamic filtering. We tried to quan-
tify whether dynamic filtering was finding “easy” forms of redun-
dancy that might be identified by additional static analyses.

To do this, we instrumented each dyfl instruction to record the
number of hits and misses that occur with an unbounded filter size.
From this, we can identify instructions that always generate filter
hits, or always generate filter misses. We call these “polarized”
instructions. For a given run, polarized instructions which generate
filter hits would have been safe to remove. Of course, this is not
an exact indication of where dyfl instructions could be removed
by static analyses—e.g., an instruction may be redundant in one
run but not in another, or it may be that code motion can change a
polarized dyfl instruction into a non-polarized one, or vice-versa.
However, a high fraction of polarized instructions would intuitively
suggest that further static analyses might be straightforward.

Figure 7 shows the results for the STM benchmarks. As in Fig-
ure 2, the first row for each benchmark shows the simulation work-
load, and the second row shows the longer workload. The hit-rate
column provides the overall dyfl hit rate. The never-log column
shows the (dynamic) percentage of instructions that never generate
log entries. These results show that, for long workloads, the hit rate
achieved by dyfl is not simply due to polarized instructions. The
never-log percentage is higher for short workloads. This is because
some dyfl instructions generate log entries very occasionally, and
so they seem polarized on short runs.

Figure 7 also includes an always-log column, showing polarized
instructions that always generate log entries. Future implementa-
tions could avoid using dyfl entirely for these instructions. This
would be useful, in particular, with MaxFlow.

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o

n
 t
im

e

STM accel, 1024x2

STM & GC accel, 1024x2

STM & GC accel, 512x4

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o

n
 t
im

e

STM accel, 1024x2

STM & GC accel, 1024x2

STM & GC accel, 512x4

STM & GC accel, unbounded

Figure 8. Combined performance, normalized against the acceler-
ated STM performance.

4.5 Combined use

We now look at how dynamic filtering can be used for STM and GC
at the same time. The two applications use different sets of tags, but
they contend for space in the same set of filter entries without any
policy to reserve space for one use or the other.

Figure 8 shows the results, normalized against the 1024x2-entry
filter applied only to STM, adding GC acceleration with 1024x2
filtering, 512x4 filtering, and unbounded filtering. As before, the
results with 2048-entry filters are close to the unbounded size.

The savings from GC acceleration in Figure 8 are proportion-
ately less than those in Figure 5. However, this simply reflects the
fact that the earlier results use the sequential unsynchronized ver-
sions of the programs, while the latter results use the STM versions.
The absolute amount saved is the same in the two cases, but the
saving is proportionately smaller in the latter case because of the
additional time spent in the STM implementation.

4.6 Sensitivity

In Sections 4.3–4.5 we have used 2048-entry filters with varying
degrees of associativity. The close match between these results, and
those with an unbounded filter size, suggests that these workloads
would obtain little benefit in providing a larger filter size.

We studied JBBAtomic and MaxFlow in more detail to see
whether or not the results are sensitive to the use of 2048-entry
filters, or the 512-byte card size.

Figure 9 shows the results, using dynamic filtering for GC and
STM (JBBAtomic), and just for GC (JBBAtomic, MaxFlow). For
brevity, we omit STM results for MaxFlow because, as shown in
Figure 7, the STM hit rate for MaxFlow is close to 0, irrespective
of the filter configuration. We vary the filter size from 8192 entries
down to 4 entries, and the card size from 4096-bytes down to 256-
bytes. These results suggest that if we use a larger card size then
the total number of filter entries could be reduced from 2048.

5. Related Work

In this section we discuss related work on hardware support
for garbage collection (Section 5.1), transactional memory (Sec-
tion 5.2), and for language-based security (Section 5.3). At a high
level, there are two specific contributions of dyfl over existing
approaches for filtering redundant barrier operations:

First, dyfl identifies barrier operations by pairs of addresses,
whereas existing work identifies barriers by a single address. Han-
dling pairs of addresses exposes many more potential applications—
e.g., the garbage collection example from Section 4.3, and many of
the language-based security examples we sketched in Section 3.

