
Taking the Heat off Transactions:
Dynamic Selection of Pessimistic Concurrency Control

1,2Nehir Sönmez 3Tim Harris 1Adrián Cristal 1Osman S. Ünsal 1,2Mateo Valero
1BSC-Microsoft Research Centre

2Departament d’Arquitectura de Computadors - Universitat Politècnica de Catalunya, Spain
3Microsoft Research, Cambridge, UK

{nehir.sonmez, adrian.cristal, osman.unsal, mateo.valero}@bsc.es, tharris@microsoft.com

Abstract

In this paper we investigate feedback-directed dynamic
selection between different implementations of atomic
blocks. We initially execute atomic blocks using STM
with optimistic concurrency control. At runtime, we identify
“hot” variables that cause large numbers of transactions
to abort. For these variables we selectively switch to using
pessimistic concurrency control, in the hope of deferring
transactions until they will be able to run to completion.
This trades off a reduction in single-threaded speed (since
pessimistic concurrency control is not as streamlined as
our optimistic implementation), against a reduced amount
of wasted work in aborted transactions. We describe our
implementation in the Haskell programming language, and
examine its performance with a range of micro-benchmarks
and larger programs. We show that our technique is effec-
tive at reducing the amount of wasted work, but that for cur-
rent workloads there is often not enough wasted work for an
overall improvement to be possible. As we demonstrate, our
technique is not appropriate for some workloads: the extra
work introduced by lock-induced deadlock is greater than
the wasted work saved from aborted transactions. For other
workloads, we show that using mutual exclusion locks for
“hot” variables could be preferable to multi-reader locks
because mutual exclusion avoids deadlocks caused by con-
current attempts to upgrade to write access.

1. Introduction

Along with other researchers we have been investigating the
design and implementation of atomic blocks for build-
ing thread-safe shared memory data structures. The idea
of atomic blocks as a programming language construct
is often conflated with the use of Transactional Memory
(TM [13]) as an implementation mechanism: TM provides

a mechanism for performing a series of memory accesses
atomically, and so an atomic block can be built by us-
ing TM for the memory accesses enclosed within it. In this
paper we examine the use of different implementations of
atomic blocks, and the selection between them in runtime
based on dynamic feedback.

In principle many alternatives are possible (Section 2).
This, in part, is the beauty of atomic blocks. Concretely,
however, we combine an optimistic mode of execution, in
which an atomic block runs using software transactional
memory (STM [25]) and a pessimistic mode, in which locks
are associated with data items and the atomic block must
acquire these locks before accessing the data.

Selecting between these alternatives is a complicated
trade-off that is dependent both on the application (are the
atomic blocks long or short?), the workload it is given
(do atomic blocks frequently conflict with one another?)
and on the resources allocated to the process (are threads
running concurrently on different cores, or are they time-
multiplexed on a single core)? Furthermore, when writing
a library component, the “best” form of concurrency con-
trol to use may depend on the library’s caller, and indeed
the choice may vary between different callers in the same
application. We therefore believe that the choice between
these alternatives must be made at run-time, when all of
this information is available, rather than being made by the
programmer at compile-time.

The intuition behind our approach comes from our pre-
vious case study [26] which suggests that many of the con-
flicts that occur within a program using atomic blocks are
triggered by a small number of “hot” variables; by treating
these variables carefully we hope to prevent conflicts occur-
ring. We discuss a concrete example in Section 3.

The key novelty in our approach is to distinguish be-
tween different kinds of data that transactions might access,
rather than just selecting between different implementations
for a complete transaction, or different TM implementations

1



for the complete system. This can let us run the majority
of a transaction using a streamlined implementation, while
handling the “hot” variables carefully.

Section 4 details the design and implementation of our
system. We base our work on our existing implementation
of STM in Haskell [15]; a mature functional programming
language. Although the functional core of Haskell looks
very different to a mainstream language like C++, all of
the accesses to shared mutable variables are written in an
imperative style [22]. The STM is entirely conventional.
Haskell is unusual in that the implementation of atomic
blocks has been publicly available for several years and so
we have example programs which were not written by the
language implementers.

In Section 5 we compare the performance of our ap-
proach with (i) the baseline implementation of atomic
blocks using STM with optimistic concurrency control, and
(ii) with the baseline implementation extended to use the
Polka contention management algorithm [24] that employs
a form of priority-based randomized back-off to reduce the
conflict rate between a set of transactions. As we show,
there are various cases where the original, optimistic base-
line implementation performs best of all, and others where
Polka fits well or the pessimistic approach achieves overall
improvements over the others.

