
Perspectives on Transactional Memory

Mart́ın Abadi1,2 and Tim Harris1

1 Microsoft Research
2 University of California, Santa Cruz

Abstract. We examine the role of transactional memory from two per-
spectives: that of a programming language with atomic actions and that
of implementations of the language. We argue that it is difficult to for-
mulate a clean, separate, and generally useful definition of transactional
memory. In both programming-language semantics and implementations,
the treatment of atomic actions benefits from being combined with that
of other language features. In this respect (as in many others), transac-
tional memory is analogous to garbage collection, which is often coupled
with other parts of language runtime systems.

1 Introduction

The name “transactional memory” [21] suggests that a transactional memory
(TM) is something similar to an ordinary memory, though perhaps with a slightly
different interface and different properties. In particular, the interface would
include means of initiating and committing transactions, as well as means of
performing memory accesses. These memory accesses may be within transac-
tions, and perhaps also outside transactions. The interface may provide other
operations for aborting transactions, for delaying their execution, or for nesting
them in various ways. As for the properties, we would expect certain guarantees
that differentiate TM from ordinary memory. These properties should include,
in particular, that all memory accesses within a successful transaction appear
atomic.

Some interesting recent research aims to define TM more precisely, along
these lines [9, 16–19, 29, 32]. TM may be modeled as a shared object that sup-
ports operations such as read, write, begin-transaction, and commit-transaction,
with requirements on the behavior of these operations. Some of this research also
examines particular implementations, and whether or not they satisfy those re-
quirements.

Another recent line of research studies programming-language constructs
that may be built over TM—typically atomic blocks [25] or other constructs
for atomic actions [3, 6, 22]. A variety of semantics have been provided at dif-
ferent levels of abstraction. Some semantics model atomic actions that execute
without the interleaving of operations of other threads. We call these “strong”
semantics. Other semantics model low-level details of common implementations,
such as conflict-detection mechanisms and roll-backs.



Despite encouraging progress, much work remains. In particular, the research
to date does not fully explore the relation between the first style of definition
(where TM is a shared object) and the second style of definition (modeling
language constructs rather than TM per se).

In this paper, we argue that these gaps are not surprising, nor necessarily
bad. Indeed, we find limiting the view that a TM is something similar to a
memory, with a slightly different interface and properties. Although this view
can sometimes be reasonable and useful, in many settings a clear delineation of
TM as a separate, memory-like object is neither necessary nor desirable.

We consider TM from two perspectives: that of the programming language
with atomic actions and that of the implementation of the atomicity guarantees.

– From the former perspective, we are primarily interested in the possibility
of writing correct, efficient programs. The syntax and semantics of these
programs may reflect transactional guarantees (for instance, by including
atomic blocks), but they need not treat TM as a separate object. Indeed,
the language may be designed to permit a range of implementations, rather
than just those based on TM.

– From the latter perspective, we are interested in developing efficient im-
plementations of programming languages. Implementations may fruitfully
combine the TM with other aspects of a runtime system and with static
program analysis, thus offering stronger guarantees at a lesser cost.

These two perspectives are closely related, and some of the same arguments
appear from both perspectives.

Despite these reservations, we do recognize that, sometimes, a clear delin-
eation of TM is possible and worthwhile. We explore how this approach applies
in some simple language semantics, in Section 2. In Section 3, we consider the
difficulties of extending this approach, both in the context of more sophisticated
semantics and in actual implementations. We argue that it is best, and perhaps
inevitable, to integrate the TM into the semantics and the implementations. In
Section 4, we examine the question of the definition of TM through the lens of
the analogy with garbage collection. We conclude in Section 5.

2 Transactional Memory in Semantics: A Simple Case

In our work, we have defined various semantics with atomicity properties [3, 5, 6].
Some of the semantics aim to capture a programmer’s view of a language with
high-level atomicity guarantees. Other semantics are low-level models that in-
clude aspects of implementations, for instance logs for undoing eager updates
made by transactions and for detecting conflicts between concurrent transac-
tions. Moore and Grossman [25] have defined some analogous semantics for dif-
ferent languages. Remarkably, although all these semantics specify the behavior
of programs, none of them includes a separate definition of TM. Rather, the TM
is closely tied to the rest of the semantics.



b ∈ BExp = . . .
e ∈ NExp = . . .

