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Abstract

The advent of multi-core processors means that exploiting

parallelism is key to increasing the performance of pro-

grams. Many researchers have studied the use of atomic

blocks as a way to simplify the construction of scalable par-

allel programs. However, there is a large body of existing

lock-based code, and typically it is incorrect to simply re-

place lock-based critical sections with atomic blocks. Some

problems include the need to do IO within critical sections;

the use of primitives such as condition variables; and the

sometime reliance on underlying lock properties such as fair-

ness or priority inheritance.

In this paper we investigate an alternative: a software

runtime system that allows threads to speculatively execute

lock-based critical sections in parallel. Execution proceeds

optimistically, dynamically detecting conflicts between ac-

cesses by concurrent threads. However, if there are frequent

conflicts, or if there are attempts to perform operations that

cannot be done speculatively, then execution can fall back

to acquiring a lock. Conversely, implementations of atomic

blocks must typically serialise all operations that cannot be

performed speculatively.

Our runtime system has been designed with the require-

ments of systems code in mind: in particular it does not re-

quire that programs be written in type-safe languages, nor

does it require any form of garbage collection. Furthermore,

we never require a thread holding a lock to wait for a thread

that has speculatively acquired it. This lets us retain any use-

ful underlying properties of a given lock implementation,

e.g. fairness or priority inheritance.

Categories and Subject Descriptors D.1.3 [Software]:

Programming Techniques Concurrent Programming

General Terms Design, Algorithms, Performance
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1. Introduction

In the multi-core era, processor evolution is characterised

by increasing numbers of cores from one year to the next,

rather than faster uni-processor clock speeds. Software must

therefore be structured to make good use of these cores if it

is to continue to improve in performance on new hardware.

However, there is a large existing body of code that has

been written in languages such as C/C++ using abstractions

such as mutexes, condition variables, and barriers. There

is also, of course, a large number of programmers with

experience in using these language features.

We are investigating the extent to which we can improve

the performance of these existing workloads and language

features on multi-core hardware. We are aiming to develop

new implementations of existing features that will (a) pro-

vide better scalability for the applications that use them, and

(b) encourage the use of simple programming idioms so that

programs are more obviously correct – free from deadlocks,

race conditions, and so on.

In this paper we focus on the implementation of lock-

based critical sections. We introduce a runtime system

that allows multiple threads to execute critical sections

via software-implemented speculative lock elision [Rajwar

2001] (SLE). We introduce the SLE programming model in

Section 2. The idea is that multiple threads can execute crit-

ical sections protected by the same lock, so long as there are

no data conflicts between the threads. If there are frequent

data conflicts, or if a thread attempts an operation that cannot

be done speculatively, then the implementation falls back to

a non-speculative code path. SLE can improve scalability

for workloads where lock contention is high, but actual data

conflicts are rare. So long as data conflicts are unlikely, SLE

can let the programmer develop scalable shared-memory

data structures using coarse-grained locking, rather than

needing to use complicated fine-grained locking schemes.

We introduce a manual interface for using our SLE run-

time system in Section 3, and we describe the implemen-

tation of the runtime system in Section 4. Supporting SLE

introduces a number of challenges, primarily because of the

need to control the three-way interaction between specula-

tive use of a lock, non-speculative use of the same lock, and

ordinary code in the application. We make a number of de-

sign choices which guide many implementation decisions:



• First, we are careful to ensure that any non-speculative

thread is not delayed by a speculative one. For example,

if a thread attempts to acquire a lock non-speculatively,

then we do not want it to have to wait for a thread that

has speculatively acquired the lock. This design choice

mitigates the negative effect that speculation can have in

workloads where it is not effective, reminiscent of design

choices in systems such as CILK [Blumofe 1995].

• Second, we wish to avoid any changes to the implemen-

tation of code outside critical sections. This is necessary

to make SLE transparent, for example to allow the use of

ordinary application-specific data formats, memory man-

agement schemes, and so on.

In ongoing work – and along with many other researchers

– we have been studying the design and implementation

of atomic blocks built over software transactional mem-

ory (STM) or hardware transactional memory (HTM). Pro-

gramming with SLE is not as simple as programming with

atomic blocks. With SLE it is still necessary to decide

which lock protects which piece of data. However, while

atomic blocks are attractive in the longer term, SLE has a

number of attractions for today’s languages. First, ordinary

locking can be used if the runtime system does not support

SLE, or if the workload does not perform well with specula-

tion. Second, an implementation can revert to ordinary non-

speculative execution if the critical section attempts an op-

eration that cannot be performed speculatively; implementa-

tions of atomic blocks over STM typically revert to serial-

ising all transactions, or at least all irrevocable ones [Spear

2008, Welc 2008]. In contrast, our implementation of SLE

serialises only those operations that require the same lock;

this enables us to benefit from additional parallelism as de-

termined by the original programmer.

Section 5 evaluates the performance of our prototype im-

plementation based on manual use of the SLE runtime sys-

tem. We compare the performance of data-structure micro-

benchmarks based on coarse-grain locking with SLE against

an implementation based on STM. We also examine the per-

formance of the STAMP suite [Cao Minh 2008]. In this pa-

per we have manually added calls to the SLE runtime sys-

tem. This has been a straightforward mechanical process for

the programs we have studied.

In Section 6 we discuss an alternative interface to the SLE

runtime system that can be targeted automatically, without

requiring source-code changes to an application. We dis-

cuss how different design decisions impact the likely per-

formance of the resulting automated system. We relate this

to the significant body of existing work on compiler support

for language constructs based on STM, and similar systems

based on binary translation [Olszewski 2007]. In future work

we plan to evaluate the performance of our prototype on a

wider set of applications, using a fully automatic implemen-

tation based on a lightweight binary rewriter.

Sections 7–8 discuss related work and conclusions.
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Figure 1. Overall system design.

2. Speculative Lock Elision

Figure 1 shows the structure of the complete system we are

building. We envisage that existing multithreaded programs

that use locks for synchronisation will hit bottlenecks as they

are run on platforms with increasing numbers of hardware

threads: as a result of lock contention, threads will wait on

locks rather than doing useful work.

One solution to this scalability problem is to exploit

any disjoint-access parallelism [Israeli 1994] that may be

present: i.e. if two operations access distinct memory loca-

tions, then they may run in parallel, even though they may

contend for the same lock.