We discuss related work in Section 6 and future work in
Section 7.

2. Implementations of atomic blocks

In this section we discuss a number of different implemen-
tations of atomic blocks and the trade-offs between them.

Transactional memory with fine-grained commit (Tx-
FG). The existing implementation of atomic blocks in
Haskell works in this way. This baseline implementation
provides system-wide progress because a transaction can
only be forced to roll-back by a conflict with a concurrent
transaction that has committed successfully; live-lock is not
possible. This implementation provides disjoint-access par-
allelism, meaning that non-conflicting transactions can run
and commit in parallel. This is built using optimistic con-
currency control for the variables that the transaction has
read from, and commit-time two-phase locking for the up-
dates.

Transactional memory with coarse-grained commit
(Tx-CG). This uses a single global lock to serialize trans-
actions’ commit operations: the bodies of transactions can
still run in parallel, and conflicts are still detected at the
level of individual data items. Compared with Tx-FG, this
streamlines the single-threaded performance of a commit
operation (since fewer locks are used), but serializing com-
mit operations limits scalability. Consequently it is an ap-
propriate choice in applications with a small number of

threads, or applications where commit operations are rare.
Transactional memory with pessimistic concurrency

control (Tx-Pes). STM implementations can perform con-
currency control during execution, rather than just at com-
mit time [20]. One approach, based on pessimistic concur-
rency control, is to use reader/writer locks to grant access to
locations: conflicting transactions are delayed until a lock
that they require is available, and deadlock-avoidance is
necessary. This is an appropriate choice in workloads where
the optimistic implementations of transactional memory ex-
perience high conflict rates. However, pessimistic concur-
rency control does not work well for low-conflict work-
loads because the implementation of locking typically in-
troduces contention in the memory system (e.g. when up-
dating counts of reading transactions, or lists of readers).

Lock inference (LI). In other contexts researchers have
investigated using static analyses to associate locks with
pieces of data that are accessed in transactions [5, 9, 14].
This has the potential to reduce the number of locks
acquired or released when compared with Tx-Pes, al-
though the difference is hard to predict quantitatively be-
cause the inference algorithm is typically conservative (i.e.
some non-conflicting transactions become serialized). It is
not clear how to combine lock inference with condition-
synchronization.
In this paper we study the choice between Tx-FG and Tx-
Pes; we discuss extension to further alternatives in Sec-
tion 7.

3. Motivating Example

To illustrate our approach, consider the example in Figure
3 taken from a C# version of the Genome program from
the STAMP STM benchmark suite [18]. In this example, a
number of threads run the outer-most loop with each thread
taking a disjoint set of i start...i stop values. Within
the inner loop each thread computes a hash value of part of
the input genome sequence and adds details to a hashtable
referred to by an element of the uniqueSegments array.
Superficially this approach looks scalable because the only
conflicts will be between the threads with both the same
hashNumber and the same hashId.

However this scalability can be lost when using a library
hashtable implementation if each Add operation on a table
increments a shared counter of the number of elements. To
retain scalability, the hashtable implementation must typi-
cally be re-implemented for STM to avoid using a shared
counter; this is undesirable in general because of the addi-
tional work it involves.

This example would not be handled well by the fine-
grained STM implementation in Haskell: the first thread to
commit would update a hashtable’s count field, and con-
current transactions that have read the field would be forced



for (int i = i_start; i < i_stop; i += 12) {
atomic {

int ii_stop = (i_stop < (i + 12)) ? i_stop : (i + 12);
for (int ii = i; ii < ii_stop; ii++) {

String _value = segments[ii];
uint hashId = hashString(_value);
uint hashNumber = hashId % (uint)Config.threadNumber;
if (!uniqueSegments[hashNumber].ContainsKey(hashId)) {

uniqueSegments[hashNumber].Add(hashId, _value);
} } } } }

Figure 1. Example code from Genome

to abort and re-execute. It would also not perform well with
typical implementations based on lock-inference. This is
because locks are only acquired at the start of an atomic
block, and so possible accesses to a common count field
would prevent any concurrency between these atomic
blocks. Furthermore, this example would be unlikely to per-
form well with implementations based solely on pessimistic
concurrency control. This is because the single-threaded
overhead of acquiring and releasing locks would slow down
the initial portion of the atomic block that is accessing
“cold” data that is not involved in conflicts.