C, D ∈ Com = skip

| x := e (x ∈ Vars)
| C; D
| if b then C else D
| while b do C
| async C
| unprotected C
| block

Fig. 1. Syntax.

In this section we illustrate, through a simple example, the style of those
semantics. We also consider and discuss a variant in which TM is presented
more abstractly and separately.

More specifically, we consider a simple imperative language and an implemen-
tation with transaction roll-back. This language omits many language features
(such as memory allocation) and implementation techniques (such as concurrent
execution of transactions). It is a fragment of the AME calculus [3], and a small
extension (with unprotected sections) of a language from our previous work [6].
Both the high-level semantics of the language (Section 2.2) and a first version
with roll-back (Section 2.3) treat memory as part of the execution state, with no
separate definition of what it means to be a correct TM. On the other hand, a
reformulation of the version with roll-back (Section 2.4) separates the semantics
of language constructs from the specification of TM.

2.1 A Simple Language

The language that we consider is an extension of a basic imperative language,
with a finite set of variables Vars, whose values are natural numbers, and with
assignments, sequencing, conditionals, and while loops (IMP [36]). Additionally,
the language includes constructs for co-operative multi-threading:

– A construct for executing a command in an asynchronous thread. Informally,
async C forks off the execution of C. This execution is asynchronous, and
will not happen if the present thread keeps running without ever yielding
control, or if the present thread blocks without first yielding control. The
execution of C will be atomic until C yields control, blocks, or terminates.

– A construct for running code while allowing preemption at any point. Infor-
mally, unprotected C yields control, then executes C without guaranteeing
C’s atomicity, and finally yields control again.

– A construct for blocking. Informally, block halts the execution of the entire
program.

We define the syntax of the language in Figure 1. We do not detail the usual
constructs on numerical expressions, nor those for boolean conditions.



〈σ, T, E [x := e]〉 −→ 〈σ[x 7→ n], T, E [skip]〉 if σ(e) = n
〈σ, T, E [skip; C]〉 −→ 〈σ, T, E [C]〉
〈σ, T, E [if b then C else D]〉 −→ 〈σ, T, E [C]〉 if σ(b) = true

〈σ, T, E [if b then C else D]〉 −→ 〈σ, T, E [D]〉 if σ(b) = false

〈σ, T, E [while b do C]〉 −→ 〈σ, T, E [if b then . . . else . . .]〉
〈σ, T, E [async C]〉 −→ 〈σ, T.C, E [skip]〉
〈σ, T, E [unprotected C]〉 −→ 〈σ, T.E [unprotected C], skip〉
〈σ, T, E [unprotected skip]〉 −→ 〈σ, T.E [skip], skip〉
〈σ, T.C, skip〉 −→ 〈σ, T, C〉

Fig. 2. Transition rules of the abstract machine.

2.2 High-Level Strong Semantics

A first semantics for our language is given in terms of small-step transitions
between states. A state 〈σ, T, C〉 consists of the following components:

– a store σ, which is a mapping of the finite set Vars of variables to the set of
natural numbers;

– a finite multiset of commands T , which we call the thread pool;
– a distinguished active command C.

We write σ[x 7→ n] for the store that agrees with σ except at x, which is mapped
to n. We write σ(b) for the boolean denoted by b in σ, and σ(e) for the natural
number denoted by e in σ. We write T.C for the result of adding C to T . As
usual, a context is an expression with a hole [ ], and an evaluation context is
a context of a particular kind. Given a context C and a command C, we write
C[C] for the result of placing C in the hole in C. We use the evaluation contexts
defined by the grammar:

E = [ ] | E ;C | unprotected E

Figure 2 gives rules that specify the transition relation (eliding straightfor-
ward details for while loops). According to these rules, when the active com-
mand is skip, a command from the pool becomes the active command. It is
then evaluated as such until it produces skip, yields, or blocks. No other com-
putation is interleaved with this evaluation. When the active command is not
skip, each evaluation step produces a new state, determined by decomposing
the active command into an evaluation context and a subexpression. Yielding
happens when this subexpression is a command of the form unprotected C.