Much recent research has focused on transactional mem-

ory (TM), and atomic blocks implemented over it. These

blocks of code appear to execute atomically and in isola-

tion, either through a software runtime system or some form

of hardware support. However, typical semantics for atomic

blocks mean that they are not a drop-in replacement for lock-

based critical sections. For example, some implementations

of atomic blocks support “single global lock atomicity”, in

which their behaviour is defined in terms of that of a program

using a single process-wide lock [Larus 2007, Menon 2007;

2008]. With these semantics, programs that work correctly

with locks may not work correctly with atomic blocks. Con-

sider the following example using locks l1 and l2:

// Example 1

// Initially: x=0

// Thread 1 // Thread 2

lock(l1); do {
lock(l2); lock(l2);

x = 100; t2 = x;
unlock(l2); unlock(l2);

do { } while (t2 != 100);
lock(l2); lock(l2);

t1 = x; x = 200;

unlock(l2); unlock(l2);
} while (t1 != 200);

unlock(l1);



This example is correctly synchronized; all accesses to x

are protected by lock l2. When implemented with locks,

Thread 2 is able to see Thread 1’s write of 100 to x, and

Thread 1 is subsequently able to see Thread 2’s write of

200. However, when implemented with atomic blocks, or

with a single global lock, these writes are not visible because

Thread 1’s outer critical section is serialised with Thread 2’s

critical sections.

As a consequence, researchers have studied forms of

“lock elision” as a way to implement lock-based critical sec-

tions [Rajwar 2001, Rossbach 2007, Ziarek 2008]. These im-

plementations retain the original semantics of the language,

but allow threads to speculate past a lock-acquire operation

and execute the critical section using TM-like techniques.

In this paper we assume that, as in the previous example,

the original lock-based program is correctly synchronized

and free from data races – i.e. when implemented using

locks, the same location is not subject to multiple concurrent

accesses, at least one of which is a write. We assume “catch

fire” semantics for programs with data races; i.e. a correct

implementation may behave arbitrarily for these programs.

Recent work on memory models for C/C++ has taken this

kind of approach, given the difficulty of constraining exactly

how an optimised program may behave in the presence of

data races [Boehm 2008].

The core of an SLE runtime system is similar to that of

an STM: both must track the memory accesses made by

concurrent threads and use some mechanism to detect and

resolve conflicts. However, an SLE runtime system can be

“best effort” in the sense that execution can always fall back

to acquiring the lock and executing non-speculatively. This

may be done if an implementation limit is reached (e.g.

the amount of speculative state overflows a cache [Rajwar

2001]), if an operation is attempted that cannot be performed

speculatively (e.g. waiting on a condition variable), or if the

program uses locks in a way that the implementation can-

not support (e.g. some forms of nesting, as in our previous

example).

Conversely, an SLE runtime system faces a number of

challenges that are not present in typical STMs:

Identifying profitable opportunities for SLE. In gen-

eral, lock elision can only improve scalability when (a) there

is little contention between the work different threads do in

a critical section (e.g. speculation cannot speed up a critical

section incrementing a single shared counter), and (b) there

is contention for the lock protecting the critical section (e.g.

a recent study showed little opportunity for using speculation

in the Linux kernel: many data structures had already been

designed to minimise lock contention [Rossbach 2007]).

Keeping this in mind, we believe that speculation should

only be attempted on selected locks and some of their

associated critical sections. We have constructed a tool

(PinCS [Roy 2009]) that profiles unmodified x86 binaries

at runtime, identifies critical sections, and predicts possi-

ble speedups assuming an ideal TM-based implementation.

We have profiled a number of applications using this tool

and seen possible speedups varying from 30% for some

SPLASH applications to almost zero for well tuned applica-

tions such as Apache. For this reason we show this profiling

step in Figure 1 as feeding into the elision process.

Integration with locks. The SLE runtime system must

support the interaction between speculative execution and

lock-based non-speculative execution of a critical section.

Ideally, to support maximal parallelism, read-only lock-

based critical sections should be able to run in parallel with

read-only speculation. In addition to handling IO, system

calls, condition variables, and so on, this is essential for per-

formance when handling critical sections that have a high

probability of conflict.

For example, consider the case of a hash table support-

ing a read-mostly workload. Ordinarily, lookups and updates

will be able to proceed in parallel. However, an occasional

rehashing operation needs to read every element of the hash

table in a long-running critical section. This long-running

section is unlikely to succeed using speculation since it will

repeatedly see conflicts from the updating threads. Acquir-

ing a read lock on the whole table allows the rehashing

thread to scan entries while also letting concurrent lookups

make progress. We examine this kind of workload later in

the paper in Section 5.

Sandboxing speculative work. We must ensure that

speculative work cannot affect non-speculative work. In par-

ticular, we must consider the execution of “zombie” specu-

lative threads [Dice 2006] – that is, threads still performing

speculative work that is doomed to be rolled back. For ex-

ample, we must avoid access-after-free problems where a

zombie thread accesses an object that has already been de-

allocated by a non-speculative thread: the memory that held

the object may have been reused for another object, or even

freed to the operating system.

Further problematic cases arise when pending updates

from successful speculation are being written back to a block

of memory that is being used non-speculatively. Consider the

following example from a multithreaded program that uses

linked lists:

// Example 2
// Thread 1 // Thread 2
deleteNode(...) { updateNode(...) {

ListNode *node; ListNode *node;
lock(list); lock(list);

... ...
node = ...; node = ...

... ...
unlock(list); node->value = ...
free(node); unlock(list);

} }

Without care, a TM-based implementation of these criti-

cal sections may allow Thread 2’s speculative update to the

value field to be written back after Thread 1’s critical sec-

tion has finished. It may even occur after Thread 1 has freed

the node, leading to memory corruption. Variants of this



kind of “privatization” idiom are widely studied in work on

TM [Spear 2007, Abadi 2008, Wang 2007, Dice 2006].

Our implementation of SLE must handle this kind of

usage, because the example is correctly synchronized in the

original lock-based implementation.

Preventing non-speculative threads waiting for specu-

lative threads. We do not want the SLE runtime system to

require a thread acquiring a lock non-speculatively to wait

for a thread that currently holds the lock speculatively. This

design decision limits the negative impact that speculation

can have in workloads where it is not effective. Of course,

this is also a generally desirable dynamic property since un-

due waiting while holding a lock can lead to convoys of

threads. For example, consider this shortened fragment of

code from the Apache web server:

// Example 3
apr_proc_mutex_lock(accept_mutex);

...
if (rv == APR_EGENERAL) {

// E[NM]FILE, ENOMEM, etc

resource_shortage = 1;
signal_threads(ST_GRACEFUL);

}
...
apr_proc_mutex_unlock(accept_mutex);

In this fragment, a thread accepting a connection acquires

a lock and, while holding this lock, may force the server to

exit due to lack of resources. The runtime system must be

careful not to let a speculative thread hold up the execution

of the shutdown request, as this would unnecessarily delay

the subsequent restart of the server.

Supporting application-specific lock types. In some sit-

uations, an application uses customised kinds of locks that

are tailored to its own requirements. For example, lock im-

plementations may busy-wait on the assumption that the lock

will become available soon, or locks may be integrated with

the thread scheduler to implement a priority inheritance pro-

tocol or other strategy to avoid priority inversion.