Our approach in this paper is to dynamically identify the
“hot” transacted variables – such as a shared count field
– and to switch the management of these to use pessimistic
concurrency control. In effect we introduce locking from
the first access to each “hot” variable, until the end of the
atomic block that contains it. We aim to continue to use
optimistic concurrency control for the bulk of the data that a
transaction accesses, so that we do not slow down the trans-
action’s overall single-threaded execution time.

4. Implementation: Supporting pessimistic
concurrency control

We first describe the baseline STM-Haskell system (Sec-
tion 4.1), then our implementation of programmer-
controlled selection between pessimistic and optimistic
concurrency control (Section 4.2), the mechanism for dy-
namic selection between them (Section 4.3), and then our
implementation of a Polka-style contention management
policy for comparison with our approach (Section 4.4).

4.1. Background: STM in Haskell

The Glasgow Haskell Compiler (GHC) 6.6.1 provides a
compilation and runtime system for Haskell 98, a pure, lazy,
functional programming language. STM can be expressed
elegantly in such a declarative language, where Haskell’s

type system guarantees that transactionally-managed state
can only be accessed from within a transaction [10]. The
type system also guarantees that a transaction cannot per-
form “non-transactional” operations, like calling I/O func-
tions with unknown side-effects.

Transactional execution with TVars. In STM-Haskell
atomic blocks are written using explicit operations to
read and write from designated “transactional variables”
(TVars). This follows the way in which mutable reference
cells are accessed explicitly in the rest of the language.

Figure 2 shows the operations involved. newTVar v
allocates a new TVar holding the value of v. readTVar
x returns the value held in x. writeTVar x v writes the
value v to x. The function atomically takes a series of
these operations and executes them in an atomic step. The
functions retry and orElse are used for composable
blocking: calling retry indicates that the current atomic
action is not ready to run to completion, and orElse x y
provides an alternative action y to execute in case the first
choice x is not ready to run. Earlier work has provided an
operational semantics for these constructs [10].

For example, a program to increment the value stored in
a TVar would be:

increment :: TVar int -> IO ()
increment x =

atomically do v <- readTVar x
writeTVar x (v+1)

The existing implementation of atomic blocks in STM-
Haskell uses optimistic concurrency control. As a trans-
action runs, it builds up a log of the TVars it has read
from (its read-set) and the updates that it wants to make
(its write-set). When it tries to commit, it checks that there
have been no intervening conflicting updates committed to
these TVars. If there have been conflicts then it re-executes
immediately. If there have not been any conflicts, then its
updates are written back. This approach has been termed
lazy version management and lazy conflict detection [19].



Running STM Operations Transactional Variable Operations
atomically :: STM a -> IO a data TVar a
retry :: STM a newTVar :: a -> STM (TVar a)
orElse :: STM a -> STM a -> STM a readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

Figure 2. Haskell STM Operations

User-mode scheduling in Haskell. Haskell threads are
scheduled in user-mode over a pool of OS threads. To
encourage locality, the runtime system associates a list of
Haskell threads with each OS thread, and provides each OS
thread with a separate allocation buffer for the objects that
it creates.

Switching from one Haskell thread to another occurs en-
tirely in user mode. Typically, the user-mode scheduler
will not switch between Haskell threads within a transac-
tion (avoiding the problem of pseudo-parallelism [6]).

4.2. Pessimistic TVars

We extend the programming API to include a new operation
newPesTVar for explicitly creating a TVar that will be
managed by pessimistic concurrency control. This new kind
of TVar is identical from the point of view of the program-
mer; it can be read and written by the same readTVar and
writeTVar operations. However, it is treated differently
from a normal TVar by the runtime system. We do not in-
tend this newPesTVar operation to be used by program-
mers; we provide it for use in testing and benchmarking.

At runtime a PesTVar extends the structure of a nor-
mal TVar with a multi-reader single-write lock implemen-
tation built using an explicit list of reading transactions, or
a single writing transaction. The lock is acquired in the ap-
propriate mode when a transaction attempts to read or write
the PesTVar, and it is released when the transaction has
finished (committed, aborted, or blocked using retry).