This semantics is a strong semantics in the sense that any unprotected
sections in the thread pool will not run while an active command is running and
does not yield.

2.3 A Lower-Level Semantics with Roll-Back

A slightly lower-level semantics allows roll-back at any point in a computation.
(Roll-back may make the most sense when the active command is blocked, but



〈S, σ, T, E [x := e]〉 −→ 〈S, σ[x 7→ n], T, E [skip]〉 if σ(e) = n
〈S, σ, T, E [skip; C]〉 −→ 〈S, σ, T, E [C]〉
〈S, σ, T, E [if b then C else D]〉 −→ 〈S, σ, T, E [C]〉 if σ(b) = true

〈S, σ, T, E [if b then C else D]〉 −→ 〈S, σ, T, E [D]〉 if σ(b) = false

〈S, σ, T, E [while b do C]〉 −→ 〈S, σ, T, E [if b then . . . else . . .]〉
〈S, σ, T, E [async C]〉 −→ 〈S, σ, T.C, E [skip]〉
〈S, σ, T, E [unprotected C]〉 −→ 〈S, σ, T.E [unprotected C], skip〉
〈S, σ, T, E [unprotected skip]〉 −→ 〈S, σ, T.E [skip], skip〉
〈S, σ, T.C, skip〉 −→ 〈〈σ, T.C〉, σ, T, C〉
〈〈σ0, T0〉, σ, T, C〉 −→ 〈〈σ0, T0〉, σ0, T0, skip〉

Fig. 3. Transition rules of the abstract machine, with roll-back.

it is convenient to allow roll-back at any point.) For this purpose, the semantics
relies on extended states 〈〈σ0, T0〉, σ, T, C〉 with two additional components: an
extra store σ0 and an extra thread pool T0. Basically, the current σ and T
are saved as σ0 and T0 when a transaction starts, and restored upon roll-back.
Figure 3 gives the rules of the semantics. Only the last two rules operate on the
additional state components.

Our work and that of Moore and Grossman include more elaborate semantics
with roll-back [3, 5, 25]. Those semantics model finer-grain logging; in them, roll-
back is not a single atomic step. Some of the semantics are weak, in the sense
that unprotected sections may execute while transactions are in progress, and
even during the roll-back of transactions. We return to this complication in
Section 3.2, where we also consider concurrency between transactions.

2.4 Separating the Transactional Memory

Figure 4 presents a reformulation of the semantics of Section 2.3. States are
simplified so that they consist only of a thread pool and an active command.
Memory is treated through labels on the transition relation. These labels indicate
any memory operations, and also the start and roll-back of atomic computations.
The labels for start and roll-back include a thread pool (which could probably
be omitted if thread pools were tracked differently). The commit-point of atomic
computations can remain implicit.

A separate definition can dictate which sequences µ of labels are legal in a
computation 〈T, skip〉 −→∗

µ 〈T ′, skip〉. This definition may be done axiomati-
cally. One of the axioms may say, for instance, that for each label backT in µ
there is a corresponding, preceding label startT , with the same T , and with no
intervening other start or back label. Another axiom may constrain reads and
writes, and imply, for example, that the sequence [x 7→ 1][x = 2] is not legal.
Although such axiomatic definitions can be elegant, they are both subtle and
error-prone. Alternatively, the definition may have an operational style. For this
purpose we define a transition relation in Figure 5, as a relation on triples of the



〈T, E [x := e]〉 −→[e=n][x7→n] 〈T, E [skip]〉
〈T, E [skip; C]〉 −→ 〈T, E [C]〉
〈T, E [if b then C else D]〉 −→[b=true] 〈T, E [C]〉
〈T, E [if b then C else D]〉 −→[b=false] 〈T, E [D]〉
〈T, E [while b do C]〉 −→ 〈T, E [if b then . . . else . . .]〉
〈T, E [async C]〉 −→ 〈T.C, E [skip]〉
〈T, E [unprotected C]〉 −→ 〈T.E [unprotected C], skip〉
〈T, E [unprotected skip]〉 −→ 〈T.E [skip], skip〉
〈T.C, skip〉 −→startT.C 〈T, C〉
〈T, C〉 −→backT ′ 〈T ′, skip〉

Fig. 4. Transition rules of the abstract machine, with roll-back, reformulated.