To avoid compromising these uses, the SLE runtime sys-

tem acts as a wrapper above an existing lock so that, when

speculation is not effective, the existing lock can be used

along with whatever queueing or blocking semantics it is

built to provide. We evaluate such a scenario in Section 5.

3. Manual SLE API

In this section we describe the interface to our prototype

SLE runtime system. This is designed for manual use by

a programmer; we describe the implementation (Section 4)

and evaluate its performance (Section 5) before returning

to consider a lower-level interface for automatic use by a

compiler or binary translator (Section 6).

The manual API differs from the automatic one in two

key respects. First, with the manual API, we do not wish

to require the programmer to write separate code paths for

speculative and non-speculative implementations of each

critical section – this kind of duplication is straightforward

to do automatically (e.g. as in STM implementations [Har-

ris 2003, Wang 2007]), but error prone when done by hand.

Consequently, our API is based on function calls that will

perform fine-grained concurrency control operations dur-

ing speculative execution, but will become (almost) no-ops

during non-speculative execution. Second, we assume that

the programmer will be able to identify the points in the

program at which objects change from being shared via crit-

ical sections to being private to a given thread – e.g. where

privatization idioms occur, such as Example 2 from Sec-

tion 2. This seems straightforward in the practical examples

we have studied, and earlier STM-based work has shown

that it may give a scalability advantage over supporting such

idioms directly in the runtime system [Menon 2007; 2008].

We illustrate the manual API using a running example

shown in Figure 2(a). The example maintains a set of event

counters protected by a common lock event lock and ac-

cessed via a function count event. Depending on the num-

ber and frequency of events the lock might be heavily con-

tended, even when the dynamic instances of the critical sec-

tion may access disjoint memory locations. This is the kind

of scenario where SLE can prove useful for scalability. The

function dump to log performs external IO, and so an SLE

implementation would need to serialise the critical sections

protected by event lock while performing the IO. In con-

trast, a direct implementation of count event with STM

would typically serialise these operations with any other IO-

performing operations in unrelated parts of the program.

The API for manual SLE contains 7 operations:

// Declare an elidable lock (Section 3.1):

SLE_ELIDABLE(base_lock_type, flags);

// Acquire/release elidable locks (Section 3.1):
SLE_LOCK(elidable_lock, base_lock_operation);

SLE_UNLOCK(elidable_lock, base_lock_operation);

// Access objects protected by a lock (Section 3.2):

ptr = sle_open_ro(ptr, size, version_ptr);
ptr = sle_open_rw(ptr, size, version_ptr);

// Prevent speculative access to objects (Section 3.3):

sle_finish_sharing(ptr, size);

// Revert to non-speculative execution (Section 3.4):

sle_fail_speculation();

Figure 2(b) shows how all but one is used in the example.

We discuss the use of these seven operations in turn in

Sections 3.1–3.4.

3.1 Locks

The SLE ELIDABLE macro declares a new elidable lock.

It specifies the underlying lock type, and flags for tuning

the SLE implementation. In Figure 2(b), the global vari-

able event lock is an elidable lock based on an ordinary

pthread mutex. We explain possible tuning parameters in

more detail in Section 4.

The SLE LOCK and SLE UNLOCK macros are used to ac-

quire and release an elidable lock. These operations take an

elidable lock as a parameter, along with the function to ac-



typedef struct event_counter {

int count;
...

} ev_ctr;
ev_ctr counters[EVENTS];

pthread_mutex_t event_lock;

void count_event(int event)
{

// local variable initialisation
l1: int threshold = 0;
l2: pthread_mutex_lock(event_lock);

// Write to global shared state
// protected by the lock

l3: counters[event].count++;
... // other counter-specific code

if(event_threshold(counters[event].count))

threshold = 1;
// Possibly do IO
if(threshold)

dump_to_log(event);

pthread_mutex_unlock(event_lock);
}

typedef struct event_counter {

int count;
...

} ev_ctr;
ev_ctr counters[EVENTS];
// SLE capable lock

SLE_ELIDABLE(pthread_mutex_t, FLAGS) event_lock;

void count_event(int event)
{

ev_ctr *my_counter;
int threshold;
l2: SLE_LOCK(event_lock, pthread_mutex_lock);

// move initialisation into critical section
// to protect against restarts

l1: threshold = 0;
// Use shadow copy for changes
l3_1: my_counter = sle_open_rw(&counters[event],

sizeof(ev_ctr), NULL);
l3_2: my_counter->count++;

... // other counter-specific code
if(event_threshold(my_counter->count))

threshold = 1;
// Possibly do IO
if(threshold) {

sle_fail_speculation();
dump_to_log(event);

}
SLE_UNLOCK(event_lock, pthread_mutex_unlock);

}

Figure 2. Implementing event counters, (a) using coarse-grained locks, and (b) using the SLE runtime system.

quire/release the underlying lock if it needs to be used non-

speculatively.

At runtime, an elidable lock is represented by a wrapper

around an instance of the underlying lock type. The wrapper

adds fields to control the interaction between threads holding

the lock speculatively, and threads holding the lock non-

speculatively. We discuss the implementation and behaviour

of elidable locks in Section 4.1.

3.2 Data-access Operations

The functions sle open ro and sle open rw must be used

when accessing objects protected by an elidable lock. The

caller must pass in a pointer to the start of the object, and

the size of the object in bytes. The SLE runtime returns a

new pointer that the caller should use when making their

actual accesses. For example, in Figure 2(b), the function

count event opens an element of the counters array for

read-write access, and then makes accesses via the local

variable my counter. There are three main design choices:

The first is the granularity at which to track speculative

work – primarily, whether to work on a per-object or per-

word basis. For the manual API we support variable gran-

ularity by shadowing arbitrary byte-ranges, and leave the

ultimate decision to the programmer. For example, in Fig-

ure 2(b), each ev ctr is managed individually. Fine-grained

speculation may reduce the number of false conflicts. Con-

versely, it may incur a higher book-keeping overhead.

The second design choice is how to associate conflict-

detection metadata with the program’s data structures. By

default we follow the approach taken by Fraser and Har-

ris [Harris 2003] and Dice et al. [Dice 2006] by using a hash

function to map an address to a slot in an external metadata

table. However, to improve spatial locality, a programmer

may optionally place the metadata within the application’s

own data structures; if the programmer does this then they

must pass in a pointer to the metadata as the final parameter

to sle open ro and sle open rw. This is not done in the

example in Figure 2(b), and so external metadata is used.