Second, dyfl generalizes existing filtering approaches by pro-
viding quantization of ranges of addresses. This is important for

25%

50%

75%

100%

H
it
 r

a
te

0%

25%

50%

75%

100%

H
it
 r

a
te

filter entries

25%

50%

75%

100%

H
it
 r

a
te

0%

25%

50%

75%

100%

H
it
 r

a
te

filter entries

25%

50%

75%

100%

H
it
 r

a
te

4096

2048

1024

512

256

Card (bytes)

0%

25%

50%

75%

100%

H
it
 r

a
te

filter entries

4096

2048

1024

512

256

Card (bytes)

(a) JBBAtomic, GC-STM (b) JBBAtomic, GC (c) MaxFlow, GC

Figure 9. Sensitivity of results to the filter size and card size.

many of the heap management examples from Section 3, because
it allows groups of similar addresses to be handled by a single filter
entry. Our results from Figure 4 show how filtering based on quan-
tized pairs of addresses lets us achieve a significantly higher hit rate
than a single-address repetition filter.

5.1 Garbage Collection

Hardware support for tagged values has often been used by garbage
collected languages. Moon describes garbage collection in the
Symbolics 3600 LISP implementation [30]. Tagged memory iden-
tifies locations containing references, and a hardware read barrier
uses a table look-up to detect when the mutator loads a pointer to
from-space. A hardware write-barrier maintains a log of young ob-
jects that have been made reachable from other objects. MASA [19]
provides specific forms of “generation trap” and “transport trap” in-
terrupts for generational GC and incremental GC. Meyer proposed
architecture support for a particular kind of concurrent-GC read-
barrier for an object-based RISC processor [28]. Ungar investigated
support for a write barrier for generational GC as one feature of the
SOAR processor [39]. This is based on tags that identify each ob-
ject’s generation.

Object-based processors have included support for GC. Williams
and Wolczko’s “Mushroom” architecture [41, 43] supports collec-
tion of the current cache contents (akin to a young-space collection
in a generational system). Cache misses are managed by a software
trap handler which can maintain a remembered set of objects that
become reachable from outside the cache.

Wright et al. describe architecture support for garbage-collected
object-oriented programming [44]. As with Mushroom, they use
an object-addressed cache. A garbage collector may relocate an
object by copying its physical representation without changing its
object-id. As with Peng and Sohi’s work [31], a zero-and-allocate
instruction is provided to avoid needing to explicitly clear memory
which will be overwritten by a constructor. A further instruction is
provided to avoid writing known-to-be-garbage data back to mem-
ory. Wright et al.’s design supports in-cache garbage collection, in
which a set of cores are paused and GC is performed across their
local caches (e.g., a whole CMP might be paused together, but dif-
ferent CMPs in the same system would work independently). A
non-local bit in an object header’s cache line indicates that a refer-
ence to that object may have left a GC boundary.

Heil and Smith [21] exploit profiling hardware to log informa-
tion about stores to the heap. Dieckmann and Hölzle investigated
the use of active memory systems to support GC [17]. Chang et al.
investigated architecture support for a bitmap-based allocator and
mark-sweep garbage collector [12].

Click et al. describe techniques used by Azul System’s paral-
lel hardware to support “pauseless” garbage collection in an im-
plementation of the Java Virtual Machine [15]. There are a num-
ber of mechanisms. First, the hardware supports a “GC-mode” ac-

cess setting, in between the usual user-mode / kernel-mode distinc-
tion. GC-mode data is accessible to a collector, but inaccessible
to mutator code. Second, variants of some common instructions
(e.g., backwards branches, and function calls) can be flagged as
GC-safepoints at which per-CPU safepoint interrupts are delivered.
Third, a specialized form of hardware read-barrier is provided. The
barrier is used after a normal load to validate the value that has
been loaded from memory. It branches to a trap handler if the value
loaded is on a GC-mode page, or if a “not-marked-through” bit in
the value has the wrong sense.