〈σ0, T, σ〉 −→[e=n] 〈σ0, T, σ〉 if σ(e) = n
〈σ0, T, σ〉 −→[b=v] 〈σ0, T, σ〉 if σ(b) = v
〈σ0, T, σ〉 −→[x7→n] 〈σ0, T, σ[x 7→ n]〉
〈σ0, T, σ〉 −→startT ′ 〈σ, T ′, σ〉
〈σ0, T, σ〉 −→backT

〈σ0, T, σ0〉

Fig. 5. Operational definition of legal sequences of memory operations.

form 〈σ0, T, σ〉. Given an initial triple S, we say that the sequence of memory
operations µ is legal if there is another triple S′ such that S −→∗

µ S′.
Figures 4 and 5 amount to a decomposition of Figure 3, separating the de-

finition of TM from the language semantics. Having a clear delineation of TM
can be helpful for factoring semantics. Further, one may study how to imple-
ment memory systems that satisfy the definition in Figure 5—for instance, with
various forms of logging.

3 Difficulties in Separating Transactional Memory

In this section we discuss the difficulties of having a separate TM in the context of
more sophisticated semantics and in actual implementations. We have explored
several such semantics and implementations, particularly focusing on avoiding
conflicts between transactional and non-transactional memory accesses [2–5].
Recent research by others [8, 28] develops implementations with similar goals
and themes, though with different techniques. Our observations in this section
are drawn primarily from our experience on the implementation of atomic blocks
and the AME constructs.

In Section 3.1, we consider systems with memory allocation, for which the
difficulties appear somewhat interesting but mild. In Section 3.2, we consider
concurrency, and the important but delicate distinction between strong seman-
tics (of the kind presented in Section 2) and the property of strong atomicity [7]
that may be ensured by a TM. In Section 3.3, we identify areas where aspects



of the implementation of atomic actions can either be provided by a TM with
strong guarantees or be layered over a TM with weaker guarantees.

We conclude that, in such settings, it is beneficial and perhaps inevitable to
integrate TM with other parts of semantics and implementations (for instance,
with static analysis, garbage collection, scheduling, and virtual-memory man-
agement).

3.1 Memory Allocation

In Section 2, as in some works in the literature, the operations on memory do
not include allocation. However, allocation must be taken into account in the
context of TM.

In particular, some semantic definitions say that roll-backs do not undo allo-
cations [3, 20, 25]. This choice simplifies some of the theory, and it is also impor-
tant in practice: it helps ensure that—no matter what else happens—a dangling
pointer will not be dereferenced after a roll-back. Thus, this choice represents a
sort of defense in depth.

Adding allocation to the TM interface does not seem particularly challenging.
However, we may wonder whether allocation is the tip of an iceberg. Class load-
ing, initialization, finalization, exceptions, and perhaps other operations may
also have interesting interactions with transactions. A definition of TM that
considers them all may well become unwieldy.

Implementations vary a great deal in how allocation is treated inside transac-
tions. Some consider the memory-management work to be part of transactions—
for example, the memory manager may be implemented using transactional reads
and writes to its free-lists. In other cases, the memory manager is integrated with
the transactional machinery—for example, maintaining its own logs of tentative
allocations and de-allocations that can be made permanent when a transaction
commits and undone when a transaction aborts.

3.2 Concurrency, and Strong Atomicity vs. Strong Semantics

Much of the appeal of TM would not exist if it were not for the possibility
that transactions execute in parallel with one another and also possibly with
non-transactional code. We can extend the semantics of Section 2 to account
for such concurrency. The semantics do get heavier and harder, whether TM is
built into the semantics or is treated as a separate module. In the latter case,
the operations on transactions may include transaction identifiers, and the reads
and writes may be tied to particular transactions via those identifiers.