The third design choice is how to isolate speculative work

from any threads that execute a critical section directly. As

discussed in Section 2, we wish to ensure that specula-

tive work does not affect the correctness of non-speculative

work, and to also ensure that non-speculative threads do not

need to wait for speculative threads. We do this by allowing

a thread (T1) that acquires a lock non-speculatively to de-

tect when another thread (T2) may speculatively access an

object it requires and “revoke” access to it from the spec-

ulating thread. Revocation guarantees that any speculative

threads will (a) not make further accesses to these objects,

letting T1 access those objects directly, and (b) not delay the

execution of T1. We discuss how we implement revocation

in Section 4.4.

3.3 Memory Management

To avoid the problems posed by privatization-style idioms,

or the corruption of freed memory by speculating threads,

the programmer must call sle finish sharing before

memory that can been accessed speculatively may be recy-

cled for any other purpose (this includes thread-local usage,

such as removing an element from a list and then accessing

it directly outside a critical section).

To illustrate the use of sle finish sharing, we repro-

duce the linked list example from Section 2 with this call

inserted:



deleteNode(...) {

ListNode *node;
SLE_LOCK(list, pthread_mutex_lock);

...
node = ...

...
SLE_UNLOCK(list, pthread_mutex_unlock);
sle_finish_sharing(node, sizeof(ListNode));

free(node);
}

The sle finish sharing call adds a synchronisation step

that ensures that it is safe to access the block directly; it

does not interact with the actual memory manager used

in the application. For example, it works with the pre-

allocated blocks used by the OSTM [Fraser 2003] and

RSTM [Marathe 2006] test harnesses, as well as with the

direct malloc/free calls used in STAMP.

3.4 Checkpoint and Rollback

The lock elision runtime system needs to checkpoint exe-

cution at the point where a lock is taken and roll back to

that point if speculation fails (whether because of a conflict,

or an attempt to perform an operation that cannot be done

speculatively). Checkpointing can be done easily for C us-

ing the setjmp/longjmp facility. For C++ we have used the

language’s try-catch constructs. Of course, this basic kind

of checkpointing does not affect all program state. There are

two cases that need particular care:

The first is thread-local data held in the heap, and local

variables outside the critical section that is being executed

speculatively. Such changes are not rolled back when the

stack is unwound. An example of this is the threshold

variable in Figure 2. When using the manual SLE API,

the programmer must ensure that updates to such state are

either (a) tracked by the SLE runtime system, or (b) that

they are idempotent. In the example, the initialisation of the

threshold variable is moved into the critical section, as

shown in Figure 2(b).

The second special case is the use of memory manage-

ment functions. With the manual API, we handle malloc

and free operations by undoing allocation requests made by

speculative work that is rolled back, and by deferring free

requests until speculative work commits. (Custom allocators

may either be integrated with the SLE runtime system, or

treated by falling back to non-speculative execution).

With the manual SLE API, the programmer must call

sle fail speculation at any point when speculation

needs to be cancelled – i.e. before any operation that is ei-

ther irrevocable (e.g. invoking IO operations, waiting on a

condition variable), or which affects state not tracked by the

runtime (e.g. calls into a library that is not written to support

SLE). Speculation must also be cancelled in cases where

execution returns from a function containing the SLE LOCK

operation. This is because the checkpoint is then lost and

insufficient information is available to roll-back execution.

In all of these cases, execution reverts to acquiring the un-

derlying lock.

As we discuss in Section 6, a compiler or binary rewriting

engine can remove a lot of this burden from the programmer

by tracking all updates to global state – not just those to

shared data – and thus can automatically checkpoint extra

state and insert elision aborts as required.

4. Runtime

In this section we describe the details of our implemen-

tation of SLE. We first describe the structure of an elid-

able lock (Section 4.1), which wraps the existing applica-

tion locks declared in the program. Speculative execution

uses thread-private logs of tentative updates (“lazy version-

ing” [Moore 2006]); this technique effectively sandboxes

one thread’s speculative work from that of another, using an

object-versioning scheme to detect conflict (Section 4.2).

Locks are also used to mediate access to objects that

are being accessed simultaneously by multiple speculative

threads; these fine-grained locks are part of the SLE run-

time system and are distinct from the application locks spec-

ified by the programmer. A form of commit-time-locking

and version-number checks is used to determine whether or

not speculation has been successful, and to apply any shad-

owed changes back to the heap (Section 4.3). In our im-

plementation, non-speculative threads must check that the

fine-grained locks of objects they are accessing are not held

by speculative threads (Section 4.5). To ensure that non-

speculative threads do not need to block on fine-grained

locks, we use a revocable lock design (Section 4.4).

A key restriction in the case of nested critical sections is

that once a critical section is elided, all enclosed ones must

also be. SLE cannot allow the nested critical sections to be

executed using non-speculative execution (consider the case

where one lock is elided but an enclosed lock is not: changes

made to objects protected by the enclosed lock cannot be

rolled back). There is no problem with locks being held

while starting elision, and hence the programmer does not

need to reason about possible entry paths. However such

locks cannot be released until all enclosed critical sections

are completed.

4.1 Elidable Lock Metadata

The SLE runtime system must track the use of application

locks in order to detect whether or not speculative and non-

speculative uses of the lock have conflicted. In particular, to

support multi-reader/single-writer locks, this means that a

thread that acquires a coarse-grained application lock non-

speculatively can run concurrently with read-only specula-

tive threads. We add metadata fields to a lock to track both

exclusive-mode non-speculative lock and unlock operations

as well as to track the number of threads that currently hold

the lock non-speculatively in read-only mode.



elidable_lock<T> {

T base lock; // underlying lock
int version; // inc on xlock/xunlock

int read_lockers; // counts #readers
int occ_hashsize; // tuning (Sec 4.2)

int occ_speculations, occ_waitfor; // tuning (Sec 4.5)
int check_freq; // Must be >=1: (Sec 4.2)

};

Threads acquiring the underlying lock non-speculatively in

exclusive mode increment the version field both on acqui-

sition and on release, while threads non-speculatively ac-

quiring the underlying lock in read-only mode atomically

increment the read lockers field on acquisition and decre-

ment it on release.

Consequently, a thread attempting to acquire a lock in

speculative mode must check whether or not the version

field contains an even value. At commit time, a specu-

lating thread must check that the version field has not

changed (to ensure that it has not overlapped with a non-

speculative exclusive-mode operation). Unless the specula-

tion was read-only, a speculative thread must also check that

the read lockers count is zero to ensure that writes from

speculative threads do not overlap with a read-only acquisi-

tion of the same lock.

4.2 Objects

As discussed in Section 3.2, runtime metadata can either be

managed by an external lock table (using a hash function to

map the address of a data item to its metadata), or meta-

data can be explicitly embedded within the application’s

data structures (passing in the metadata’s address to calls to

sle open ro and sle open rw). The metadata comprises

a fine-grained lock and a version number. The fine-grained

lock is used for concurrency control when committing spec-

ulative work back to the heap. The version number is up-

dated on every such update, to signal a conflict to any con-

current speculative readers of the data.