Joao et al. describe a technique for hardware-supported reference-
counting [24]. The ISA provides separate instructions for manipu-
lating references, and for interacting with a storage allocator. The
implementation tracks reference counts in the L1 and L2 caches,
using a new hardware structure to coalesce updates to a reference
count field, and detecting if the count reaches zero. This can be
used in an elegant combination with a traditional software GC to
provide fast reuse of memory within a GC cycle.

5.2 Transactional Memory

Saha et al. examined architectural support for software transac-
tional memory [34]. They add a “mark” bit to blocks of memory
and provide mechanisms for these to be set and tested. The mark-
bits are non-persistent; for example, they may only be held for
lines in the L1-cache. Additional user-accessible meta-data indi-
cates when mark-bit values are lost. Our approach generalizes Saha
et al.’s work by allowing filtering to be based on address-pairs, and
allowing the addresses involved to be quantized.

Click argued that processors should provide a user-accessible
bit which is set whenever any data access misses in the processor’s
L1-cache, and whenever any line is evicted from the L1-cache [14].
He showed how this can be used to support cache-resident snapshot
operations, and that additional atomic operations can be supported
if a store can be made conditional on the cache bit.

Baugh et al. used fine-grain protection to isolate transactional
data in an implementation of TM with strong atomicity [6], and
to separate hardware-managed and software-managed regions in a
hybrid system. Baugh et al.’s approach does not aim to accelerate
longer transactions executed in STM; it is a good complement to
our work, since longer transactions tend to exhibit more repetition.

Yen et al. [46] and Sanyal et al. [35] describe hardware mech-
anisms to avoid logging thread-private data (e.g., stacks). That
kind of filtering is complementary to the kind we study here.
With Bartok-STM, stack accesses are typically made with different
MSIL bytecodes which do not introduce logging in the first place.

5.3 Security and Isolation

Horowitz et al. investigated “informing loads” [22] which combine
a memory access with a conditional branch dependent on cache
miss. They examined different mechanisms for making the control

flow transfer—e.g., an explicit branch, squashing an instruction
in a load-delay slot, or using an implicit lightweight trap to a
pre-defined address. The latter approach reduced the cost on the
(typically common) case of cache hits.

Witchel’s “Mondriaan” memory protection mechanism support
fine-grained control over memory protection settings [42] to sup-
port many of the software-security scenarios enabled by XFI [38].

Zhou et al.’s “iWatcher” supports user-supplied tracing func-
tions that execute when an application accesses memory [47].
These can be used to identify memory leaks, buffer overflows and
stack-corruption. These checks are heavier-weight operations than
we aim to support with dynamic filtering, with transitions to the
tracing functions made implicitly on accesses.

6. Conclusion

In this paper we have introduced dynamic filtering as an abstraction
for accelerating read/write-barriers used by language runtime sys-
tems. The key idea is to provide a mechanism for testing whether or
not a given runtime check has already been made—if the check has
already been performed then the barrier can be elided. If the check
has not yet been performed then the barrier executes as normal.
We have shown that GC and STM workloads frequently exhibit
sufficient spatial and temporal locality in their accesses that these
checks can avoid significant numbers of barrier executions. This
approach contrasts with previous work which have developed hard-
ware replacements for specific forms of barrier, and which are con-
sequently specialized to particular memory layouts or algorithms.

In future work we wish to evaluate the use of dynamic filtering
more broadly. We sketched a number of such uses in Section 3, and
would like to implement more of these. There are numerous policy-
related design choices which we hope to revisit with reference to a
wider range of applications of dyfl. First, when using dyfl in
several ways at the same time, we may need to revisit the choice
to use a small number of statically-allocated tags; some kind of
dynamic arbitration may be necessary. Techniques such as those for
managing limited numbers of signature registers may be relevant
here [37]. Second, some form of control may be needed over the
portion of the filter state which is devoted to any given tag—
particularly if one tag is flooding the filter state without any benefit.

