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Abstract

This paper introduces a new way to provide strong atomicity in an
implementation of transactional memory. Strong atomicity lets us
offer clear semantics to programs, even if they access the same
locations inside and outside transactions. It also avoids differ-
ences between hardware-implemented transactions and software-
implemented ones. Our approach is to use off-the-shelf page-level
memory protection hardware to detect conflicts between normal
memory accesses and transactional ones. This page-level mecha-
nism ensures correctness but gives poor performance because of the
costs of manipulating memory protection settings and receiving no-
tifications of access violations. However, in practice, we show how
a combination of careful object placement and dynamic code up-
date allows us to eliminate almost all of the protection changes. Ex-
isting implementations of strong atomicity in software rely on de-
tecting conflicts by conservatively treating some non-transactional
accesses as short transactions. In contrast, our page-level mecha-
nism lets us be less conservative about how non-transactional ac-
cesses are treated; we avoid changes to non-transactional code until
a possible conflict is detected dynamically, and we can respond to
phase changes where a given instruction sometimes generates con-
flicts and sometimes does not. We evaluate our implementation
with C# versions of many of the STAMP benchmarks, and show
how it performs within 25% of an implementation with weak atom-
icity on all the benchmarks we have studied. It avoids pathological
cases in which other implementations of strong atomicity perform
poorly.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Algorithms, Languages, Performance

1. Introduction

Many implementations of atomic blocks in programming lan-
guages provide “weak atomicity” which means that there is no
concurrency control between the operations being done inside an
atomic block and the operations being done outside [3]. It is of-
ten difficult to define the semantics of such systems independently
of the details of a particular implementation, so programs that seem
to work on some implementations may not work on others.
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The “privatization problem” [6, 7, 26, 28] illustrates several of
the questions that arise in implementations with weak atomicity:

// Initially x==0, x_shared==true

// Thread 1 // Thread 2

atomic { atomic {

x_shared = false; if (x_shared) {

} x ++;

x = 100; } }

A programmer might reason that Thread 1’s update to x shared

allows its subsequent update to x to be made as a normal non-
transactional store. After these fragments have run, a program-
mer might expect that x==100 whichever order the atomic

blocks ran in. However, implementations over software transac-
tional memory (STM [24]) can lead to other results, e.g., x==1 if
the implementation of Thread 2’s atomic block was still writing
back a buffered update to x concurrently with Thread 1’s non-
transactional store.

In this paper we examine the implementation of atomic blocks
that provide “strong atomicity”, that is, with concurrency control
between transactional and non-transactional accesses to the same
memory location. With strong atomicity x==100 is the only pos-
sible result in our example. Furthermore, since strong atomicity is
the semantics offered by hardware TM implementations, it is at-
tractive to be able to provide the same semantics in software.

Existing software implementations of strong atomicity are
based on modifying code outside atomic blocks to detect con-
flicts with concurrent transactions. These accesses are conserva-
tively expanded to optimized short transactions. Naı̈ve implemen-
tations perform poorly because of this expansion, although whole-
program analyses can be used to reduce the number of memory
accesses that must be expanded in this way [25].

In this paper we examine an alternative approach that lets us
modify code dynamically in response to a possible conflict. When
compared with conservative expansion, this dynamic approach can
reduce the number of non-transactional operations that have been
expanded but do not actually encounter conflicts during execution.

Our key implementation technique is to use off-the-shelf mem-
ory protection hardware to detect possible conflicts between trans-
actional accesses and normal accesses. We detect conflicts by orga-
nizing the process’s virtual address space so that its heap is mapped
twice; one mapping is used when executing inside a transaction,
and the other mapping is used during normal execution. This or-
ganization lets us selectively prevent normal access to pages while
they remain accessible transactionally. We use this mechanism to
detect possible conflicts between transactional accesses and nor-
mal accesses at the granularity of pages; we use an existing STM
to detect conflicts between transactions at the granularity of objects.

We introduce our design in several stages. We discuss the basic
approach in Section 3, showing how we organize the process’s
virtual address space, and how we wrap the STM implementation



with page-level concurrency control. We discuss how we handle
access violations (AVs) triggered by normal accesses. We sketch
an informal correctness argument.

This basic design provides a foundation that is sound but slow:
on conventional hardware it is costly to modify the memory pro-
tection settings, and to handle any AVs that arise. In Section 4 we
introduce a number of techniques to mitigate these costs. We allow
the language runtime system to operate without triggering AVs. We
use static analysis to identify non-transactional operations that are
guaranteed not to conflict with transactions (these can bypass the
page-level checks) and to identify transactions that are guaranteed
not to conflict with normal accesses (these transactions need not
revoke normal-access permissions on the pages involved).

As we discuss in Section 5, we dynamically identify operations
that trigger large numbers of AVs and update them to use short
transactions. These updates limit the number of times that any given
instruction can trigger an AV, letting us avoid the resulting costs in
programs that include sharing between transactional accesses and
normal ones (whether actual sharing of the same object, or false
sharing of different objects on the same page).

We present low-level implementation details in Section 6. We
show how we use dynamic code updating to reduce the D-TLB
pressure introduced by mapping a process’s heap twice. We also
explain how we reduce false sharing when transactionally accessed
and non-transactionally accessed data is placed on the same page.
All of our work has been implemented in user mode over Windows
Vista and Windows Server 2003. We did not make any modifica-
tions to the operating systems.

We examine the performance of our implementation in Sec-
tion 7. We show how, despite its complexity, it does not harm the
scaling of our benchmarks. We also show that the overhead of using
strong atomicity is less than 25% over weak atomicity, even when
we do not use any whole-program analyses to reduce conflicts.

We discuss related work in Section 8 and conclude in Section 9.

2. Programming Model

We base our work on the Bartok compiler and runtime system in
which we have developed earlier STM implementations [10]. In
this section we summarize this existing work and the programming
model that we are implementing.