Speculating threads need to execute in isolation. This in-

volves logging memory locations that are read and buffer-

ing any changes until the speculating thread has finished

executing the critical section and can successfully commit:

the structure of the logs used is shown in Figure 3. The

sle open ro and sle open rw operations take a thread-

private snapshot of an object as follows:

snapshot(object, size, version_ptr, log_copy, log_version)
{

log_version = *version_ptr;
memcpy(log_copy, object, size);
if(log_version != *version_ptr) {

// something changed --- abort
sle_fail_speculation();

} }

The version number of the object is changed by any thread

that updates it (Section 4.3), thus letting threads take a con-

sistent snapshot, as well enabling them to detect if their snap-

shots become out of date.

When held, a fine-grained lock points to the logged copy

of the object it is currently protecting. This lets a thread

per−thread object log

global_ptr

version

size

embedded version
(optional)

version

object

shadow copy

object 

shared copy

Hash(address)

index into lock table
log entry

revocable fine grained lock

Figure 3. Log structure.

examining a fine-grained lock to quickly determine exactly

which object in memory it is currently associated with. This

is critical to the revoke operation we describe in Section 4.4.

In our current implementation, if the same thread needs to

update two objects protected by the same fine grained lock,

it aborts elision. This limitation could be lifted by a more

involved implementation, but this has not been indicated by

our experience to date.

In order to efficiently determine whether or not a given

object has already been logged, we use a chained hash ta-

ble to index the object log. The hash table is implemented as

a fixed (compile time) sized array, which is partitioned be-

tween the hash buckets and overflow chains. The partitioning

is dynamic on a per elidable lock basis (through the tuning

parameter occ hashsize). A larger hash table means more

single-probe lookups, but also results in more cache misses

due to its random access nature, especially when it does not

fit into the processor cache. The hash bucket includes a gen-

eration number that is set to the generation counter of the

thread on allocation. The generation counter of the thread is

incremented every time a new elision is begun. This allows

us to reuse the hash table across elisions without reinitialis-

ing it. Running out of logspace or space in the hashtable is

never catastrophic in our design: we fall back to acquiring

the lock and executing non-speculatively.

Finally, SLE provides mechanisms to allow the program-

mer to ensure that the snapshot of memory taken by a spec-

ulating thread is consistent: i.e. that a thread reading from

multiple objects sees a mutually-consistent view of them.

This ensures that speculating threads do not enter infinite

loops or suffer other fatal behaviour as a result of conflicting

accesses from other speculative as well as non-speculative

threads. We use two approaches:

The first approach, as in TL2 [Dice 2006], is to use a

global version number. A thread observes the current global

version number when it starts speculating (its base version

number). A thread increments the global version number

if it successfully finishes speculating, and it writes the re-

sulting number into any fine-grained locks that it has held.

This means that a thread is guaranteed to see a mutually-

consistent view of memory provided that the version number

in each fine-grained lock that it accesses is older than its base



void commit_speculation() {

cas(tx_state, EXECUTING, UNDECIDED);
if (!read_only)

foreach obj in dirty_list
if (trylock(lock(obj)) == FAIL)
goto cleanup;

if (!verify_snapshot())
goto cleanup;

BEGIN_RESTARTABLE();

foreach obj in dirty_list
if (held(lock(obj)))
version(obj) = log(obj).version + 1;

END_RESTARTABLE();

// Linearisation point here

if (!verify_snapshot())

goto cleanup;
if (!cas(tx_state, UNDECIDED, SUCCESS))

goto cleanup;

BEGIN_RESTARTABLE();
foreach obj in dirty_list

if (held(lock(obj)))

copy(shared(obj), private(obj));
version(obj) = log(obj).version + 2;

unlock(lock(obj));
END_RESTARTABLE();

cas(tx_state, SUCCESS, EXECUTING);
return; // Success

cleanup:

undo object version changes
release object locks
// tx_state may have changed to FAILED

cas(tx_state, tx_state, EXECUTING);
}

Figure 4. Commit.

version number. We use this approach when benchmarking

SLE against TL2 and RSTM in Section 5.

Following forms of DSTM [Herlihy 2003] and OSTM,

the second approach that we support is to periodically reval-

idate the objects that a thread has accessed. This validation

involves checking that:

• the versions of all logged objects are unchanged; and

• the version numbers of elided locks are unchanged.

The frequency of this validation is controlled by a program-

mer provided tuning parameter check freq. A value of 1

leads to doing validation on every addition to the snapshot,

which ensures a consistent snapshot at all times, but incurs a

performance overhead. Larger values cause the SLE runtime

to perform less frequent validation, which allows temporary

inconsistencies, but can potentially reduce the performance

overhead significantly. The latter option is preferable if the

programmer is certain that execution on inconsistent snap-

shots will not be problematic. We use this approach with

check freq set to 10 when benchmarking against OSTM.

4.3 Commit

When a speculatively executing (outermost) critical section

finishes, the corresponding SLE UNLOCK on the elided lock

triggers the commit operation shown in Figure 4. The com-

mit operation applies changes atomically to the shared heap

using a variation of the well known 2-phase commit proto-

col adopted by many STM implementations. There are three

noteworthy aspects of our commit operation:

The first is that validating the snapshot means checking

(a) version numbers on shadowed objects are unchanged,

(b) version numbers of elided locks are unchanged, (c) either

this critical section has not updated any objects, or the reader

counts of elided locks are zero. The checks take into account

versions that have already been locked by the committing

thread.

The second point is that we need to manipulate both

the external lock table as well as any per-object embedded

version numbers. This leads to the extra validation pass

shown in the figure compared to a standard 2-phase commit.

Finally, we must consider the possible revocation of the

fine-grained locks. In our implementation, the revocation no-

tification comes as a UNIX signal, which is ignored un-

less we are in a section marked by BEGIN RESTARTABLE

and END RESTARTABLE. If we are in such a section, the

signal handler executes a longjmp to transfer control flow

to the checkpoint taken at the thread’s most recent call to

BEGIN RESTARTABLE. Since we always check that the fine-

grained lock is held before applying changes to the associ-

ated object this scheme ensures that once the notification is

received, the thread that has lost the lock will no longer make

any updates to the associated object.

4.4 Revocable Fine-Grained Locking

A key building block of the STM is revocable locks. As in

earlier work [Harris 2005], the idea is to provide locks that

can be revoked, displacing the original lock holder’s execu-

tion to a special clean-up path. We implemented revocable

locks in software for off-the-shelf microprocessors to serve

as a basis for our SLE runtime system.

