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ABSTRACT
Transactional Memory (TM) is a promising new technology
that makes it possible to ease writing multi-threaded appli-
cations. Many different TM implementations exist, unfortu-
nately most of those TM systems are currently evaluated by
using workloads that are (1) tightly coupled to the interface
of a particular TM implementation, (2) are small and lack to
capture the common concurrency problems that exist in real
multi-threaded applications and also (3) fail to evaluate the
overall behavior of the Transactional Memory considering
the complete software stack.

WormBench is parameterized workload designed from the
ground up to evaluate TM systems in terms of robustness
and performance. Its goal is to provide an unified solution
to the problems stated above (1, 2, 3). The critical sections
in the code are marked with the atomic statements and thus
proving a framework to test the compiler’s ability to trans-
late them properly and efficiently into the appropriate TM
system interface. Its design considers the common synchro-
nization problems that exist in TM multi-threaded applica-
tions. The behavior of WormBench can be changed by using
run configurations which provide the ability to reproduce a
runtime behavior observed in a typical multi-threaded appli-
cation or a behavior that stresses a particular aspect of the
TM system such as abort handling. In this paper, we analyze
the transactional characteristics of WormBench by studying
different run configurations and demonstrate how Worm-
Bench can be configured to model the transactional behavior
of an application from the STAMP benchmark suite.
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1. INTRODUCTION
The emerging era of Chip-Multiprocessors (CMP) pushed
the research community to seek for new techniques to make
it easier for application and library developers to develop
scalable and efficient multi-threaded applications. Trans-
actional Memory (TM) is an optimistic concurrency con-
trol mechanism first proposed by Herlihy and Moss [9] that
promises to provide a better solution for the existing con-
currency control scenarios in the multi-threaded applica-
tions with shared global state. Its simple programming lan-
guage interface, abstracts away the complexity of writing
multi-threaded applications. Instead of tracking each shared
data and enforcing serial access by using locks, using atomic
blocks, the programmer only identifies the code segments
that must be executed atomically and leave the underly-
ing infrastructure handle synchronization. Its non-blocking
nature prevents lock induced deadlocks. Typical implemen-
tations aim to scale comparably with fine grain lockings.
Based on the implementation, TM exists in two flavors -
Hardware (HTM) [3, 22] and Software (STM) [10, 5, 17].
HTM is implemented at the micro-architectural level, it is
fast but limited in time and space. STM is implemented as
a runtime library, it is unbounded both in time and space
but because of the incurred overhead is slow. Also, there
exist hybrid solutions that either try to virtualize HTMs [4,
16] or accelerate STMs [18, 13].

Typically, the performance characteristics of the currently
proposed TM systems are evaluated by using a small num-
ber of workloads. Mainly these are small application ker-
nels - µbenchmarks. Recently, more complex TM applica-
tions were developed for benchmarking by either transacti-
fying from lock-based versions (STMBench7 [7], applications
from the SPLASH-2 benchmark suite [21]) or by writing TM
applications from scratch (STAMP [12] and Haskell STM
benchmark suite [15]). The µbenchmarks perform simple
type of operations such as lookup, insertion and deletion,
on simple data structures like a linked list and hash tables.
They are suitable for evaluating specific low level implemen-
tation details of the TM systems, but they are not suit-
able to evaluate how the proposed TM system fits with the
other components in the system. The transactional applica-
tions are more descriptive compared to the µbenchmarks as



they perform computations in and outside the transactions.
STAMP has longer running transactions with small objects
and is targeted for evaluating both HTM and STM. STM-
Bench7 has long running transactions with large objects and
is designed for evaluating STM systems. SPLASH-2 has in-
herently parallel code with small critical sections that guard
small objects. It has been used to evaluate the following
HTM systems [4, 22]. Haskell STM benchmark is set of ap-
plications implemented using the language level constructs
in the Haskell programming language and do not expose any
implementation details of the underlying STM system. How-
ever their implementation rely on Haskell’s type system and
wouldn’t be representative if ported to imperative language.
The other discussed TM applications are implemented by
exposing the implementation details of the TM system that
they are targeted for. This makes it difficult to compare
different TM systems as porting the applications to every
different TM interface requires significant effort.

STAMP does not provide lock based implementation for
comparison purposes and is implemented with precise knowl-
edge about the shared data and when it is concurrently ac-
cessed. This approach assumes a perfect compiler that can
filter every shared variable from non-shared, which is not the
likely case. STMBench7 cannot be used for HTM as it has
mainly large data structures and long running transactions.
SPLASH-2 is suitable to underline the performance of HTM
only as it has mostly short transactions with small read and
write sets that can fit in the hardware caches. But the short
transactions in SPLASH-2 would incur significant overhead
in STMs that cannot be amortized.