Our starting point is the C# language augmented with block-
structured atomic sections. These atomic blocks are intended
only for concurrency control on shared memory data structures;
it is an error to invoke native code from them. Code within an
atomic block must be written in the safe verifiable subset of C#;
unsafe constructs, such as pointer arithmetic, are not permitted. The
programmer does not need to indicate whether or not a particular
piece of data is accessed in atomic blocks, or whether or not a
particular method may be called from them.

2.1 STM Implementation

The atomic blocks are implemented using STM following the
approach of Harris and Fraser [9]. STM operations are introduced
by the compiler for concurrency control on each of the objects
accessed inside an atomic block and then static analyses are used
to identify operations that are redundant (for example because a
transaction re-reads an object it has already read).

Bartok-STM makes in-place updates as a transaction runs; this
technique is also known as “eager updates” or “eager version-
ing” [18]. The STM uses encounter-time locking between writ-
ers, so that at most one transaction may be writing to any given
object. The STM uses lazy conflict detection based on per-object
version numbers for reads. The compiler adds periodic validation
checks inside transactions. Our earlier paper provides pseudo-code

for these operations [10]. The techniques in this paper could readily
apply to other STM designs.

The runtime system implements services like memory alloca-
tion, garbage collection (GC), and the STM all in C#. Ordinary
type-safe C# is used for the majority of these services, with unsafe
loop-holes used in the low levels. A similar approach is taken in the
Jikes RVM implementation of the Java Virtual Machine.

The STM implementation is integrated with the memory allo-
cator and GC. Different threads can concurrently allocate storage
space without introducing conflicts between their transactions. GC
can occur during a transaction without requiring the transaction to
be aborted, and the GC can reclaim objects that a transaction has
allocated but which will be unreachable whether or not it commits.

We use Bartok in an ahead-of-time whole-program mode, gen-
erating native x86 code from the bytecode of the application com-
piled along with the bytecode of the runtime system.

2.2 Memory Management Requirements

In this section we summarize the requirements that we make of the
operating system’s memory management APIs and the processor’s
memory management hardware.

• We require a mechanism to allocate storage space and to map
the same storage space at multiple locations in a process’s
virtual address space. In Win32 this mechanism is provided by
CreateFileMapping and MapViewOfFile. In Unix it is
provided by mmap.

• We assume that a process has a mechanism to control the access
permissions on the pages in its virtual address space. In Win32
this is provided by VirtualProtect. In Unix it is provided
by mprotect. We assume that a change to a page’s protec-
tion settings takes effect before a call to VirtualProtect

or mprotect returns. To achieve this, the implementation of
these calls may require an inter-processor “TLB-shootdown”
interrupt to be used to flush any other processors’ TLB map-
pings for the page.

• We assume that the threads within a process see a coherent view
of multiple mappings of the same data: an update through one
virtual address for a given piece of data should be immediately
reflected through any other virtual addresses for the same data.

• We require a mechanism for a process to receive notifications
of AVs that it triggers—e.g., via structured exception handling
in C++ on Win32, or via a signal handler on Unix.

All of these requirements are conventional and met by current
desktop and server operating systems and off-the-shelf processors.

3. Strong Atomicity via Page Protection

In this section we introduce our basic approach for building strong
atomicity over off-the-shelf memory protection hardware. This pro-
vides a sound—but slow—foundation on which to develop a practi-
cal implementation in Sections 4–6. We introduce our basic design
(Section 3.1). We discuss a number of design alternatives and the
rationale for the choices we made (Section 3.2). We sketch an in-
formal correctness argument (Section 3.3).

3.1 Implementation Overview

Figure 1(a) shows the heap structure that we use. The process’s vir-
tual address space initially contains two identical read-write views
of the same heap; we call these the “normal heap” (pages N0..N3 in
the figure) and the “tx-heap” (pages Tx0..Tx3). The normal heap is
used during non-transactional execution. The tx-heap is used inside
transactions. Page protection settings are associated with pages in
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Figure 1. Heap structure during a transaction and in response to
an AV from normal code. Changes are shaded at each step.

the virtual address space, and so, for example, Tx0 may have differ-
ent protection settings than N0. In order to detect conflicts between
transactional and non-transactional accesses, we modify page pro-
tections so that a possible conflict triggers an AV.

For simplicity we show both heaps referring to contiguous phys-
ical memory. In practice the physical storage might not be contigu-
ous and might also be paged out to disk in the usual way. We place
the two heaps at a constant offset from one another. This makes it
easy to translate between addresses. On a 32-bit machine we use a
1GB offset. A larger offset could be used on 64-bit machines. We
use normal 4KB pages.

At runtime we maintain three meta-data values for each physical
page. First, a status field indicates which kinds of non-transactional
access are currently permitted (“None”, “R”, or “RW”). This field
lets the runtime system check a page’s current status without need-
ing to make a system call. Second, a “writer count” records how
many transactions are currently writing to the page. This is shown

on each tx-heap page in the figure, with its initial value of zero. The
writer count is used when handling an AV: the AV handler waits un-
til the writer count is back to zero before restoring normal access
to the page. Finally, a “transition count” records how many times
the page has had normal read-write access restored to it. This is
shown on each normal-heap page in the figure, initialized to zero.
As we illustrate below, the transition count is used to detect page-
level conflicts between transactional readers and non-transactional
writers: a change to the transition count indicates, to a transactional
reader, that the page has reverted to normal access at least once
during the transaction (so the transaction must abort because of the
possible conflict).

Figure 1(b)-(d) illustrate our page-based technique using the
privatization example of Section 1. Suppose that Thread 1 is just
about to execute x=100 non-transactionally, and Thread 2 is just
about to execute x++ inside a transaction. With weak atomicity this
conflict on x is not detected and various implementation-dependent
results are possible (e.g., x==101).

Our implementation of strong atomicity can detect the conflict
as follows:

1. Figure 1(b): Thread 2 requests transactional read access to page
Tx3 that holds variable x. This changes the protection on N3 to
be read-only, preventing any normal updates being made to that
page. The transaction records the transition count for page N3
(currently 0). The transaction proceeds with its read once the
page protection has been changed.