We added revocation support to our fine-grained locks

by adding a version number and a pointer to the log entry

of the object which is locked. We implemented a trylock

call that attempts to acquire a lock, either succeeding, or

returning without blocking if the lock is already held. This

is implemented by incrementing the version number both

on acquire and on release. Consequently, an odd version

number indicates that a lock is held (a reuse of the scheme in

Section 4.1). We also have a revoke operation that operates

as shown in Figure 5. The thread revoking the lock notifies

the previous lock holder to inform it that it has lost the lock.

Once the notification is received by the other thread then the

thread revoking the lock can assume that objects protected

by the lock will no longer be touched by the previous lock

holder (this includes the log-entry-pointer field within the

revocable lock itself). The thread revoking the lock also

takes the responsibility of copying back changes from the

original holder if it has successfully committed.

For brevity, Figure 5 does not cover the case where mul-

tiple threads have acquired the application lock in reader



revoke(lock, global_ptr, size)

{
version = lock.version;

if(version is even) // unlocked
return;

logentry = lock.log;

// Is lock associated with object ?
if(logentry.global_ptr != global_ptr)

return;
memcpy(local_buffer, logentry.shadow, size);

other_thread = logentry.thread;
other_state = other_thread.tx_state;
if(other_state == UNDECIDED) {

// Push to a failed decision
cas(other_thread.tx_state, UNDECIDED, FAILED);

other_state = other_thread.tx_state;
}

copyback:

if(other_state == SUCCESS && lock.version == version)
memcpy(global_ptr, local_buffer, size);

revoke:
if(cas(lock.version, version, version + 2) == version) {

// we have the lock
// send revoke notification --- synchronous
revoke_notify(other_thread);

lock.log = NULL;
cas(lock.version, version + 2, version + 3);

}
}

Figure 5. Fine-grained lock: revoke operation.

void revoke_notify(target) {
int old_interrupt_count, cpu;

signals_pending(target).restart = true;
cpu = get_cpu(target);

old_interrupt_count = interrupt_count(cpu);
send_interrupt(cpu);

while (old_interrupt_count == interrupt_count(cpu));
// guaranteed signal delivery at this point

}

Figure 6. Synchronous signalling.

mode and then concurrently try to revoke the same fine-

grained lock. In practise this is handled by further encod-

ing the fine-grained lock version to indicate when it is being

held by a revoking thread. In this case other threads do not

attempt to further revoke it in the revoke stage. However

we still allow them to perform the copyback stage concur-

rently (and not block on each other). This is safe since they

are copying back the same values and no other writer can

access the object (the application read lock is held).

One challenge we faced was to implement a non-blocking

synchronous notification mechanism. We do this by provid-

ing a new system call that allows the revoking thread to send

a synchronous signal to the thread previously holding the

lock being revoked. The typical UNIX signal interface pro-

vided does not provide such a facility, and hence we have

built a custom Linux kernel module which provides the syn-

chronous signalling capabilities we require.

Figure 6 gives pseudocode for the new revoke notify

system call. It first marks the signal as pending in the target

thread. It then determines the CPU that the target thread

is running on (or last running on if not running currently).

Finally, it sends a reschedule interrupt to the target CPU. It

check_access_safe(obj, version_ptr) {

if (version_ptr != NULL) {
unsafe = is_locked(version_ptr);

} else {
unsafe = is_locked(lock(obj));

}

if (unsafe) {
revoke(lock(obj));

} }

Figure 7. Access check for non-speculative execution.

then waits for the per-interrupt counter on the target CPU

to be incremented, indicating that the interrupt has been

received. At this point the system call returns. Since signals

are always delivered on a return to user-mode from kernel-

mode in Linux, this guarantees that once an interrupt is

received the signal will be delivered (if it has not been

already).

On systems where the kernel module is not available,

threads simply fall back to blocking when encountering held

fine-grained locks.

4.5 Non-Speculative Execution

If a critical section is executed non-speculatively then the

sle open ro and sle open rw operations no longer need

to track the data accesses made by a thread, and no longer

need to build up a commit set to write back to shared objects

at the end of the critical section. However, a non-speculative

thread must still ensure that it sees any updates from specu-

lative threads that are in their write-back phase.

We achieve this by having the non-speculative thread

check the version number of any object being accessed.

If the version number indicates that the object is currently

locked, then the non-speculative thread revokes the fine-

grained lock. Since our lock revocation system call cannot

block, this means that threads holding a lock never need to

wait on threads that have speculated past it, a cornerstone

of our design. The pseudocode given in Figure 7 illustrates

the procedure used by a non-speculating thread to determine

that a particular access is safe.

Another area of interaction between non-speculative

threads and speculative ones is memory management. As we

have described, speculation can lead to the write-after-free

problem, where a block is written to after it has been freed.

Since we wanted a non-blocking solution, we eschewed the

epoch based memory management [Kung 1980] schemes

used in OSTM and RSTM. Instead we use a variant of the

scheme in TL2, which treats the fine-grained lock as a hazard

pointer [Michael 2004]. The call to sle finish sharing

checks if the fine-grained lock on the object is held. If the

lock is held then there may be pending speculative updates to

the object, in which case the lock is revoked. The operation

then returns indicating that it is safe to reuse the block.

Finally, when an elidable lock is encountered either when

executing or after an aborted attempt to speculate past it, the

runtime system needs to decide whether to elide it or fall



back to lock acquisition. Also, if the lock is currently held,

the runtime system needs to decide whether to wait for it

to become free and then try elision or to abandon elision

altogether for this instance of the critical section. To control

and tune runtime behaviour, we provide two further tuning

parameters on a per-elidable-lock basis.

The first parameter is occ speculations: this deter-

mines the the maximum number of attempts that the elision

runtime system will make to elide this lock. On suffering

that many failures in speculation, the implementation falls

back to pessimistically acquiring the lock – a value of zero

for this parameter means that elision is never attempted.

The second parameter is occ waitfor. In the case that

a lock is unavailable when attempting elision, this defines

the number of acquisitions of the lock by other threads

that the elision runtime will wait for before abandoning

the attempt to speculate past it. If this limit is reached, the

thread switches to pessimistic acquisition of the lock for this

dynamic instance of the critical section.

Larger values for these two parameters pushes the run-

time system towards more optimism, approximating atomic

blocks. Smaller values result in a closer approximation of the

conventional blocking behaviour on locks.

5. Evaluation

We evaluate our SLE runtime system by using the SLE API

described in Section 3. The evaluation is driven by two mo-

tivating factors. The first is to confirm that the complexity of

the commit operation in Figure 4 does not affect scalability.

The second motivation is to show how our design decisions,

such as non-blocking execution of non-speculative threads

and non-blocking memory management, improve the robust-

ness of applications using the runtime.