Such semantics may reflect the choice of particular implementation tech-
niques (for instance, the use of eager updates or lazy updates). Nevertheless, the
definitions should guarantee that a class of “correctly synchronized” programs
run (or appear to run) with strong semantics. Researchers have explored various
definitions of correct synchronization, for instance with static separation between



Thread 1 Thread 2

atomic {

ready = true;

data = 1;

}

tmp1 = ready;

if (tmp1 == true) {

tmp2 = data;

}

Fig. 6. Initially ready is false. Under strong semantics, if tmp1 is true then tmp2

must be 1.

transactional and non-transactional data [3, 20, 25], dynamic separation with op-
erations for moving data between those two modes [1, 2, 5], and dynamic notions
of data races between transactional and non-transactional code [3, 10, 29].

If TM is a separate module, we should also make explicit its own guarantees
in the presence of concurrency. With this style of definition, if we wish to obtain
strong semantics for all programs in a language, the TM should probably ensure
strong atomicity, which basically means that transactions appear atomic not
only with respect to one another but also with respect to non-transactional
memory accesses. Unfortunately, the exact definition of strong atomicity is open
to debate, and the debate might only be settled in the context of a particular
language semantics. Stronger notions of strong atomicity might be needed to
provide strong semantics when the language implementation is aggressive, and
weaker notions of strong atomicity might suffice in other cases. The relation
between strong semantics (for a programming language) and strong atomicity
(for a TM) is particularly subtle.

Strong Semantics Without Strong Atomicity. Some languages have strong se-
mantics but do not rely upon a TM with strong atomicity. For instance, in
STM-Haskell, a type system guarantees that the same locations are not con-
currently accessed transactionally and non-transactionally [20]. In other sys-
tems, scheduling prevents transactional and non-transactional operations being
attempted concurrently [26]. These cases suggest that, at the very least, the TM
should be closely tied to program analysis and scheduling.

Strong Atomicity Without Strong Semantics. Strong atomicity does not suffice
for strong semantics, in particular because of program transformations. Figure 6
provides an example due to Grossman et al. [15]. After this code runs, under
strong semantics, if tmp1 is true then tmp2 must be 1. However, a conventional
optimizing compiler might perform Thread 2’s read from data before the thread’s
read from ready. (For instance, an earlier read from data may still be available
in a register.)

Arguments in favor of strong atomicity (in particular from a hardware per-
spective) often seem to overlook such examples. Unless these examples are re-
garded as racy, program transformations currently in use should be considered
incorrect. As these examples illustrate, strong atomicity does not remove the
need for a notion of “correct synchronization” in programs. For racy programs



that do not satisfy the correctness criterion, very few guarantees can be given
in the presence of transformations by optimizing compilers and weak processor
memory models.

3.3 Implementation Options at Multiple Layers

In practical implementations of language constructs, we encounter implementa-
tion options at multiple layers, and it would seem premature to fix a specific
TM interface that would mandate one option or another. We consider several
examples.

Implementing Strong Atomicity. In one of our implementations [4], we rely on
off-the-shelf memory protection hardware for detecting possible conflicts between
transactional accesses and normal (non-transactional) accesses. We organize the
virtual address space of a process so that its heap is mapped twice. One mapping
is used in transactions, while the other mapping is used in normal execution. This
organization lets us selectively prevent normal access to pages while they remain
accessible transactionally. We use this mechanism to detect possible conflicts
between transactional accesses and normal accesses at the granularity of pages;
we use an existing TM to detect conflicts between transactions at the granularity
of objects.

This design provides a foundation that is sound but slow on conventional
hardware. We introduce a number of optimizations. We allow the language run-
time system to operate without triggering access violations. We use static analy-
sis to identify non-transactional operations that are guaranteed not to conflict
with transactions (these operations can bypass the page-level checks) and to
identify transactions that are guaranteed not to conflict with normal accesses
(these transactions need not revoke normal-access permissions on the pages in-
volved).

Both the design and the optimizations raise a number of questions on the no-
tion of TM. If a TM is a separate entity, should it know about virtual addresses,
physical addresses, or both? How should it relate to memory protection? How
can its guarantees be adjusted in the presence of program analysis?