We would also like to evaluate the performance on different
compilers, and machines based on different instruction sets. For
instance, a system using a dynamic compiler might benefit from
using dyfl more significantly than the ahead-of-time compiler
that we have used. This is because dynamic compilation might have
less time to devote to optimizing barrier placement in software,
and so the amount of redundancy available dynamically might be
greater. We would also like to examine the performance of practical
implementations, e.g., using the RAMP BEE3 platform [16].

Acknowledgments

We would like to thank Martı́n Abadi, Mihai Budiu, Vladimir
Gajinov, Steven Hand, Michael Isard, Peter Jonsson, Jean-Philippe
Martin, Cristian Perfumo, Burton Smith, Karin Strauss and Ferad
Zyulkyarov for their comments on earlier versions of this paper. We
would also like to thank the anonymous reviewers for their feed-
back; many of the ideas for future work were suggested by the
reviewers. This work is supported by the cooperation agreement
between the Barcelona Supercomputing Center – National Super-
computer Facility and Microsoft Research, by the Ministry of Sci-
ence and Technology of Spain and the European Union (FEDER
funds) under contract TIN2007-60625, and by the European Net-
work of Excellence on High-Performance Embedded Architecture
and Compilation (HiPEAC).

References

[1] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.
Control-flow integrity. In CCS ’05: Proc. 12th ACM Conference on

Computer and Communications Security, pages 340–353, November
2005.

[2] Martı́n Abadi, Tim Harris, and Mojtaba Mehrara. Transactional mem-
ory with strong atomicity using off-the-shelf memory protection hard-
ware. In PPoPP ’09: Proc. 14th ACM Symposium on Principles and

Practice of Parallel Programming, pages 185–196, February 2009.

[3] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and
Miguel Castro. Preventing memory error exploits with WIT. In
SP ’08: Proc. 2008 IEEE Symposium on Security and Privacy, pages
263–277, May 2008.

[4] Bowen Alpern, Steve Augart, Stephen M. Blackburn, Maria Butrico,
Anthony Cocchi, Perry Cheng, Julian Dolby, Stephen J. Fink, David
Grove, Michael Hind, Kathryn S. McKinley, Mark F. Mergen,
J. Eliot B. Moss, Ton Anh Ngo, Vivek Sarkar, and Martin Trapp.
The Jikes research virtual machine project: building an open-source
research community. IBM Syst. J., 44(2):399–417, 2005.

[5] Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank. An on-
the-fly mark and sweep garbage collector based on sliding views.
In OOPSLA ’03: Proc. 18th ACM SIGPLAN Conference on Object-

Oriented Programing, Systems, Languages, and Applications, pages
269–281, October 2003.

[6] Lee Baugh, Naveen Neelakantam, and Craig Zilles. Using hardware
memory protection to build a high-performance, strongly-atomic hy-
brid transactional memory. In ISCA ’08: Proc. 35th International Sym-

posium on Computer Architecture, pages 115–126, June 2008.

[7] Stephen M. Blackburn and Antony L. Hosking. Barriers: friend or
foe? In ISMM ’04: Proc. 4th International Symposium on Memory

Management, pages 143–151, October 2004.

[8] Stephen M. Blackburn and Kathryn S. McKinley. In or out?: Putting
write barriers in their place. In ISMM ’02: Proc. 3rd International

Symposium on Memory Management, pages 175–184, June 2002.

[9] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[10] Mihai Budiu, Úlfar Erlingsson, and Martı́n Abadi. Architectural sup-
port for software-based protection. In ASID ’06: Proc. 1st Workshop

on Architectural and System Support for Improving Software Depend-

ability, pages 42–51, October 2006.