In this paper we present WormBench - a configurable (cus-
tomizable) TM workload written in C#, designed from the
ground up to evaluate and verify the correctness of TM
systems. The design approach of WormBench is driven by
the problem of how to evaluate the TM system as another
tool for providing synchronization in multi-threaded appli-
cations. All the concurrency control mechanisms like locks,
message passing and also transactions exists as means for
efficiently solving the synchronization problems in parallel
applications. Probably if we didn’t have these synchroniza-
tion problems such as concurrent access to a shared data, we
would not need concurrency control at all. WormBench’s
implementation does not depend on a particular STM or
HTM interface and the critical sections in the code are ex-
pressed in terms of the language-level atomic blocks. It as-
sumes that the compiler or runtime system translates these
into the appropriate concurrency control operations on a
TM implementation. This way it can be used also to test
the effectiveness of optimizations performed by TM-enabled
compilers which are just starting to appear in the horizon
[8, 6, 1, 14]- something which has been neglected so far .
WormBench is highly configurable and can be configured to
reproduce a certain runtime behavior that might be general
enough and represent a typical multi-threaded application or
specific that stresses a particular aspect of the TM system
such as dealing with overflowing transactions.

The idea of WormBench is inspired by the popular Snake
game. In the application several Worms, each driven by
a dedicated thread moves within a shared environment -
BenchWorld (abstraction of a matrix). Each move consists

of several critical operations accompanied by computation.
Worms can be grouped so that they recreate complex syn-
chronization scenarios where multiple threads are involved.
By changing the parameters of the applications such as the
type of performed computation, the size of the BenchWorld
and the Worm, one can devise a different run configuration
which has different transactional and runtime characteris-
tics. In this paper we describe the characteristics of every
operation that a worm may apply and later analyze them al-
together by studying 40 different run-configurations. Then
we demonstrate by example how WormBench can be con-
figured to exhibit almost the same transactional behavior
that the genome application from STAMP benchmark has.
Thus, WormBench is able to mimic different existing TM
applications through reconfigurations.

The goal of WormBench is to help TM researchers easily cre-
ate transactional workloads that they can use to verify and
evaluate the efficiency of their TM systems and the compiler
infrastructure that sits between the programming language
and the TM. Using WormBench, one can develop a set of
representative run configurations that has the transactional
behavior of a typical multi-threaded application. Then use
these run configurations as a baseline to compare different
TM systems among each other and against the lock based
version. Also, as being general enough, WormBench can be
configured as a workload to stress a low level implementation
detail in the TM system such as frequent read set overflows.

The rest of the paper follows with the requirements sec-
tion where we discuss the issues that drive the design of
WormBench. After that we describe the design and imple-
mentation of WormBench with greater details in Section 3.
In Section 4, we present and analyze a set of different run
configurations that show how the transactional characteris-
tics changes based on the different parameters. In Section 5
we give an example run configuration that has very similar
transactional characteristics to the genome application in
STAMP. In Section 6 we discuss the related research. Con-
clusion follows in Section 7 and we finish by discussing the
open issues in section Future Work.

2. REQUIREMENTS
Because Transactional Memory is about concurrency con-
trol, the main requirements for a representative Transac-
tional Memory workload should include the common syn-
chronization problems that exist in multi-threaded applica-
tions. In this way, we would be able to see how a given
synchronization problem is solved by conceptually differ-
ent techniques - locks which are blocking versus transac-
tions which are non-blocking and compare them against each
other. And also, to be able to compare different Transac-
tional Memory systems, it is required that a representative
workload should consider the essential features of the Trans-
actional Memory system. This section discusses the synchro-
nization problems and the TM relevant metrics that should
be considered when building a representative workload or
a suit of workloads to evaluate Transactional Memory sys-
tems.

2.1 Synchronization Problems
The necessity of having concurrency control is because of
the common synchronization problems that exist in multi



threaded applications. The typical synchronization prob-
lems that can be seen in these applications and that a rep-
resentative synthetic TM workload should have an instance
of, are:

• Object access serializability [2] - managing a concur-
rent access to a shared data. This is the typical sce-
nario when we guard the access of a shared variable by
lock;

• Barrier synchronization - making group of threads to
wait at certain point of execution until all (or group)
of them arrive there;

• Two phase locking and its derivatives [19] - a locking
protocol which attempts to provide the efficiency of
fine grain locking and avoiding dead-lock by enforcing
a given pattern;

• Dining philosophers [20] - is a synchronization problem
that demonstrates the deadlock problem;

• Multiple granularity locking [11] - a fine grain locking
technique used to lock a region in a hierarchical data
structures like trees.