Tolerating Inconsistent Views of Memory. With some TM implementations, a
transaction can continue running as a “zombie” [12] after experiencing a conflict.
Zombie transactions can have errant behavior that is not permitted by strong
semantics. Consider the example in Figure 7. This program is correctly synchro-
nized under all of the criteria that we have studied, so a correct implementation
must not loop endlessly. However, if the TM does not guarantee that Thread 1
will see a consistent view of memory, it is possible for temp1==0 and temp2==1,
and consequently for Thread 1 to loop.

This flaw can be corrected by modifying the TM to give stronger guaran-
tees (for instance, opacity [19]). Alternatively, the language runtime system can
sandbox the effects of zombie transactions by adding periodic validation work
to loops, and containing any side-effects from zombie transactions (for example,



Thread 1 Thread 2

atomic {

temp1 = x1;

temp2 = x2;

if (temp1 != temp2) {

while (1) { }

} }

atomic {

x1 ++;

x2 ++;

}

Fig. 7. Initially x1==x2==0. Under strong semantics, Thread 1 must not loop.

Thread 1 Thread 2

atomic {

x = 100;

x_initialized = true;

}

while (true) {

atomic {

if (x_initialized) break;

} }

Console.Out.Writeline(x);

Fig. 8. A publication idiom. Under strong semantics, if Thread 2 sees x initialized

true, then it must print 100.

not raising a NullReferenceException in response to an access violation from
a zombie transaction).

Granular Safety. Some TM implementations present data granularity problems.
For instance, rolling back a write to a single byte might also roll back the contents
of other bytes in the same memory word.

There are several viable techniques for avoiding this problem. First, the TM
implementation may be strengthened to maintain precise access granularity (say,
at the cost of extra book-keeping by tracking reads and writes at a byte level).
Second, if correct synchronization is defined by static separation, then transac-
tional and non-transactional data can be allocated on separate machine words.
Third, various dynamic mechanisms can be used for isolating transactional and
non-transactional data.

Only the first of these options places granular-safety requirements on the TM
implementation. The other two options require that other parts of the language
implementation be aware of the particular granularity at which the TM operates.

Ordering Across Threads. In privatization and publication idioms [3, 12, 13, 31,
34], a piece of data is accessed transactionally depending on the value of another
piece of data, as for example in Figure 8. These idioms are frequently considered
to be correctly synchronized. However, näıve implementations over TM may not
execute them correctly. For the example in Figure 8, an implementation that
uses lazy updates may allow Thread 2’s non-transactional read of x to occur
before Thread 1 has finished writing back its transactional update.



Such idioms require that if non-transactional code executes after an atomic
action, then the non-transactional code must see all the side effects of preceding
atomic actions. This guarantee is provided by TMs with strong atomicity. Alter-
natively, it can be layered over a weaker TM by adding synchronization barriers
when transactions start and commit [24], or it can be provided by page-based sep-
aration of transactional and non-transactional data [4]. The performance trade-
offs between these approaches are complicated, and there is no clear approach
to favor in defining a clean common TM interface.

4 The Garbage-Collection Analogy

Grossman has drawn a compelling analogy between TM and garbage collection,
comparing the programming problems that they aim to solve, and the features
and limitations of the techniques [14]. In this section we consider what this
analogy says about the problem of defining TM.

Garbage collection can be regarded as a tool for implementing “garbage-
collected memory”. A “garbage-collected memory” is simply an “infinite mem-
ory” over which one does not need to worry about freeing space. It is both
common and helpful to describe language semantics over such a memory.

On the other hand, there is no canonical definition of garbage collection.
Although language implementations may have internal interfaces that are defined
with various degrees of precision and generality, there seems to be no separate,
clean, portable garbage-collection interface.

Typically, garbage collection—much like TM—is coupled with a compiler
and other parts of a language implementation. Some collectors exploit virtual-
memory page-protection hardware (e.g., [23, 35]) and static analysis (e.g., [11,
33]). Much like TM, also, garbage collection can interact with program transfor-
mations. For instance, the trick of exchanging the contents of two reference-typed
fields by using three XOR operations is correct only if the garbage collector will
not see the intermediate non-reference values. Furthermore, program transforma-
tions can affect when finalizers (which run when an object becomes unreachable)
will be eligible to run.