If a lock is not available then we use a deadlock avoid-
ance heuristic to identify whether or not the Haskell thread
may block. Currently, we conservatively assume that dead-
lock is possible if there are any threads waiting for access
to PesTVars that the current thread has locked. (In Sec-
tion 5.1 we discuss the impact of this choice, rather than a
less conservative approach, e.g. [16].)

If deadlock is impossible, then the Haskell thread blocks
and the user-mode scheduler switches to another Haskell
thread if one is available. Conversely, if deadlock may
have occurred, then the transaction is condemned (pre-
vented from committing), the locks that it already holds are
released, and then it waits on the single PesTVar that it
was attempting to access.

4.3. Dynamic selection

When a transaction fails to commit, we blame the TVars
whose values have changed during the transaction. We use a
simple per-TVar blame-threshold to trigger conversion from
an ordinary optimistic TVar to a PesTVar.

In our prototype, this adaptation just involves updating
the object’s header word to indicate the change in the ob-
ject’s type; of course, this change must be done in unsafe C
code in the GHC runtime system, rather than in Haskell.

Although this approach is simple, it means that an or-
dinary TVar must hold the additional fields necessary to
support pessimistic operation. In Haskell-STM this seems
acceptable for the workloads that we have studied; most
data is immutable functional objects, and so the structure
of these is unchanged. The overhead on normal TVars
could be avoided by marking candidates for adaptation
and expanding them to a larger PesTVar structure during
garbage collection.

4.4. The Polka contention manager on GHC

Many STM implementations use a contention manager to
attempt to resolve conflicts between transactions, and to de-
lay transactions’ re-execution in the presence of contention.
This approach was originally proposed for obstruction-free
systems [11] and used with DSTM [12]. It is particularly
important in that setting because an obstruction-free system
only guarantees progress to operations that run without ex-
periencing contention: the role of the contention manager is
to arrange that such runs occur, preventing live-lock.

The baseline Haskell-STM implementation does not use
a contention manager because it cannot suffer from live-
lock since one transaction can only be forced to roll-back
because another transaction has successfully committed.
However, to provide a point of comparison for our use of
pessimistic synchronization, we have also implemented a
contention manager as an alternative way to reduce con-
tention on “hot” TVars.

Many alternative contention managers have been stud-
ied [24, 23], and although no individual scheme performs
uniformly best, the Polka algorithm is generally effective.
This combines exponential back-off with “priority accumu-
lation”: a transaction accumulates priority as it adds objects



to its read/write sets. In the case of a conflict, when an op-
eration is obstructed by another with higher priority, it will
back off, initially for a randomized amount of time, with
back-off intervals increasing exponentially. Each back-off
further increases the transaction’s priority; only when its
priority is greater than that of its obstructor will it abort it.
Polka aims to minimize wasted work and memory intercon-
nect contention [23].

To enable Polka to detect conflicts we added queues
of current readers and writers to each TVar. We sup-
port a visible-reader mode (where the presence of readers
is recorded), and an invisible-reader mode (where only the
presence of writers is recorded). To support priority accu-
mulation, a new field that indicates the size of the transac-
tion’s read and write sets was added. In case of an abort, the
aborted transaction passes this information to the new trans-
action. We add an “abort request” field to each transaction
record, so that a different transaction can signal that it has
won a conflict. We use a simple timing loop for exponential
back-off.

The Haskell version of Polka has some differences from
the original. Incremental validation during execution is not
necessary: even if a transaction becomes invalid then all it
can do it access TVars (unlike in C++ where it might try to
access de-allocated memory).

5. Results

We studied the performance of our implementation using
a 4 dual-core Dell machine with 64-bit Xeon processors
clocked at 3.2 GHz. We ran experiments on 1..8 cores; a
single-threaded garbage collector is still used in this ver-
sion of GHC which is known to limit the scalability some-
what [21]. All results are the mean of five runs. Benchmark
runs were configured to last for several seconds.

Figure 3 shows the test cases we used. These are di-
vided into two categories. First, there are synthetic tests and
data-structure micro-benchmarks: a high-contention work-
load with concurrent threads incrementing a single shared
integer, and mixed insert/delete/search workloads on linked
lists, binary search trees, and a hashtable with external
chaining.