2. Figure 1(c): Thread 2 requests transactional write access to page
Tx3. This has two effects: the writer count is incremented on
Tx3, and all normal access to the page is revoked.

3. Figure 1(d): Thread 1 attempts x=100, which triggers an ac-
cess violation on page N3. The AV handler must wait until
there are no concurrent transactional writers: in this case it must
wait for Thread 2’s transaction to roll back. When there are no
transactional writers, Thread 1 increments N3’s transition count
(to cause any concurrent transactional readers to be aborted),
and restores normal read-write access to the page. An AV trig-
gered by a read is similar, except that (i) read-only access can
be granted instead of read-write access, and (ii) the transition
count need not be incremented because the normal read will
not conflict with a transactional read.

3.2 Design Choices

There are many variants of this general technique. The particular
design choices in our implementation are motivated by two goals.
Our first goal is to avoid overhead on non-transactional code unless
a page-level conflict is detected; we assume that execution is usu-
ally non-transactional, and so we want to avoid slowing it down.
Our second goal is to reduce the overhead that supporting strong
atomicity (rather than weak atomicity) imposes to the STM imple-
mentation.

We identified a number of design choices, and used our goals to
help select between them:

When to revoke access. We considered whether to revoke
transactional access to pages that are being used outside trans-
actions, or whether to retain transactional access at all times, and
to revoke only non-transactional access. We chose the latter option
because it avoids needing to modify non-transactional code to ma-
nipulate page table entries. This choice is motivated by our goal to
avoid overhead on non-transactional code.

When to restore access. Normal access permission can either
be restored eagerly (i.e., as soon as there are no transactions ac-
cessing objects on a page), or it can be restored lazily (i.e., only
when an AV occurs). We chose to make these changes lazily to re-
duce the cost that supporting strong atomicity adds to code inside
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Figure 2. Response to AVs: we restore normal access in the AV
handler and then re-execute the instruction.

an atomic block. Restoring access lazily avoids ping-ponging be-
tween access modes if the same data is accessed repeatedly inside
transactions without being accessed non-transactionally.

Which permissions to restore on an AV triggered by a read.
We considered whether to restore read-only access to the page, or
whether to restore read-write access. Restoring read-only access is
preferable if the page is also being read by transactions. On the
other hand, restoring read-write access is preferable if the page is
subsequently written non-transactionally. In practice, in our exper-
iments, our dynamic code update mechanism (Section 5) reduces
the number of AVs to such an extent that the choice of how to re-
spond to AVs is not critical. We currently restore read-only access
in response to an AV triggered by a read.

Visible or invisible page-level reading. As in transactional
memory designs we can select between using “visible” or “invis-
ible” reading, that is, we can select whether or not the presence
of a transactional reader is directly visible to other threads [11].
Page-level visible reading allows an AV handler to determine if a
normal write may conflict with a concurrent reading transaction.
Conversely, invisible reading does not allow an AV handler to de-
tect concurrent transactional readers.

We initially experimented with both approaches. However, the
contention introduced by maintaining per-page reader information
led us to focus on invisible reading, given our goal of reducing the
overhead added to the STM.

Response to AVs. We identified two basic responses to AVs:
either to leave the page protection unchanged and emulate the effect
of the failing memory access as a short transaction (“emulate”), or
to wait until it is safe to restore normal access before re-executing
the instruction (“wait”).

We chose the latter approach for two reasons. First, the informa-
tion needed to emulate an individual instruction as a transaction is
not immediately available at runtime—we would need to map the
address being accessed back to an object-base/offset pair. Further-
more, so that the GC could trace the STM logs, we would need to
determine whether or not the address being accessed holds a refer-
ence. Neither of these look-ups is designed to be fast in the Bartok
runtime system. The second reason for using the “wait” strategy is
that it leaves the page accessible to subsequent non-transactional
reads without further AVs. Note that “wait” avoids deadlock be-
cause a transaction never needs to wait for non-transactional code.

Figure 2 summarizes this basic “wait” approach; we build on
this in Sections 4–6.

Format of object references. Introducing a second mapping of
the process’s heap raises the question of how objects are identified:
is one form of reference used throughout, or can an object be
identified by either of its virtual addresses?

For simplicity we always represent object references using the
address in the normal heap. Within a transaction, the translation
from these normal references to addresses in the tx-heap is deferred
until the actual native instructions that read or write the objects.
In practice, a final peephole optimization pass can often combine
this translation with another operation, e.g., when accessing an
object’s field, the translation becomes an adjustment to the offset.
This approach means that, outside the STM, the language’s runtime
system does not need to be aware of the changes to the structure of

the heap and that there is no need to marshal between different
forms of object reference when data enters or leaves a transaction.

3.3 Correctness Argument

Our informal correctness argument is based on the notion that the
page protection settings established before transactional memory
accesses and checked after transaction validation are sufficient to
detect conflicts with normal accesses.

The cases of pages that have been written by a transaction are
straightforward: each transaction increments the writer count for
the pages it writes, normal access is revoked before the transac-
tional write is made, and an AV handler waits until the writer count
is back to 0.

The cases of pages that have been read by a transaction are
slightly more complex. Before the transaction’s first read from a
page it must have recorded the page’s transition count and observed
that the page was either inaccessible to normal code, or that it was
read-only to normal code. After the transaction’s normal valida-
tion work it must have observed that the transition count was un-
changed. This means that the page was never writable by normal
code at any point since the read. Note how it is necessary that the
page-level validation be done after the STM-level validation. Oth-
erwise, if the page-level validation were to be done first, a conflict
would be missed if a normal write were to occur after the page-level
checks but before the STM-level checks.

4. Avoiding AVs

The basic technique of Section 3 isolates transactions from normal
memory accesses. In this section we introduce the techniques we
use to develop a practical implementation from this foundation. The
main idea is to identify “safe” memory accesses that cannot trigger
AVs. We call an access “safe” if either:

• It is a normal access that cannot conflict with a concurrent trans-
action (that is, there will be no transaction that has started, but
not yet finished committing or aborting, whose implementation
will make a conflicting access).