[11] Miguel Castro, Manuel Costa, and Tim Harris. Securing software
by enforcing data-flow integrity. In OSDI ’06: Proc. 7th Symposium

on Operating Systems Design and Implementation, pages 147–160,
November 2006.

[12] J. Morris Chang, Witawas Srisa-an, Chia-Tien Dan Lo, and Edward F.
Gehringer. DMMX: dynamic memory management extensions. Jour-

nal of Systems and Software, 63(3):187–199, 2002.

[13] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karls-
son, Anders Landin, Sherman Yip, Håkan Zeffer, and Marc Trem-
blay. Rock: A high-performance Sparc CMT processor. IEEE Micro,
29(2):6–16, 2009.

[14] Cliff Click. IWannaBit! In MSPC ’08: Proc. 2008 ACM SIGPLAN

workshop on Memory Systems Performance and Correctness, pages
20–25, March 2008.

[15] Cliff Click, Gil Tene, and Michael Wolf. The pauseless GC algorithm.
In VEE ’05: Proc. 1st International Conference on Virtual Execution

Environments, pages 46–56, June 2005.

[16] John D. Davis, Charles P. Thacker, and Chen Chang. BEE3: Revitaliz-
ing computer architecture research. Technical Report MSR-TR-2009-
45, Microsoft Research, April 2009.

[17] Sylvia Dieckmann and Urs Hölzle. A case for using active memory to
support garbage collection. In Proc. 1st Workshop on Hardware Sup-

port for Objects and Microarchitectures in Java, pages 1–5, October
1999.

[18] Damien Doligez and Xavier Leroy. A concurrent, generational
garbage collector for a multithreaded implementation of ML. In

POPL ’93: Proc. 20th ACM Symposium on Principles of Program-

ming Languages, pages 113–123, January 1993.

[19] Robert H. Halstead, Jr. and Tetsuya Fujita. MASA: a multithreaded
processor architecture for parallel symbolic computing. SIGARCH

Comput. Archit. News, 16(2):443–451, 1988.

[20] Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Opti-
mizing memory transactions. In PLDI ’06: Proc. 2006 ACM SIGPLAN

Conference on Programming Language Design and Implementation,
pages 14–25, June 2006.

[21] Timothy H. Heil and James E. Smith. Concurrent garbage collec-
tion using hardware-assisted profiling. In ISMM ’00: Proc. 2nd Inter-

national Symposium on Memory Management, pages 80–93, October
2000.

[22] Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D.
Smith. Informing memory operations: memory performance feed-
back mechanisms and their applications. ACM Trans. Comput. Syst.,
16(2):170–205, 1998.

[23] Galen C. Hunt and James R. Larus. Singularity: rethinking the soft-
ware stack. SIGOPS Oper. Syst. Rev., 41(2):37–49, 2007.

[24] José A. Joao, Onur Mutlu, and Yale N Patt. Flexible reference-
counting-based hardware acceleration for garbage collection. In
ISCA ’09: Proc. 36th International Symposium on Computer Archi-

tecture, pages 418–428, June 2009.

[25] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for

Automatic Dynamic Memory Management. John Wiley and Sons, July
1996.

[26] Haim Kermany and Erez Petrank. The compressor: concurrent, in-
cremental, and parallel compaction. In PLDI ’06: Proc. 2006 ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 354–363, June 2006.

[27] Yossi Levanoni and Erez Petrank. An on-the-fly reference-counting
garbage collector for Java. ACM Trans. Program. Lang. Syst., 28(1):1–
69, 2006.

[28] Matthias Meyer. A true hardware read barrier. In ISMM ’06: Proc. 5th

International Symposium on Memory Management, pages 3–16, June
2006.

[29] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle
Olukotun. STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08: Proc. IEEE International Symposium on

Workload Characterization, pages 35–46, September 2008.