The second category of tests are two application pro-
grams; neither of these was written explicitly as an STM
benchmark. “Parallel Sudoku” is a parallel search algorithm
for Sudoku puzzles. Parallelism is used to explore different
alternative choices – e.g. different numbers that might be
placed in the same square in the puzzle. atomic blocks are
also used when updating a shared result structure that holds
the complete solution that is obtained. “SPI-Calculus” is
an interpreter for expressions written in a process algebra
that models cryptographic operations [1]. Different parts

of the expression are evaluated in parallel; they communi-
cate through a shared heap.

We plot the performance of six runtime-system configu-
rations for each program:

• Opt is the baseline implementation of STM using fine-
grained commit-time locking.

• Pes-0 uses multi-reader single-writer pessimistic con-
currency control for all TVars.

• Pes-3 uses optimistic concurrency control by default,
and switches a TVar to pessimistic concurrency con-
trol after it has been blamed for 3 conflicts.

• Pes-ME uses pessimistic concurrency control with mu-
tual exclusion for all TVars.

• Pes-ME-3 uses optimistic concurrency control by de-
fault, and switches a TVar to pessimistic concurrency
control using mutual exclusion after it has been blamed
for 3 conflicts.

• Polka uses Polka-style contention management with
invisible readers (the variant with visible readers per-
formed uniformly worse; the overhead of managing
visible reader information dwarfed the possible im-
provements in contention management).

For each configuration we plot the wall-clock time-to-
completion for each program, and also examine the ratio
of aborted transactions to the committed transactions dur-
ing its execution.

Figure 4 shows the results for the data-structure micro-
benchmarks, and Figure 5 shows the results for the whole
applications. For each test case we plot the benchmark’s
execution time on 1..8 cores on the left hand graph (higher
is worse), and the ratio of aborts to committs on the right-
hand side. We normalize this against the single-thread per-
formance using optimistic concurrency control.

Broadly speaking, these results suggest that there are not
many cases where switching “hot” TVars to pessimistic
concurrency control works for these workloads. The ex-
ceptions are the Sudoku solver and the linked-list micro-
benchmark under higher contention loads.

In some cases the reason for this is clear (and entirely
expected). For example, in the synthetic single-integer test,
the atomic blocks are very short, and the window at which
an optimistic implementation is “at risk” from a conflict is
low: the cost of managing locks dominates the cost of the
aborted work that is saved.

In other cases there are a number of different factors in-
volved. First, the best-case speed-up that can be achieved
over Opt is limited by the amount of wasted work that Opt
performs. In the 4-core SPI-Calculus benchmark, fewer
than 1 in 20 transactions re-executes. The results are



Micro-benchmarks Description # lines # atomic
SharedInt A corner-case program incrementing a shared integer

variable for a total of 200,000 times.
82 1

Linked-List (LL) Singly-linked list applications 10% inserting, 10%
deleting and 80% searching random numbers. The
maximum list length is 500 nodes.

265 7

Binary Tree (BT) Binary trees inserting, deleting and searching random
numbers. The steady-state size of the tree is 1,000 ele-
ments.

262 7

HashTable A hash table implementation inserting, deleting and
searching random numbers. The steady-state size of
the table is 1,000 elements.

544 5

Applications Description # lines # atomic
Parallel Sudoku A parallel Sudoku solver. 282 7
SPI Calculus Interpreter A parallel interpreter for the SPI-Calculus. 1867 14

Figure 3. Description of the test cases: number of lines of code and atomic blocks

broadly similar in the hash-table case. It is possible that
our approach will be more significant under higher levels
of contention – and, of course, with STM implementations
where (unlike Opt) livelock can occur in the absence of con-
tention management. Although Polka appears to perform
well under the depicted executions of the linked structures
(LL and BT), when ran with bigger transactions that use
larger maximum list sizes than what is shown here, it can
fall in livelock and fail to complete. Similar behavior was
also observed running STAMP applications on DSTM2 [3].

The second important factor is the role of deadlock. This
proved to be significantly more important than what we had
anticipated. In particular, “hot” TVars are frequently ones
where multiple threads perform read-modify-write opera-
tions. Deadlock occurs when multiple threads holds the
lock in read-mode, and want to upgrade to write access –
none of the threads can be granted write-mode access un-
til the readers have aborted. This means that, unlike Opt, a
transaction can be forced to roll-back without another trans-
action having made progress.