2.2 Metrics
To be able to compare different TM system between each
other and also TM systems against lock based implementa-
tions, a representative workload application should clearly
identify a set of metrics that can be used to quantitatively
evaluate the performance of different TM systems. These
metrics should source from the application and not be spe-
cific to a particular design or implementation style of any
TM system (HTM or STM). Based on the metrics used in
the existing TM research, we decided to collect the following
runtime metrics in an application:

• Execution time of the application;

• Number of entered critical sections (i.e. atomic blocks);

• The ratio between reads and writes (e.g. 90% reads
and 10% writes);

• Size of the accessed data structures;

• The execution time spent while in a critical section
(short transactions vs. long transactions);

• Number of successfully committed transactions;

• Number of reads and writes per transaction;

• Prevalent type of operations in the application (I/O,
CPU, memory); and

• Locality of memory references (spatial vs. temporal).

Figure 1: The main components in the WormBench applica-
tion. (a) run configuration; (b) the position of the worm before
performing the operations in the run configuration; (c) position
of the worm after performing the operations in (a).

3. DESIGN AND IMPLEMENTATION
The idea for WormBench is inspired from the Snake game.
The application has two main data structures - BenchWorld
and Worm. In the application, several Worms move in
the BenchWorld and execute worm operations from an user
specified stream (see Figure 1). Each cell in BenchWorld is
a BenchWorldNode struct which packs several data: (1) a
value of the node, (2) the reference to the worm that is on
this cell, (3) a reference to the group to which the worm on
this cell belongs to, (4) and a message for the next worm that
will pass from this cell. Worms are active objects meaning
that every Worm object is associated with one thread. A
Worm object has several attributes: id, group, speed, body,
and head. Id is a unique identifier to distinguish the worm
from the other worms, group is a reference to a Group object
that groups several worms together. The rationale behind
the notion of group is to be able to create synchronization
scenarios where several worms act together to achieve a com-
mon task. The speed attribute is used to tell how fast the
worm to advance (e.g. 1 cell per move). The body of the
worm is the set of the cells from the BenchWorld where the
worm steps on. The head of the worm represents a set of
nodes from the BenchWorld that the worm uses as input
to every worm operation, and the result of the performed
computation is stored in a private buffer for verification pur-
poses. Worms are initialized with a stream of worm oper-
ations (see Figure 1-a) that they should perform on every
move. Every move is completed in three steps: (1) read the
cells below the head, (2) perform a worm operation on the
head values, (3) and move its body forward. Each of these
three steps involves a critical operation and is either synchro-
nized with an atomic block (TM system) or with a global
lock (preset at compile time). Reading the values below the
head of the worm involves computing the worm orientation
and the head coordinates. When the head values are read,
the next worm operation from the operations stream is ap-
plied to these head values and the produced result is stored
in a private buffer for verification purposes. When it’s time
to advance forward, the worm updates the group field of ev-
ery node constituting its body. In the transactional version
of the benchmark this is a conditional atomic block which
ensures that worms belonging to other groups cannot cross
through each other. Every attempt of crossing would result
in aborting the attacker transaction and blocking until the
other worm moves its body out of the occupied node.

Currently we have implemented 15 operations1 that Worms

1For space reasons we are not able to describe every opera-
tion in this paper. Instead the reader is referred to the more



Table 1: The effect of the HeadSize on read and write

Op 1 2 4 8
R W R W R W R W

1 11 3 11 4 11 6 11 10
2 11 3 11 4 11 6 11 10
3 11 3 11 4 11 6 11 10
4 11 3 11 4 11 6 11 10
5 11 3 11 4 11 6 11 10
6 14 5 15 5 14 7 14 11
7 14 5 15 5 14 7 14 11
8 14 5 15 5 14 7 14 11
9 14 5 15 5 14 7 14 11
10 14 5 15 5 14 7 14 11
11 14 5 15 5 14 7 14 11
12 16 4 16 5 16 7 16 11
13 16 4 16 5 16 7 16 11
14 11 3 11 4 11 6 11 11
15 11 3 11 4 11 6 11 11

Table 2: The effect of the BodyLength on read and write

Op 1 2 4 8
R W R W R W R W

1 11 3 14 3 26 3 74 13
2 11 3 14 3 26 3 74 13
3 11 3 14 3 26 3 74 13
4 11 3 14 3 26 3 74 13
5 11 3 14 3 26 3 74 13
6 14 4 17 4 29 4 77 4
7 14 4 17 4 29 4 77 4
8 14 4 17 4 29 4 77 4
9 14 4 17 5 29 5 77 5
10 14 4 17 5 29 5 77 5
11 14 4 17 5 29 5 77 5
12 16 4 19 7 31 19 79 67
13 16 4 19 7 31 19 79 67
14 11 3 14 3 26 3 74 13
15 11 3 14 3 26 3 74 13

apply in step (2). These operations have different transac-
tional characteristics that are described in Table 1 and Ta-
ble 2. Both, Table 1 and Table 2, show respectively how the
change on the Worm’s body length and the head size affect
the transactions’ read (R) and write (W) set per each Worm
operation. When the head size is constant and only the body
length changes, the read set remains constant and the write
set increases linearly. On the other hand, when the body
length is fixed to 1 and the head size changes, both the read
and write sets are affected and the read set increases super-
linearly. Any combination of these operations with the body
length and head size of the worms could give theoretically
infinite number of TM specific runtime configurations.