• It is a transactional access whose implementation cannot con-
flict with a normal access (that is, there will be no conflicting
normal access between the time of the transactional access and
the time when the transaction finishes its commit or abort).

We employ static analyses in order to establish safety. So far we
have used extensions to fairly standard techniques (so we do not
describe them in detail). Our experiments indicate that these tech-
niques may well be sufficient (Section 7). We discuss three kinds of
safe access: safe accesses by the language implementation and run-
time system (Section 4.1), safe accesses by non-transactional code
(Section 4.2), and safe accesses by transactions (Section 4.3).

4.1 Safe Accesses by the Language Implementation and
Runtime System

Many memory accesses made by the language implementation and
runtime system are safe:

• Access to virtual method tables and array lengths. These are
initialized when an object is allocated and are then immutable.

• Loads of values into dead registers. These are used to imple-
ment explicit null reference tests which are executed for their
possible side effect of triggering an AV; the actual value loaded
is not required.

• Access to the data structures used by the memory allocator and
the STM. The memory allocator and STM never run transac-
tionally, and their internal data structures are disjoint from those
accessed by the application.



class Sequencer {

...

private int ComputeUniqueSegments(int nthreads) {

int nUniqueSegment = 0;

for (int i = 0; i < nthreads; i++)

nUniqueSegment += this.uniqueSegments[i].Count;

return nUniqueSegment;

}

...

}

(a) Source code.

Genome_Sequencer_ComputeUniqueSegments::

... // Prologue omitted for brevity

mov edi,ecx

mov esi,edx

xor ebp,ebp

xor ebx,ebx

test edx,edx

jle done

loop:

mov eax,dword ptr [edi+0x20] // I1

cmp ebx,dword ptr [eax+0x40000004] // I2

jae outOfRange

mov ecx,dword ptr [eax+ebx*4+0x08] // I3

mov eax,dword ptr [ecx+0x40000000] // I4

call dword ptr [eax+0x40000088] // I5

add ebp,eax

add ebx,1

cmp ebx,esi

jl loop

done:

mov eax,ebp

... // Epilogue omitted for brevity

ret

outOfRange:

call throwNewIndexOutOfRangeException

(b) Native code exploiting safe run-time system accesses.

Figure 3. Exploiting safe memory accesses during compilation:
I2, I4, and I5 access immutable data managed by the runtime
system, so access checks are not required on them. We exploit this
by having them access the tx-heap at an offset of 0x40000000
from the normal heap. We show the actual code generated by
Bartok except that, for clarity, we disable loop optimizations and
add descriptive label names.

• The GC implementation. We use a stop-the-world GC. As in our
earlier work [10], the GC is aware of the STM’s data structure
formats and traverses them if a GC occurs at a time when any
threads are executing transactions.

These safe memory accesses cannot conflict with transactions, so
do not require page-level access checks. We eliminate these page-
level checks by compiling safe memory accesses so that they use
the tx-heap mapping; as we discussed in Section 3 we never revoke
access to pages in the tx-heap.

Figure 3 illustrates this point. The code fragment is taken from
our C# version of the STAMP Genome benchmark [17]. It iterates
over an array uniqueSegments. Each element of the array refers
to a hashtable. ComputeUniqueSegments computes the total
number of elements in these tables. It executes non-transactionally,
but the tables themselves are manipulated by transactions.

The main work in the example is in the block following the label
loop. I1 loads the register eax with a reference to the array.
I2 compares the index being accessed with the array’s bounds.
I3 loads a reference to a particular hashtable from the array. I4
loads the virtual-method-table pointer from the hashtable, and I5
performs the virtual call. The access made by I2, I4, and I5 can
all be made to the tx-heap because they access immutable data.

4.2 Safe Accesses by Normal Code

We identify normal memory accesses that are safe because they
can never conflict with transactions. If a location is never accessed
transactionally then all accesses to it are safe. Furthermore, if a
location is never written to transactionally, then all read accesses to
it are safe.

We identify such locations using a simple NAIT analysis based
on Shpeisman et al.’s approach [25]. Concretely, we use Steens-
gaard’s points-to analysis [27] to identify objects that are never
accessed in transactions, and objects that are read-only in transac-
tions. Each element in the points-to set of a load or store is marked
as transactional or normal depending on the kind of access being
performed. We can then transform normal memory accesses into
direct accesses to the tx-heap if, after the analysis, none of the el-
ements in the access’s points-to set are accessed transactionally.
Similarly, we can transform a read if none of these elements are
written transactionally.

We perform a simple static escape analysis to identify objects
that remain thread-local even though they are accessed transaction-
ally as well as normally. All accesses to these objects are safe. We
use a simple intra-procedural forward data-flow analysis to identify
safe accesses during object initialization.

Returning to the code fragment from Genome in Figure 3, the
above analyses enable the accesses at I1 and I3 to use the tx-heap
directly. The access at I1 is safe because there are no transactional
stores to the uniqueSegments field (as detected by the first
static analysis). Similarly, the access at I3 is safe because the array
that this.uniqueSegments refers to is never updated inside a
transaction. Therefore, these instructions can be rewritten as:

mov eax,dword ptr [edi+0x40000020] // I1

...

mov ecx,dword ptr [eax+ebx*4+0x40000008] // I3

4.3 Safe Accesses by Transactions

We identify transactional memory accesses that are safe because
they can never conflict with normal accesses. These transactional
accesses can be performed without needing to revoke normal access
to the locations involved. This may allow fewer page protection
changes to be made. It may also avoid some false conflicts.

We identify safe accesses by transactions using the same anal-
yses that we use for safe accesses by non-transactional code. Stat-
ically, the results are promising: around 85% of the transactional
memory-access instructions are safe in our experiments. However,
dynamically, very few page protection changes are avoided. There
are two reasons for this. First, array accesses are less frequently
safe but, dynamically, form a substantial fraction of the accesses in
our benchmarks. Second, a transaction can avoid changing a page’s
protection only if all of the data accesses it makes to the page are
safe: a single non-safe access will trigger a protection change.