Note that we can distinguish two kinds of deadlock: real
deadlock where the threads involved form a waiting-cycle,
and false deadlock where our basic deadlock-detection
heuristic is conservative. We constructed the Pes-ME im-
plementation to help investigate the proportion of these two
cases. This replaces all TVars with mutual exclusion locks,
so precludes the concurrent-upgrade problem. We see al-
most no aborts to prevent possible deadlocks in this case;
never more than 15 in any of these several-second runs.
This suggests that we are seeing real deadlock via upgrades
on the multi-reader locks, rather than just seeing false dead-
locks caused by our simple deadlock-detection heuristic.

Although Pes-ME is very effective at avoiding wasted
work it does, of course, serialize many transactions’ oper-
ations (for example, the binary-tree results illustrate this).
We also examined a hybrid scheme, switching from opti-
mistic to pessimistic concurrency control with mutual ex-
clusion locks after a given number of conflicts on a TVar.
This is shown by the Pes-ME-3 plots. In some cases this
configuration manages to combine the low abort rate of Pes-
ME with the better scalability of Opt.

5.1. Summary

To summarize our conclusions from these results:

• Selectively using pessimistic concurrency control
proves effective at reducing the amount of wasted work
by reducing the number of transactions that abort.

• Using mutual-exclusion locks might be preferable to
using multi-reader single-writer locks for some work-
loads; the implementation is simpler, and deadlock is
reduced.

• The good performance of the baseline Opt implemen-
tation (and the lack of such clear impact of Polka, when
compared with earlier work [23]) is because Opt can
only cause a transaction to abort because a conflicting
transaction has successfully committed; not because a
conflicting transaction is in progress.

• With this implementation of Opt the amount of wasted
work is often low, or the transactions are so short that
direct re-execution is as fast as waiting.



Shared-Integer

Linked-List

Binary Tree

Hashtable

Figure 4. Data-structure micro-benchmarks, showing scaling relative to 1-thread STM baseline (left),
and the ratio of the total number of aborted transactions to committed transactions (right).



SPI-Calculus Interpreter

Sudoku Solver

Figure 5. Whole-program benchmarks, showing scaling relative to 1-thread STM baseline (left), and
the ratio of the total number of aborted transactions to committed transactions (right).

6. Related work

There has been a substantial amount of work on contention
management techniques in general, and in STM in partic-
ular. Herlihy et al. introduced the idea of writing non-
blocking algorithms by combining an obstruction-free al-
gorithm with an out-of-band contention manager [11]. The
obstruction-free algorithm guarantees progress in the ab-
sence of contention, and the contention manager attempts to
create contention-free runs. Bounds on the behavior of this
approach have been studied from a formal point of view [8].

Scherer and Scott examined a wide range of contention
managers for use with transactional memory [24, 23],
and showed how the best-performing choice depended on
many factors. However, the Polka algorithm was identi-
fied as a promising general-purpose approach. Scherer’s
experiments [23] used a range of data-structure micro-
benchmarks, and so the fact that different contention man-
agers are appropriate in different cases suggests that, in a
larger application built from a range of data structures, a
single choice may not be appropriate for the whole system.

Ansari et al. [2] and Yoo et al. [30] examined the ap-

proach of adjusting the level of concurrency as a way of
avoiding contention. For example, if there are frequent
aborts, then reducing the number of transactions that are
running concurrently may reduce the amount of wasted
work. As with the selection of a process-wide contention
management algorithm, this approach may harm the per-
formance of “good” transactions (which do not suffer any
conflicts) when they are running concurrently with a set of
“bad” transactions (which conflict with one another).

In recent work Dolev et al. [6] describe a serializing con-
tention manager which, as with our work, benefits from in-
tegration between the STM and the thread-scheduler. Their
approach limits the number of times that any pair of transac-
tions can conflict by serializing their execution in one order
or the other after their first conflict. They allow the pro-
grammer to provide hints about transaction placement to
reduce the likelihood of conflict.

Welc et al. [29] and Spear et al. [27] propose the use of
an irrevocable transaction (i.e., one that can not be aborted)
as a contention management mechanism. Typically only
one such transaction can be supported in a system, but the
implementation guarantees that that transaction will be able



to run to completion. It would be interesting to combine
this approach with ours, treating irrevocability as a dynamic
choice made by the runtime system (e.g. in the face of fre-
quent possible-deadlock detections).