[30] David A. Moon. Garbage collection in a large LISP system. In
LFP ’84: Proc. 1984 ACM Symposium on LISP and Functional Pro-

gramming, pages 235–246, August 1984.

[31] Chih-Jui Peng and Gurindar S. Sohi. Cache memory design consider-
ations to support languages with dynamic heap allocation. Technical
Report 860, Wisconsin CS Dept, 1989.

[32] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of con-
current real-time garbage collectors. In PLDI ’08: Proc. 2008 ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation, pages 33–44, June 2008.

[33] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. McRT-STM: a high performance
software transactional memory system for a multi-core runtime. In
PPoPP ’06: Proc. 11th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 187–197, March 2006.

[34] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architec-
tural support for software transactional memory. In MICRO ’06: Proc.

39th Annual IEEE/ACM International Symposium on Microarchitec-

ture, pages 185–196, December 2006.

[35] Sutirtha Sanyal, Sourav Roy, Adrián Cristal, Osman S. Unsal, and Ma-
teo Valero. Dynamically filtering thread-local variables in lazy-lazy
hardware transactional memory. In HPCC ’09: Proc. 11th IEEE In-

ternational Conference on High Performance Computing and Com-

munications, June 2009.

[36] Michael L. Scott, Mike F. Spear, Luke Dalessandro, and Virendra J.
Marathe. Delaunay triangulation with transactions and barriers. In
IISWC ’07: Proc. IEEE International Symposium on Workload Char-

acterization, pages 107–113, September 2007.

[37] James Tuck, Wonsun Ahn, Luis Ceze, and Josep Torrellas. SoftSig:
software-exposed hardware signatures for code analysis and optimiza-
tion. In ASPLOS ’08: Proc. 13th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems,
pages 145–156, March 2008.

[38] Úlfar Erlingsson, Martı́n Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. XFI: software guards for system address spaces.
In OSDI ’06: Proc. 7th Symposium on Operating Systems Design and

Implementation, pages 75–88, November 2006.

[39] David Michael Ungar. The Design and Evaluation of A High Perfor-

mance Smalltalk System. PhD thesis, EECS Department, University
of California, Berkeley, Feb 1986.

[40] Martin T. Vechev and David F. Bacon. Write barrier elision for
concurrent garbage collectors. In ISMM ’04: Proc. 4th International

Symposium on Memory Management, pages 13–24, October 2004.

[41] Ifor W. Williams and Mario I. Wolczko. An object-based memory
architecture. In POS ’90: Proc. 4th Intl. Workshop on Persistent Object

Systems, pages 114–130. Morgan Kaufmann, September 1990.

[42] Emmett Jethro Witchel. Mondriaan memory protection. PhD thesis,
Massachusetts Institute of Technology, January 2004.

[43] Mario Wolczko and Ifor Williams. Multi-level garbage collection in a
high-performance persistent object system. In POS ’92: Proc. 5th Intl.

Workshop on Persistent Object Systems, pages 396–418, September
1992.

[44] Greg Wright, Matthew L. Seidl, and Mario Wolczko. An object-aware
memory architecture. Sci. Comput. Program., 62(2):145–163, 2006.

[45] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris
Volos, Mark D. Hill, Michael M. Swift, and David A. Wood. LogTM-
SE: Decoupling hardware transactional memory from caches. In
HPCA ’07: Proc. 13th International Symposium on High Performance

Computer Architecture, February 2007.

[46] Luke Yen, Stark C. Draper, , and Mark D. Hill. Notary: Hardware
techniques to enhance signatures. In MICRO ’08: Proc. 41st Inter-

national Symposium on Microarchitecture, pages 234–245, November
2008.

[47] Yuanyuan Zhou, Pin Zhou, Feng Qin, Wei Liu, and Josep Torrellas.
Efficient and flexible architectural support for dynamic monitoring.
ACM Trans. Archit. Code Optim., 2(1):3–33, 2005.