5. Dynamic Code Update on AVs

The techniques of Section 4 reduce the frequency of AVs. In this
section we discuss how to accommodate workloads with genuine
sharing between transactional and non-transactional code. Our
technique patches non-transactional code that triggers frequent
AVs, replacing the faulting instructions with ones to perform a
short transactional access (Figure 4).

Our current approach is that, on an AV, we both update the
source of the AV and we restore access to the page in question. This
simple heuristic seems to work well in practice; the update avoids
immediately subsequent AVs from accesses to nearby locations.

Dynamic code update also lets us bound the number of AVs that
a process may incur: if a memory access is always updated upon
triggering an AV then the number of AVs is limited by the number
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Figure 4. Response to AVs: before re-executing the original in-
struction we consider updating the code to use a short transaction.

of memory access instructions. In practice, as we show in the re-
sults in Section 7, the number of AVs is vastly less than this bound.
However, the bound provides assurance against pathological cases
which might otherwise trigger vast numbers of AVs.

Since we are building on an ahead-of-time compiler we use
binary patching to make code updates. Figure 5 illustrates this point
using the Hashtable.Count property that is called from the
earlier example in Figure 3 if it is compiled to use standard library
classes. Figure 5(a) shows the original source code. We modify
each basic block that may trigger an AV:

1. We generate an alternate version of the basic block with each
possibly faulting operation replaced by a call onto a library
function that performs the operation as a short transaction.
These blocks are generated early during compilation when type
information is available. Furthermore, the implementation of
the short transactions can be inlined, STM meta-data can be
re-used from one short transaction to the next, and so on. The
blocks are placed out-of-line at the end of each function and
control-flow edges to them are considered rarely taken for the
purpose of register allocation. In the example in Figure 5(b) this
is the block labeled alternate, reading an integer-valued
field at an offset of 16 from the object reference held in ecx.
(Our calling convention places the result in register eax and the
first two parameters in ecx and edx.)

2. We generate a table listing the locations to patch: an AV after
primary will be patched by atomically replacing the first
instruction of primary with a branch to alternate. The
patch is applied as a relative branch, selecting a 1-byte or 4-
byte offset according to the distance between the blocks.

3. If necessary, particularly with 4-byte offsets, we pad the start of
a block with a nop instruction so that only one instruction will
be overwritten when patching.

In an implementation using JIT compilation we would recom-
pile the method that we wish to update. Recompilation could give
slightly better code quality than patching; the alternate basic blocks
would not need to be present in memory ahead of time, and we
would not need to pad code with nop instructions to overwrite. As
our results show in Section 7 the scope for any speed-up is small.

6. Implementation

In this section we discuss implementation details from our proto-
type. The baseline Bartok-STM design is described in our earlier
paper [10]. We discuss how our implementation avoids some cases
of false sharing (Section 6.1), how we reduce the D-TLB pressure
added by our optimizations for “safe” accesses (Section 6.2), how
the page-level operations are combined with the STM implemen-
tation (Section 6.3), how we handle AVs (Section 6.4), how we
support heap accesses from native code (Section 6.5), and various
implementation ideas that proved ineffective (Section 6.6).

class Hashtable {

...

public int Count {

get { return this.count; }

}

...

}

(a) Source code for the Count property that is used by the
ComputeUniqueSegments fragment from Figure 3.

System_Hashtable_Count::

push ebp

mov ebp,esp

sub esp,4

mov dword ptr [ebp+-4],ecx

primary: // Patch to alternate

mov eax,dword ptr [ecx+16] // I10

done:

mov esp,ebp

pop ebp

ret

alternate:

mov edx,16

call DirectReadInt32Obj

jmp done

(b) Native code with support for patching AVs generated at I10
where the field access is performed.

Figure 5. Example dynamic patch sequence.

6.1 Controlling Object Placement

We attempt to avoid transactional and non-transactional objects be-
ing located on the same page. We do this at allocation-time by using
separate memory pools during normal execution and transactional
execution. This avoids an AV when one object is allocated and ini-
tialized inside a transaction (revoking normal access to the page
holding it) and then another object is allocated after the transac-
tion.

We originally hypothesized that we would need to develop fur-
ther heuristics to reduce false sharing—for example based on pro-
filing object usage, or re-locating objects based on reachability dur-
ing GC. Surprisingly, such extensions have proved unnecessary for
the workloads we have studied. As we show in Section 7, the con-
servative implementation of strong atomicity using short transac-
tions performs reasonably well so long as it is enabled selectively
in response to AVs; performance is tolerant to occasional mis-
expansion caused by false conflicts. Concurrent work by Schneider
et al. seems to confirm the intuition that expanding a small number
of accesses conservatively is unlikely to harm performance [22].

6.2 Pay-to-Use Implementation

The basic implementation of Section 3 avoids any change to how
non-transactional code is compiled. However, the handling of safe
instructions in Section 4 tends to degrade the quality of non-
transactional code by modifying safe memory accesses to use the
tx-heap instead of the normal heap: these accesses add pressure
to the D-TLB, and the quality of the generated code is harmed by
the address translations. The overall result is a slow-down of up to
35%, mainly due to the additional D-TLB pressure.

To mitigate this slow-down we use a dynamic-update mecha-
nism once more: we initially run the code without the optimizations
from Section 4 and, upon an AV, update the code to a version that
includes the optimizations. We patch each block at most once: we
use a single alternate block that uses the tx-heap for safe memory
accesses and includes short transactions for any non-safe accesses.

There is one subtle problem that occurs when updating code
from the runtime system. After updating a basic block we cannot
branch immediately to the replacement if we are mid-way through
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Figure 6. Response to AVs: safe instructions are handled by emu-
lation to avoid deadlock.

it rather than at its entry point. This is no problem for AVs from
application code: we wait for any conflicting transaction to finish,
update the page permissions, and re-execute the instruction that
triggered the AV. However, waiting within AV handlers triggered
from runtime system functions can cause deadlock: e.g., the wait-
ing thread may hold a lock in the storage manager, and the thread
being waited for may subsequently try to allocate storage. We deal
with this problem by handling AVs from runtime system functions
differently from those from application code. For runtime system
functions we emulate the instruction that faulted, using the tx-heap
for any addresses that it accesses, before returning to the subse-
quent instruction. Figure 6 illustrates this approach.