The Intel STM Compiler [20] supports a mode that
uses pessimistic two-phase locking for reads and writes,
and an “obstinate mode” which allows one pessimistically-
managed transaction to run while winning all conflicts it is
involved in. These work on a per-transaction basis, rather
than trying to target “hot” variables that cause conflicts.

In recent work, Waliullah and Stenstrom use individual
conflicting transacted variables to set checkpoints for par-
tially rolling back transactions in case of conflicts in hard-
ware TM systems [28].

Furthermore, transaction processing systems (e.g., [7,
4, 17]) benefit from the observation that optimistic concur-
rency control seems to work better for data under low con-
tention, while locking appears to work best for data under
high contention.

7. Conclusions and future work

In this paper we have examined the use of dynamic adap-
tation between optimistic and pessimistic synchronization
in an implementation of atomic blocks. Our results sur-
prised us somewhat: the performance of the baseline opti-
mistic implementation is frequently good because there is
little wasted work. It is not yet clear whether this is a prop-
erty of the particular workloads that we have studied (e.g.
they may have been written to perform well on the current
implementation), a property of our particular baseline STM
implementation, or if it is true in general.

We did not initially anticipate that using mutual-
exclusion locks might be effective for “hot” TVars. In
some workloads we have studied this turns out to be the
case because most transactions perform read-modify-write
operations on these variables – MRSW-style locking leads
to deadlocks when multiple readers wish to upgrade to write
access. Mutual-exclusion locks avoid this, and dynamically
switching to this form of synchronization could prove an
effective way of reducing wasted work where it is present.

There are a number of possible directions for future
work. First, we would like to identify sets of TVars that
are accessed together and perform concurrency control on
them as an aggregate: i.e. acquiring a single lock, rather
than many locks. This may also help avoid needing to
abort transactions because of possible deadlock. Second,
we would like to introduce further alternative implementa-
tions of atomic blocks – e.g. selecting between in-place
updates and deferred updates.

8. Acknowledgments

We would like to thank Simon Peyton Jones for making
the SPI-Calculus application available to us, Wouter Swier-
stra for the parallel Sudoku solver, Edward Kmett for the
hashtable library and Simon Marlow and Srdjan Stipic for
help with building and modifying the GHC runtime system.
We would also like to thank Sasa Tomic for comments on
an earlier draft of this paper.

This work is supported by the cooperation agreement be-
tween the Barcelona Supercomputing Center – National Su-
percomputer Facility and Microsoft Research, by the Min-
istry of Science and Technology of Spain and the European
Union (FEDER funds) under contract TIN2007-60625, by
the European Network of Excellence on High-Performance
Embedded Architecture and Compilation (HiPEAC) and by
the European Commission FP7 project VELOX (216852).

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. Information and Computation,
148(1):1–70, 1999.

[2] M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, C. Kirkham,
and I. Watson. Experiences using adaptive concurrency
in transactional memory with Lee’s routing algorithm. In
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, pages 261–262, February 2008.

[3] M. Ansari, C. Kotselidis, M. Lujan, C. Kirkham, and I. Wat-
son. Investigating contention management for complex
transactional memory benchmarks. In Proc. Second Work-
shop on Programmability Issues for Multi-core Computers
(MULTIPROG’09), January 2009.

[4] M. S. Atkins and M. Y. Coady. Adaptable concurrency con-
trol for atomic data types. ACM Transactions on Computer
Systems, 10(3):190–225, 1992.

[5] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for
atomic sections. Proc. 2008 ACM SIGPLAN conference on
programming language design and implementation (PLDI
2008), 43(6):304–315, 2008.

[6] S. Dolev, D. Hendler, and A. Suissa. CAR-STM:
Scheduling-based collision avoidance and resolution for
software transactional memory. In PODC ’08: Proceed-
ings of the twenty-seventh ACM symposium on Principles of
Distributed Computing, pages 125–134, August 2008.

[7] R. E. Gruber. Temperature-based concurrency control. Proc.
Third Int. Workshop on Object Orientation and Operating
Systems, pages 230–232, December 1993.

[8] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic con-
tention management. In Proc. of 19th International Sympo-
sium on Distributed Computing (DISC 2005), pages 303–
323, September 2005.

[9] R. L. Halpert, C. J. F. Pickett, and C. Verbrugge.
Component-based lock allocation. In PACT ’07: Pro-
ceedings of the 16th International Conference on Parallel



Architecture and Compilation Techniques, pages 353–364,
September 2007.