Our benchmarking methodology uses the test harnesses

of OSTM and STAMP (both written in C) and RSTM (writ-

ten C++). We use three different machines and two differ-

ent architectures: a large ccNUMA Itanium-2 machine (Al-

tix 4700, 52 Madison cores, 456 GB memory, 38 ccNUMA

nodes); a 16-way x86 SMP (machine 4 sockets, 2 cores per

socket, 2 hyperthreads per core, running in 64-bit mode); and

a smaller x86 SMP machine with one hyperthreaded CPU

running in 32-bit mode. We have deliberately used differ-

ent architectures to verify that our implementation of SLE

is portable across the stronger memory model of the x86

and the weaker one of the Itanium-2: these memory models

roughly represent opposite ends of the memory consistency

scale. We use the implementation of revocable locks only on

the x86 machines (we do not have superuser access on the

Altix machine).

All our experiments use the default STM of the test har-

ness in question as a baseline. We emphasise here that our

purpose is not to compare the absolute performance of SLE

with the other STMs and hence have not tuned parame-

ters for the elidable locks. Except where explicitly noted,

all experiments use fixed settings of occ hashsize = 32,

occ speculations = 17 and occ waitfor = 17, which

we found during development to be adequate for reasonable

performance from SLE for most of the benchmarks.

5.1 Scalability

The first set of scalability experiments use the highly scal-

able Altix machine. Figure 8 shows the results of running

concurrent skip list and red-black tree benchmarks, using

a lock-based version, OSTM and our SLE runtime system.

The benchmarks perform a mixture of 75% lookups and 25%

accesses split between updates and deletes. SLE shows no

scalability bottlenecks even at 64 threads, keeping the exe-

cution time for the critical section constant, regardless of the

number of threads. It is able to use all the disjoint access par-

allelism hidden behind the coarse-grained lock that we used

to protect the data structure. The pure lock-only versions on

the other hand are unable to scale, even the sophisticated

fine-grained ones. This is because they serialise on exclusive

access to the same cache line even for read locking. SLE per-

forms worse than OSTM for skip lists by a constant factor

since it needs to copy entire skip list objects for read and

write access rather than just indirection pointers in the case

of OSTM.

The next scalability experiment uses the 16-way x86

SMP. The experiment demonstrates the value of placing a

version number in objects. We evaluated two variants of

red black trees in OSTM using our SLE runtime. The first

variant uses version numbers within objects while the other

variant uses external metadata. As Figure 9 shows for this

benchmark with 75% lookups, the read only critical sections

benefit heavily (around 15%) due to the version number be-

ing on the same cache-line as the object itself.

5.2 Robustness

In this section we evaluate the robustness of our design, and

the impact of our design goals of supporting non-speculative

execution, and avoiding the need for non-speculative threads

to block waiting for speculative threads.

The first experiment uses the concurrent hashtable im-

plementation in RSTM. The concurrent hashtable uses 256

buckets with overflow chains. The experiment uses the 16-

way x86 SMP with 15 threads devoted to inserting or delet-

ing entries from the hashtable. The last thread runs a long

critical section reading every element in the table, simu-

lating a hash table rehash. This thread finds it difficult to

make progress when executing speculatively due to the other

threads executing shorter critical sections that conflict with

its extremely large read set.

We ran the experiment with two version of SLE: one with

the default tuning parameters, and one which optimistically

always speculates and never falls back to explicitly acquiring

a lock. As expected, the optimistic version results with the

long running thread being completely starved of CPU time,

while the standard version of SLE adapts to the situation
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Figure 8. OSTM: red-black trees and skip lists
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and ensures liveness. We also ran this benchmark on RSTM

using the default Polka contention manager; once more the

long running thread is starved due to repeated conflicts with

the short running critical sections.

The next two experiments use an x86 system with a single

hyper-threaded processor. This lets us explore settings where

there are more software threads than hardware ones. For

brevity, we report results from just one benchmark from each

of the STAMP and RSTM suites; the other benchmarks lead

to similar conclusions.

We first run the Vacation benchmark from the STAMP

suite and impose multiprogramming by launching upto 16

threads on the testbed (which has only two hardware threads)

as well as tuning the benchmark for high conflict.

We measured two different SLE configurations: the first

uses lock revocation, while the second does not. We used a

POSIX-threads mutex for the coarse-grained lock in SLE.

Figure 10 shows that as the degree of multiprogramming in-

creases lock revocation is extremely useful to prevent sit-

uations where the non-speculative thread is forced to wait

on threads that have uncompleted speculative work and have

been de-scheduled while in their commit phase. The use of

the heavyweight POSIX-threads mutex reflects the intention

of the programmer to handle multiprogramming scenarios

and avoid any priority inversion. When speculation causes

busy waiting on fine-grained locks it effectively circumvents

that intention. TL2 is also affected by multiprogramming:
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Figure 10. STAMP: Vacation under multiprogramming

note that we are using the default conflict manager for TL2

and thus its performance in such circumstances could possi-

bly be improved by tuning it. A non-blocking STM may be

particularly suitable to this workload [Marathe 2008].

The final experiment in this section uses a version of

RSTM where we deliberately cause one selected thread to

be de-scheduled in its commit phase, both in RSTM as well

as the SLE runtime system. Since RSTM is non-blocking

and our SLE implementation is designed to isolate changes

made by a speculating thread, this is not immediately fatal to

the application. However in the case of RSTM a thread stuck

in its commit phase means that the global epoch is unable to

make progress and hence freed blocks cannot be returned for

reuse. We tracked the number of free memory blocks in the

system by means of the vmstat utility. RSTM was unable

to reuse freed blocks, continually allocated blocks to meet

its demand and ultimately crashed, being terminated by the

operating systems when free system memory fell below a

critical water mark. SLE on the other hand did not have any

problem since the crashed thread cannot prevent memory

management from making progress.

5.3 Performance

In this section, we evaluate the overall performance of SLE

on the STAMP benchmarks. The eight STAMP benchmarks

include a gene sequencing program (“Genome”), a bayesian

learning network (“Bayes”), a network intrusion detection
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Figure 11. STAMP: speedups with 16 threads

algorithm (“Intruder”), a k-means clustering algorithm (“K-

Means”), a maze routing algorithm (“Labyrinth”), a set of

graph kernels (“SSCA2”), a client-server reservation sys-

tem simulating SpecJBB (“Vacation”) and finally a Delau-

nay mesh refinement algorithm (“Yada”). Of these Yada and

Bayes failed to run out of the box on our hardware using

the TL2 version available with it. Hence we do not report

results for these two benchmarks. For the remaining bench-

marks we report speedup on the 16-way x86 SMP over the

sequential version of the benchmark. We use the largest rec-

ommended input set in each case to run non trivial instances

of the benchmark. As Figure 11 shows, our SLE implemen-

tation scales well in many of these benchmarks. One notable

exception is Labyrinth, where we do not support the low-

level “read set discard” optimisation used in the benchmark

– this operation has no counterpart in a lock-based program.