6.3 STM Changes

We use a global array to store the per-page meta-data—i.e., the
page’s status field, its writer count, and its transition count. The
array is indexed by the page’s offset in the tx-heap, and each entry
holds the three fields packed into 31-bits of an integer. The final
bit is used as a spin-lock: a thread must hold the spin-lock when
invoking a system call to change the page’s protection settings.

We perform the page-level operations after the STM’s exist-
ing test to eliminate object-level duplicate log entries. We exper-
imented with a further layer of filtering to detect page-level dupli-
cates that are not object-level duplicates. We could not find a way
to do this in which the cost of the additional checks made the space
saving worthwhile.

We inline fast-path versions of the page-level operations into
the existing object-level STM code paths. The fast-path page-level
read comprises: (i) reading the per-page meta-data, (ii) checking
that the page’s spin-lock is not held, (iii) checking that the page
is not writable from normal code, (iv) logging the transition count
from the meta-data. The fast-path page-level write replaces these
last two steps with: (iii) checking that the page is not accessible
from normal code, (iv) incrementing the page’s writer count with
an atomic compare and swap.

We must be careful when handling objects that span page
boundaries; the address of the object header may be on a differ-
ent page to the address later accessed. We use a bit in the object’s
STM meta-data to flag which objects span page boundaries and,
if the bit is set, we use slow-path versions of the STM functions.
The bit is initialized when an object is allocated. The common-
case object allocation functions can always set the bit to 0 because
they allocate memory from page-size pools, so the objects that they
allocate cannot span page boundaries.

Our implementation of the short transactions that are introduced
by dynamic updates broadly follows the design of Shpeisman et
al. [25]: we read the per-object STM meta-data before and after
reading the field’s value from the tx-heap. We test that the meta-
data is unchanged and that it indicates that there was no concurrent
transaction. If there may have been a concurrent transaction then
we branch to a slow-path version.

As in our earlier work [10], we make short transactions safe
against version numbers overflowing in the STM meta-data. We
do this by ensuring that at least one GC occurs before any given
version number is re-used in a given object. During GC we validate
all running transactions and roll back any that we find to be invalid.
This means that a version number that was used before the GC can
be re-used after the GC. In practice GC occurs sufficiently often
that we never need to force additional collections to guard against
version number overflow.

6.4 Handling AVs

We use C++ structured exception handling to register a user-mode
handler for AVs. The handler is provided a copy of the thread’s
register context (which it can update before resuming the thread),
along with information about the faulting address. These handlers
run within the thread that incurred the AV.

Integrating this handler with the C# STM is complicated. The
complexity comes from needing to allow the handler to wait for a
conflicting transaction to finish while, in the meantime, the GC may
need to traverse the stack of the thread that is running the handler.
Consequently, we treat each site of a possible AV as a GC safe-
point (generating tables to allow the GC to identify references from
that thread’s stack). However, unlike at normal GC safe-points,
the thread’s caller-saved registers may be live at instructions that
trigger AVs. To avoid changing the format of the GC tables we
treat these registers as conservative roots—i.e., if a register holds
an address in the heap then any object at that address is prevented
from being relocated or reclaimed. (In practice we have not seen
the GC prolong object lifetimes in this way, but the technique is
needed for correctness.)

6.5 Interaction with Native Code and System Calls

We support workloads in which heap objects may be passed to
native code (or to system calls). The difficulty in doing this is that
native code may trigger AVs when accessing data on pages in the
normal heap. However, unlike code generated by Bartok, it is not
typically possible to patch the native code, and it may not even be
possible to handle the AV (e.g., the native code may have registered
its own handler).

Our solution is to ensure that addresses passed to native code
refer to an object’s address in the tx-heap, so that the object remains
accessible to the native code during its execution. This translation is
done in the GCHandle library that is used to protect objects from
being moved by the GC during native code accesses. We could
extend this solution to prevent conflicts between native code and
transactions by updating the object’s STM meta-data when creating
and destroying GCHandle structures.

6.6 Other Experiments

We experimented with a number of techniques which are not used
in our current implementation:

• We tried using x86 segmentation when accessing the tx-heap.
We set the gs segment so that an address gs:X would access
the tx-heap version of the normal address X. Using segmenta-
tion improved code density by replacing many 4-byte constants
with 1-byte segment-override prefixes. However, it had no ef-
fect on performance.

• We hoped to use 4MB “large pages” for the tx-heap while
using small 4KB pages for the normal heap. This approach
could reduce the D-TLB overhead of using small pages for both
heaps. However, although current processors support such heap
mappings, the Win32 interface does not.
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Figure 7. 1-thread performance. The first three bars show performance of the benchmark using locks, and the overhead of adding support for
strong atomicity (“SA”). “WA” shows the original STM performance with weak atomicity. The final three pairs of bars show the performance
of strong atomicity with conservative patching, with handling of AVs, and with patching in response to AVs.

7. Results

We studied the performance of our implementation with a set of
four benchmarks. Three of these (Genome, Labyrinth, Vacation)
were derived from the STAMP 0.9.9 benchmark suite [17]. We
translated them from C to C#. This translation was straightforward;
the original C code has a clear modular structure based on sets of
struct definitions with accompanying functions. We made each
struct a C# class exposing the functions as methods. We gen-
erally used C# library data structures (lists, vectors, and so on) in
place of STAMP’s internal library. The exception was that, as in
STAMP, we used a hashtable without a shared counter field so that
we get the same scaling in C and C#. We used the HTM versions
of functions in STAMP, turning each hardware transaction into an
atomic block. Our fourth benchmark is a Delaunay triangula-
tion algorithm implemented following the description by Scott et
al. [23]. We used Vacation when developing heuristics and tuning
them. We report results for all four benchmarks.