[10] T. Harris, S. Marlow, S. Peyton Jones, and M. Herlihy. Com-
posable memory transactions. In PPoPP ’05: Proc. 10th
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 48–60, June 2005.

[11] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In
ICDCS ’03: Proceedings of the 23rd International Con-
ference on Distributed Computing Systems, pages 522–529,
May 2003.

[12] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer,
III. Software transactional memory for dynamic-sized data
structures. In Proceedings of the 22nd Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 92–101,
July 2003.

[13] M. Herlihy and J. E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. In Proceedings
of the 20th Annual International Symposium on Computer
Architecture, pages 289–301, May 1993.

[14] M. Hicks, J. S. Foster, and P. Prattikakis. Lock inference
for atomic sections. In First ACM SIGPLAN Workshop on
Transactional Computing (TRANSACT 2006), June 2006.

[15] P. Hudak, J. Hughes, S. P. Jones, and P. Wadler. A history
of Haskell: being lazy with class. In HOPL III: Proceed-
ings of the third ACM SIGPLAN conference on History of
programming languages, pages 1–55, June 2007.

[16] E. Koskinen and M. Herlihy. Dreadlocks: efficient deadlock
detection. In SPAA ’08: Proceedings of the twentieth annual
symposium on Parallelism in Algorithms and Architectures,
pages 297–303, June 2008.

[17] B. Liskov, M. Day, and L. Shrira. Distributed object man-
agement in Thor. Distributed Object Management, pages
79–91, 1993.

[18] C. C. Minh, J. Chung, C. Kozyrakis, and K. Oluko-
tun. STAMP: Stanford transactional applications for multi-
processing. In IEEE International Symposium on Workload
Characterization (IISWC 2008), pages 35–46, September
2008.

[19] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. In Proc.
12th International Symposium on High-Performance Com-
puter Architecture, pages 254–265. February 2006.

[20] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkow-
its, J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy,
J. Ollivier, S. Preis, B. Saha, A. Tal, and X. Tian.

Design and implementation of transactional constructs
for C/C++. In International Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), 2008.

[21] C. Perfumo, N. Sönmez, S. Stipic, O. Unsal, A. Cristal,
T. Harris, and M. Valero. The limits of software transac-
tional memory (STM): dissecting Haskell STM applications
on a many-core environment. In CF ’08: Proceedings of
the 2008 conference on Computing Frontiers, pages 67–78,
May 2008.

[22] S. Peyton Jones. Tackling the awkward squad: monadic in-
put/output, concurrency, exceptions, and foreign-language
calls in Haskell. July 2000. Presented at the 2000 Markto-
berdorf Summer School.

[23] W. N. Scherer III. Synchronization and Concurrency in
User-level Software Systems. PhD thesis, University of
Rochester, Department of Computer Science, 2006.

[24] W. N. Scherer III and M. L. Scott. Advanced contention
management for dynamic software transactional memory. In
PODC ’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, pages
240–248, July 2005.

[25] N. Shavit and D. Touitou. Software transactional memory.
In Proc. 14th Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 204–213, August 1995.

[26] N. Sönmez, A. Cristal, O. Unsal, T. Harris, and M. Valero.
Why you should profile transactional memory applications
on an atomic block basis: A Haskell case study. In Pro-
ceedings of Second Workshop on Programmability Issues for
Multi-core Computers (MULTIPROG’09), January 2009.

[27] M. Spear, M. Michael, and M. Scott. Inevitability mech-
anisms for software transactional memory. In Third ACM
SIGPLAN Workshop on Transactional Computing (TRANS-
ACT 2008), February 2008.

[28] M. M. Waliullah and P. Stenstrom. Intermediate checkpoint-
ing with conflicting access prediction in transactional mem-
ory systems. Proceedings of the 22nd IEEE International
Parallel and Distributed Processing Symposium, April 2008.

[29] A. Welc, B. Saha, and A.-R. Adl-Tabatabai. Irrevocable
transactions and their applications. In SPAA ’08: Proceed-
ings of the twentieth annual Symposium on Parallelism in
Algorithms and Architectures, pages 285–296, June 2008.

[30] R. M. Yoo and H.-H. S. Lee. Adaptive transaction schedul-
ing for transactional memory systems. In SPAA ’08: Pro-
ceedings of the twentieth annual symposium on Parallelism
in Algorithms and Architectures, pages 169–178, June 2008.