We have not tuned either TL2 or our own runtime; perfor-

mance can be significantly improved in either case by tuning

the parameters in each runtime. For example, we found that

increasing the occ hashsize parameter increased perfor-

mance in all the benchmarks, ranging from 5% in vacation

to 30% in genome. In the case of labyrinth, our assumption

of 4 byte aligned objects when constructing the hash func-

tion for mapping to the locktable leads to excessive conflicts.

Switching to a slightly modified hash function that correctly

assumes object alignments of 8 (labyrinth uses arrays of 64-

bit elements) led to SLE performing exactly as well as TL2.

Based on this observation we are considering exposing ob-

ject alignments as another tunable parameter on a per-lock

basis (assuming the same set of locks is always needed for

the same object).

Overall, our evaluation of SLE shows that when carefully

used it can provide significant scaling to code that synchro-

nises using coarse grained locks. Using finer object granular-

ities is clearly beneficial for performance by avoiding unnec-

essary shadowing of large objects, and using embedded ver-

sion numbers can also improve performance. Finally, tuning

elidable lock attributes such as the hash table size based on

the nature of the critical section can further contribute to bet-

ter performance. We intend to explore such tuning in more

detail in later work, ideally building an automatic solution.

6. Automating SLE

In Sections 3–5 we have used an interface to our SLE run-

time system that is designed for manual use in a C/C++ pro-

gram. This has let us evaluate the possibilities for software-

based implementations of SLE on a small number of bench-

marks, and let us tune some aspects of the runtime system’s

implementation. We are currently extending this system to

form an implementation that works entirely automatically,

and we are integrating it with our profiling work [Roy 2009].

The core SLE runtime system stays as described in this

paper, but there are a number of differences between the API

for manual use and the API for automatic use:

• First, when SLE is applied automatically, we cannot rely

on the programmer identifying convenient locations to

store SLE metadata. In the worst case we must always

use an external metadata table, and use a hash function to

map an address to its associated metadata. Static analyses

may help in some typical usage patterns, as with hybrid

word/object STMs [Riegel 2008]. Data read/write opera-

tions expand to calls into the runtime system in the same

manner as with an STM implementation.

• Second, in the automated setting, we cannot rely on the

careful placement of sle finish sharing operations.

Again, we can employ known techniques from STM im-

plementations; either introducing additional synchronisa-

tion modelled on Menon et al.’s implementation of priva-

tization safety [Menon 2008], or using memory protec-

tion hardware to identify transitions [Abadi 2009]. Note

that whereas Menon et al.’s scheme uses process-wide

synchronisation with single global lock atomicity, we

would only require per-application-lock synchronisation.

Our anticipated automatic implementation of SLE is based

on a lightweight binary rewriting system, modifying the im-

plementation of speculative critical sections, and the imple-

mentation of lock/unlock operations. We wish to avoid mod-

ifying the implementation of code outside critical sections

(so that the cost of binary rewriting is not incurred there). As

with Judo-STM [Olszewski 2007], changes made by malloc

and free can be tracked by the runtime system, thus ensur-

ing that changes to the memory management data structures

are made atomically on commit (a scalable malloc-free

implementation will typically ensure that there are no con-

flicts between allocations by different threads). Furthermore,

any calls to extend the available heap area using mmap or

sbrk system calls can either be implemented by falling back

to acquiring a lock, or they can be handled as special cases.

We can choose whether or not to require modification to

non-speculative code inside critical sections. One option, as

with our manual prototype, is for this non-speculative code

to include calls such as check access safe to ensure that

the data it accesses is not being used by a speculative thread.

This is desirable in the manual case because it avoids intro-

ducing synchronisation between non-conflicting operations



on the elidable locks. However, since the automatic case al-

ready requires this synchronisation for privatization safety, it

may be preferable to control speculative/non-speculative in-

teractions on a per-application-lock basis rather than a fine-

grained object basis. This would avoid the need for any

changes to the implementation of non-speculative critical

sections. Finally, lock and unlock demarcations of critical

sections may not be straightforward [Wang 2008]. However

we can always fall back to non-speculative execution in such

cases.

7. Related Work

There has been previous work on combining transactions

with locks. TxLinux [Rossbach 2007] combines HTM-

implemented critical sections with software-implemented

spin-locks in the Linux kernel. In our work we have ex-

plored software-only approaches for current off-the-shelf

processors, and looked at combining speculative and non-

speculative execution for multiple kinds of locks. Another

difference is that the HTM used by TxLinux results in any

thread acquiring a lock non-speculatively to automatically

abort any threads that hold it speculatively. We implement

this functionality entirely in software.

Ziarek et al. have combined traditional Java monitors

with a form of TM-based optimistic concurrency con-

trol [Ziarek 2008]. As with Ziarek et al.’s work, we only

support correctly-synchronized programs. However, we al-

low the use of non-speculative read-only locking (rather than

Java’s exclusive-mode monitors), we work without the use

of an automatic garbage collector to reclaim storage, and

we avoid the need for non-speculative threads to block for

speculative ones.

Many STM runtime systems support a notion of irrevo-

cable transactions [Spear 2008, Welc 2008]. These mech-

anisms allow at most one transaction to become irrevoca-

ble – e.g. so that it may make system calls. This provides

a general-purpose, safe, but potentially non-scalable, imple-

mentation technique for atomic blocks that have external

side-effects. SLE retains the original coarse-grained locks in

the application, and so it can fall back to using these for non-

speculative execution, rather than using a single global lock.

Marathe and Moir designed an STM system that com-

bines a streamlined blocking fast-path with a more complex

non-blocking algorithm [Marathe 2008]. Our desire to sup-

port existing non-speculative code led us to investigate OS

mechanisms to remove obstructing threads, rather than de-

signing a non-blocking user-mode algorithm.

Concurrent with our own work, Smaragdakis et al. iden-

tified cases where lock-based and TM-based implementa-

tions of critical sections do not coincide, and examined the

case for dynamically selecting between different implemen-

tations of critical sections [Smaragdakis 2008].

8. Conclusion and Future Work

We have described the design and implementation of a

software lock elision runtime. The runtime system allows

threads to execute critical sections speculatively, works on

off the shelf microprocessors, does not impose any mem-

ory management constraints and does not require threads

holding a lock to wait on threads that have speculated past

it. We achieve this non-blocking property without using in-

direction on the heap, instead using a novel software-only

implementation of revocable locks.

As the performance evaluation suggests, a key direction

for future work is examining the best way to automatically

tune parameters of the runtime for the best performance. An-

other important area of work we are pursuing is integration

with a lightweight binary rewriting engine in order to remove

all burden on the programmer.
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