We measured our implementation’s performance using Win-
dows Server 2003 Enterprise x64 Edition on a machine with 2
quad-core Xeon 5300-series Intel processors with 4GB physical
memory. In addition to our main results on this 2*4-core machine,
we confirmed that our 1-thread results were consistent with a set

obtained on a machine running Windows Vista Enterprise SP1 on
an Intel Core2 Duo T7300 CPU (2.0GHz) with 2GB physical mem-
ory. Making a virtual-protection change to a page takes 2-15K cy-
cles in a multi-threaded process. Delivering an AV to a user-mode
handler takes around 6K cycles. Our C# runtime system uses a gen-
erational copying GC.

Figure 7 shows the performance of 10 different 1-thread config-
urations of each program. We plot the median-of-9-runs wall-clock
timings reported by the benchmark. Error bars show the min/max of
the 9 runs. Timings are normalised against a lock-based implemen-
tation in which each atomic block acquires and releases a single
global lock without using STM. On each graph, the first cluster of
three bars shows the performance of lock-based implementations.
The single “WA” bar shows the performance of the Bartok-STM
implementation with weak atomicity. The pairs of “SA” bars show
the performance of the Bartok-STM implementation with strong
atomicity with and without the whole-program analyses from Sec-
tion 4.2. We discuss each of these clusters of bars in turn:

Overhead of enabling strong atomicity in non-transactional
programs. The first cluster of bars shows the performance of lock-
based implementations and consequently the cost of supporting
strong atomicity in programs that do not use transactions. “Locks”
is the baseline implementation with coarse-grained locking and no



runtime support for transactions. “Locks + pay-to-use SA” shows
the cost of having runtime support for strong atomicity while still
using locks for synchronization. The difference between this bar
and “Locks” reflects the cost of compiling methods to enable dy-
namic code updates. The median cost varies from −1% to 8%. This
could be avoided in an environment supporting JIT recompilation.
“Locks + non-pay-to-use SA” shows the cost when safe accesses
always use the tx-heap. The median cost varies from 0% to 35%.
CPU performance counters indicate this is due to the increased D-
TLB pressure caused by the tx-heap accesses.

Cost of STM with weak atomicity. The “WA” bar shows the
overhead of an STM implementation with weak atomicity over
the coarse-grained lock-based implementation. The overhead varies
between benchmarks, largely dependent on the amount of time
that the benchmark spends executing transactions. Delaunay uses
occasional short transactions, so the overhead is low. Conversely,
Labyrinth spends almost all of its time within transactions: the
STM-based implementation executes 514 transactions, making a
total of 9.0M memory writes. The STM-based implementation is
2.1x slower than the lock-based implementation.

These STM overhead numbers are substantially lower than
those reported by Cascaval et al. for other implementations [4].
There are a number of significant differences between the im-
plementations. First, Cascaval et al.’s implementations require
memory-fence instructions in situations where they are not needed
on the Intel processors that we use. Second, Cascaval et al.’s imple-
mentations use an update-log rather than an undo-log; their STM
algorithms must therefore test for read-after-write accesses, rather
than reading values in-place.

Cost of strong atomicity with conservative expansion. The
“Conservative” pair of bars is for an implementation that conser-
vatively expands non-transactional accesses that may conflict with
transactions, following the approach of Shpeisman et al. [25]. This
approach does not work well on the Delaunay benchmark. Delau-
nay involves substantial phases of private computation which ac-
cess the same objects that are sometimes accessed by transactions:
all of the normal accesses become expanded, even when no con-
flicts occur dynamically. Static analysis does not help here because
most of the normal accesses are to objects that may be accessed
by transactions; whether or not these transactional accesses occur
depends on the input data set. (Scott et al. similarly observed that
STMs that use indirection between object references and payloads
perform poorly for this Delaunay workload because of the overhead
they add to non-transactional code [23].)

Cost of handling AVs, without patching. The “Handle AVs”
pair is for an implementation that handles each AV; this implemen-
tation updates the page’s protection settings upon AV but does not
patch the program. The results from Vacation illustrate the poor
performance achieved without patching. Vacation involves large
numbers of transactions mixed with non-transactional access to
thread-local data. Without whole-program static analysis, “Handle
AVs” performs poorly because of false conflicts when the GC lo-
cates thread-local data on the same page as shared data. It takes
18.1x longer to run than the lock-based implementation. It incurs
0.9M AVs and makes 2.2M page protection changes.

Patching AVs. The final pair of bars, “Patch AVs”, shows the
performance of an implementation using dynamic code update on
AVs. This is the implementation that we would recommend using
in practice.

This implementation performs well, when compared with the
other implementations of strong atomicity, even without using
whole-program static analysis. Unlike the “Conservative” imple-
mentations, it avoids the large number of transactional memory
accesses incurred in Delaunay. Unlike the “Handle AVs” imple-
mentation, it avoids the large number of AVs incurred in Vacation.

In total, without using the static analysis, there are 59 AVs in
Delaunay, 239 in Genome, 126 in Labyrinth, and 330 in Vacation.
There are 82 page protection changes in Delaunay, 30K in Genome,
99 in Labyrinth, and 40K in Vacation. The difference between the
number of AVs and the total number of page protection changes
reflects the number of protection changes made when a transaction
initially revokes normal access to a page.

Scaling. Figure 8 shows the performance of each configuration
for 1..8 threads normalized against the program’s lock-based per-
formance with 1 thread. These show wall-clock timings, so perfect
scaling would show a falling line, decreasing proportionally to the
addition of threads. We plot lines for two representative lock-based
configurations (“Locks” and “Locks + pay-to-use SA” from Fig-
ure 7) and two STM-based configurations (“WA” and “SA, patch
AVs + analysis”). For clarity we omit error bars and the remain-
ing six configurations: in each case the lock-based configurations
would form one bundle of lines, and the STM-based configurations
form a second bundle. The error bars from each line would cover
the whole bundle. We see that, enabling strong atomicity, or using
it, does not affect the scaling of these benchmarks with this STM.