On this basis, garbage-collection machinery and TM machinery are indeed
analogous. In the world of TM, however, there is no easy counterpart to garbage-
collected memory, that is, to infinite memory. In our opinion the best candidate
is not TM, but rather the concept of atomic action. Both infinite memory and
atomic actions can be used in specifying language semantics, and both have a
wide range of concrete implementations.

5 Conclusion

In this paper we examine transactional memory from the perspectives of lan-
guage semantics and implementations. We believe that, from both perspectives,
it is often impractical to define a separate, clean, portable internal TM interface.



Nevertheless, it may be productive to study the definition of TM interfaces,
and to examine whether or not particular TM implementation techniques are
compatible with them.

Furthermore, in some cases, programmers may use a TM interface directly,
rather than via atomic blocks (for instance, for manipulating data structures).
However, that TM interface need not coincide with one used internally by an
implementation of atomic blocks, nor with a hardware TM interface, since hard-
ware might provide lower-level primitives [27, 30]. Finally, a compiler framework
may usefully include a common interface for multiple TM implementations—but
this interface is likely to be specific to a particular framework, and much broader
than that of TM as a shared object.

In summary, the question of what is transactional memory seems to remain
open, and may well deserve further investigation. However, in our opinion, it is at
least as worthwhile to study languages and implementation techniques based on
transactional ideas, even without a separate definition of transactional memory.

Acknowledgements We are grateful to Dan Grossman, Rachid Guerraoui,
Leslie Lamport, and Greg Morrisett for discussions on the subject of this paper.

References

1. Mart́ın Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael Isard.
Dynamic separation for transactional memory. Technical Report MSR-TR-2008-
43, Microsoft Research, March 2008.

2. Mart́ın Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, and Michael Isard.
Implementation and use of transactional memory with dynamic separation. In
CC ’09: Proc. 18th International Conference on Compiler Construction, volume
5501 of Lecture Notes in Computer Science, pages 63–77, March 2009.

3. Mart́ın Abadi, Andrew Birrell, Tim Harris, and Michael Isard. Semantics of trans-
actional memory and automatic mutual exclusion. In POPL ’08: Proc. 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
63–74, January 2008.

4. Mart́ın Abadi, Tim Harris, and Mojtaba Mehrara. Transactional memory with
strong atomicity using off-the-shelf memory protection hardware. In PPoPP ’09:
Proc. 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pages 185–196, February 2009.

5. Mart́ın Abadi, Tim Harris, and Katherine F. Moore. A model of dynamic separa-
tion for transactional memory. In CONCUR ’08: Proc. 19th International Confer-
ence on Concurrency Theory, pages 6–20, August 2008.

6. Mart́ın Abadi and Gordon D. Plotkin. A model of cooperative threads. In
POPL ’09: Proc. 36th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 29–40, January 2009.

7. Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstructing
transactional semantics: The subtleties of atomicity. In WDDD ’05: Proc. 4th
Workshop on Duplicating, Deconstructing and Debunking, pages 48–55, June 2005.

8. Nathan G. Bronson, Christos Kozyrakis, and Kunle Olukotun. Feedback-directed
barrier optimization in a strongly isolated STM. In POPL ’09: Proc. 36th ACM



SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
213–225, January 2009.

9. Ariel Cohen, John W. O’Leary, Amir Pnueli, Mark R. Tuttle, and Lenore D. Zuck.
Verifying correctness of transactional memories. In FMCAD ’07: Proc. 7th Inter-
national Conference on Formal Methods in Computer-Aided Design, pages 37–44,
November 2007.

10. Luke Dalessandro and Michael L. Scott. Strong isolation is a weak idea. In TRANS-
ACT ’09: 4th ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, February 2009.

11. David Detlefs and V. Kirshna Nandivada. Compile-time concurrent marking write
barrier removal. Technical Report SMLI-TR-2004-142, Sun Microsystems, Decem-
ber 2004.

12. Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In DISC ’06:
Proc. 20th International Symposium on Distributed Computing, pages 194–208,
September 2006.

13. Dave Dice and Nir Shavit. What really makes transactions faster? In TRANS-
ACT ’06, 1st ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing, June 2006.