Summary. Our results show that our implementation of strong
atomicity over page-based memory protection hardware performs
well when used along with dynamic patching of instructions that
trigger AVs. It avoids the poor performance of conservative ex-
pansion on Delaunay. It avoids the vast number of AVs that occur
without patching on Vacation. The overhead of this form of strong
atomicity over weak atomicity is less than 25% on all these pro-
grams, even without static analysis.

8. Related Work

Hardware implementations of TM have typically supported strong
atomicity [14], both in implementations based on extensions of
MESI cache protocols (as in Herlihy and Moss’ original de-
sign [12]), and in signature-based approaches [29]. Chuang et al.
perform page-level buffering of transactional state in an HTM im-
plementation if it overflows the cache [5].

Baugh et al. use memory protection hardware to separate trans-
actional and non-transactional data in a hybrid TM [2]. Their ap-
proach inspired ours, although the designs ultimately differ in a
number of ways. We use off-the-shelf page-based hardware, while
Baugh et al. use fine-grained memory protection. We use separate
virtual address mappings to prevent triggering AVs inside trans-
actions, while Baugh et al.’s hardware provides per-thread flags
to disable the delivery of access faults. Finally, we make dynamic
code updates to reduce the high cost of AVs in off-the-shelf hard-
ware. Baugh et al.’s hardware would make this unnecessary.

STM implementations have typically not implemented strong
atomicity. However, there are a few exceptions. Hindman and
Grossman’s STM implementation ensures that all code is compiled
to acquire an object’s lock before accessing it [13].

Shpeisman et al. show how to implement strong atomicity by
expanding normal accesses into optimized forms of short transac-
tion [25]. They describe static whole-program analyses to reduce
the number of accesses that need to be expanded.

Concurrently with our work, Schneider et al. have extended Sh-
peisman et al.’s design to work dynamically during JIT compila-
tion [22]. Only code produced by the JIT compiler is executed, so
it suffices to ensure that there are no conflicts between transactional
and normal execution in this body of code (rather than in the entire
source of the program and libraries). Normal accesses are patched
at run time if the JIT subsequently compiles a method that may con-
flict with code that has already been compiled. In one sense their
approach is more conservative than ours because it statically de-
tects possible conflicts against the body of already compiled code,
rather than dynamically detecting actual conflicts. In another sense
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Figure 8. Scaling on 1..8 cores on a machine with 2*4-core CPUs. Each line is normalized against the program’s 1-thread performance with
a single global lock. Solid lines show lock-based implementations. Dashed lines show STM-based implementations. Gray lines show the
original system, with support for weak atomicity. Black lines show the new system, with support for strong atomicity.

is it less conservative because it considers field accesses and not
page-level conflicts. Our patching mechanism is simpler because it
is not necessary to synchronize with other threads (if a thread does
not see a patch then it may take a further AV), whereas Schneider
et al.’s approach requires stop-the-world synchronization to guar-
antee that all threads immediately see any patches.

Matveev et al. propose a “virtual memory STM” (VMSTM)
in which conflicts between transactions are managed at a page
level [15]. A hardware “virtual memory filter” (VMF) enhances this
by providing fine-grained conflict detection between transactions
accessing the same page. Without this filter, Matveev et al. show
that the basic VMSTM performs poorly because of the vast number
of page-table updates and AVs. We use an existing STM to detect
conflicts between transactions, and use page-level techniques only
to detect conflicts between transactions and normal accesses. We
make page protection changes lazily and dynamically update code
to avoid repeated AVs.

Some distributed shared memory systems use the idea of map-
ping the same physical page multiple times [19]. Different objects
on the page are accessed through different mappings. This provides,
in effect, sub-page protection settings. We make multiple map-
pings to distinguish different kinds of access (transactional/normal)
rather than different pieces of data. We could, in principle, use ad-
ditional mappings for sub-page access control.

Ratanaworabhan et al. have studied the problem of detecting
and tolerating asymmetric data races, where a variable is accessed
directly by one thread while it is locked by another [21]. Within a
critical section, memory accesses are redirected to a shadow ver-
sion which includes a copy of the original contents of the location.
These original values are compared against the “real” memory to
identify and recover from data races. Concurrently with our own
work, Rajamani et al. have used page-based memory protection to
detect asymmetric data races [20]. Data is duplicated (both in the
virtual and physical spaces), with one copy being used inside criti-
cal sections, while the other is made inaccessible.

9. Conclusion

In this paper we show how to use off-the-shelf page-level memory
protection hardware to provide strong atomicity. We also develop
a simple heuristic of patching instructions that produce possible
conflicts; this approach is effective in benchmarks.

The sequential overhead of implementing strong atomicity ap-
pears similar to that of providing weaker guarantees such as Sin-
gle Global Lock Atomicity (SGLA) [16]. Our implementation in-
curs extra costs in maintaining per-page meta-data. However, us-
ing page-based protection allows us to use an STM with in-place
updates, rather than being restricted to ones that make deferred up-
dates. Recent work has illustrated the high costs that implementa-
tions with deferred updates can incur [4].

It is interesting to consider whether or not strong atomicity is
a desirable property for atomic blocks. It provides consistent be-
havior with typical HTM implementations, and semantics that ap-
pear easy to explain to programmers. However, even with strong
atomicity, programmers must still understand transformations that
may re-order memory accesses [8]. Furthermore, our implementa-
tion of strong atomicity is much more complex than implementa-
tions of other models like SGLA or dynamic separation [1].

A possible extension of our work would be to build a form
of race detector, using our implementation to identify concur-
rent accesses to the same location from transactional and non-
transactional code. The underlying use of page protection would be
the same, but the AV handler would need to disambiguate genuine
conflicts (in which case an error would be reported), from false
conflicts (in which there is no error).

We believe that our approach is applicable to a wide range of
STMs. Our implementation tightly couples the object-level and
page-level logging functions, but these are logically separate and
our informal correctness argument does not refer to low-level STM
implementation details. As in Baugh et al.’s work, our approach
could be extended to hybrid TMs [2].
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