14. Dan Grossman. The transactional memory / garbage collection analogy. In OOP-
SLA ’07: Proc. 22nd ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications, pages 695–706, October 2007.

15. Dan Grossman, Jeremy Manson, and William Pugh. What do high-level memory
models mean for transactions? In MSPC ’06: Proc. 2006 Workshop on Memory
System Performance and Correctness, pages 62–69, October 2006.

16. Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Completeness and
nondeterminism in model checking transactional memories. In CONCUR ’08: Proc.
19th International Conference on Concurrency Theory, pages 21–35, August 2008.

17. Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Permissiveness in trans-
actional memories. In DISC ’08: Proc. 22nd International Symposium on Distrib-
uted Computing, pages 305–319, September 2008.

18. Rachid Guerraoui, Tom Henzinger, and Vasu Singh. Model checking transactional
memories. In PLDI ’08: Proc. 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 372–382, June 2008.

19. Rachid Guerraoui and Micha l Kapa lka. On the correctness of transactional mem-
ory. In PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 175–184, February 2008.

20. Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable
memory transactions. In PPoPP ’05: Proc. 10th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 48–60, June 2005.

21. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural sup-
port for lock-free data structures. In ISCA ’93: Proc. 20th International Symposium
on Computer Architecture, pages 289–301, May 1993.

22. Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hosking. A transactional
object calculus. Sci. Comput. Program., 57(2):164–186, 2005.

23. Haim Kermany and Erez Petrank. The compressor: concurrent, incremental, and
parallel compaction. In PLDI ’06: Proc. 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 354–363, June 2006.

24. Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai,
Richard Hudson, Bratin Saha, and Adam Welc. Practical weak-atomicity semantics
for Java STM. In SPAA ’08: Proc. 20th Symposium on Parallelism in Algorithms
and Architectures, pages 314–325, June 2008.



25. Katherine F. Moore and Dan Grossman. High-level small-step operational seman-
tics for transactions. In POPL ’08: Proc. 35th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 51–62, January 2008.

26. Cosmin E. Oancea, Alan Mycroft, and Tim Harris. A lightweight in-place imple-
mentation for software thread-level speculation. In SPAA ’09: Proc. 21st ACM
Symposium on Parallelism in Algorithms and Architectures, August 2009.

27. Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural sup-
port for software transactional memory. In MICRO ’06: Proc. 39th IEEE/ACM
International Symposium on Microarchitecture, pages 185–196, June 2006.

28. Florian T. Schneider, Vijay Menon, Tatiana Shpeisman, and Ali-Reza Adl-
Tabatabai. Dynamic optimization for efficient strong atomicity. In OOPSLA ’08:
Proc. 23rd ACM SIGPLAN Conference on Object Oriented Programming Systems
Languages and Applications, pages 181–194, October 2008.

29. Michael L. Scott. Sequential specification of transactional memory semantics. In
TRANSACT ’06: 1st ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing, June 2006.

30. Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flexible de-
coupled transactional memory support. In ISCA ’08: Proc. 35th International
Symposium on Computer Architecture, pages 139–150, June 2008.

31. Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott.
Privatization techniques for software transactional memory. Technical Report 915,
CS Dept, U. Rochester, February 2007.

32. Serdar Tasiran. A compositional method for verifying software transactional mem-
ory implementations. Technical Report MSR-TR-2008-56, Microsoft Research,
April 2008.

33. Martin T. Vechev and David F. Bacon. Write barrier elision for concurrent garbage
collectors. In ISMM ’04: Proc. 4th International Symposium on Memory Manage-
ment, pages 13–24, October 2004.

34. Cheng Wang, Wei-Yu Chen, Youfeng Wu, Bratin Saha, and Ali-Reza Adl-
Tabatabai. Code generation and optimization for transactional memory constructs
in an unmanaged language. In CGO ’07, International Symposium on Code Gen-
eration and Optimization, pages 34–48, March 2007.

35. Michal Wegiel and Chandra Krintz. The mapping collector: virtual memory sup-
port for generational, parallel, and concurrent compaction. In ASPLOS ’08: Proc.
13th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 91–102, March 2008.

36. Glynn Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.