Table 3 summarizes the execution distribution of the Worm
operations for 4 different body length and head size setups
ran over 800,000 moves. The first column is the worm oper-
ation, the second column is the execution distribution when
the body length and head sizes are 1-1 (B[1.1] means body
length is 1, H[1.1] means the head size is 1), the third col-
umn is for worms with body length and head size of 4-4, the
fourth column is when the body length and head size is 8-8
and the fifth is when the body length and head size is ran-
domly selected in range [1, 8]. Also, the increase in the head
size is reverse-proportional to the WormBench throughput
(execution time). Meaning that, by increasing the head size
we can obtain longer transactions suitable to test STMs and
by decreasing the head size we can obtain shorter transac-
tions suitable to test HTMs. The relationship between the
head size and the throughput can be seen in Figure 3 and
Figure 4 discussed in more details in Section 4.

When WormBench starts, it is initialized with a run configu-
ration provided as input by the user. The run configuration
defines: (1) the size of the BenchWorld (the size of the un-
derlying matrix) and its initialization, (2) a common stream
of worm operations; (3) the number of worms to create; (4)
and for each worm: id, group id, body size and the loca-

derailed technical report of WormBench [23].

Table 3: Execution time distribution of Worm operations
Op B[1.1]H[1.1] B[4.4]H[4.4] B[8.8]H[8.8] B[1.8]H[1.8]
1 0.42 0.43 0.19 0.31
2 0.42 0.27 0.32 0.43
3 0.84 3.65 9.35 5.14
4 0.32 0.59 0.28 0.37
5 0.42 0.59 0.33 0.54
6 1.36 0.71 0.43 0.74
7 0.74 0.74 0.53 0.70
8 2.52 4.79 11.41 6.69
9 2.10 0.59 0.63 0.93
10 2.73 5.01 11.19 7.10
11 2.52 5.26 11.39 7.12
12 1.68 6.59 11.26 7.18
13 1.15 3.25 2.37 3.37
14 1.12 1.45 1.98 1.52
15 1.06 1.32 1.85 1.49

Total 19.39 35.24 63.52 42.60

tion of the body on the BenchWorld, head size, speed, and
a range from a common stream of worm operations that the
worm has to perform on every move. By utilizing the sum-
marized information in Table 1, Table 2 and Table 3, we can
directly control the read set, write set and the conflict rate.
Also, assigning each worm a specific stream of operations to
perform, we can coarsely control the conflict rate between
the transactions. For example, a stream of operations that
leads all worms in a common point within the BenchWorld
would result into a large number of aborts. Further, by
properly using the messaging and the group notion, we can
recreate instances of the synchronization problems described
in Requirements section.

At the end, when the execution completes, we perform an
automatic correctness test (i.e. sanity check for the TM sys-
tem). To verify that the TM system worked properly, we
compare the sum of the matrix at the end of the execution
with the sum of the matrix that was at the initialization.
When computing the sum of the matrix at the end of ex-
ecution we also account for the modifications done by the
replace with average operations. These modifications are
stored in worms’ private buffers.

WormBench is implemented in C# language by applying
the concepts of object oriented programming and is compact
(940 lines of code). The code is implemented with two types
of synchronizations - transactions (atomic blocks) and global
lock. The synchronization type can be selected at compile
time. The average sizes of the shared objects is 70 bytes and
have several fields which makes it favorable for TM systems
that perform the versioning in object granularity (mostly
STM), cache line and word granularity (mostly HTM). The
primary performance evaluation metric in the BenchWorld
application is the throughput - the total number of moves per
unit time.

In behavior and synchronization, WormBench resembles the
typical multi-threaded applications where independent threads
perform memory reads, do computation and update a given
global state. An example could be a web server with dy-
namic content rendering. Where the requests of the clients
are served by different threads as the memory is searched
for cached pages and updated on the fly depending on the
provided input by the client.

To sum up, WormBench is highly configurable. By prepar-
ing different run configuration, its runtime and transactional
characteristics may by easily tuned to match those of real
multi-threaded applications, as will also be shown in Sec-
tion 5. Also, depending on the particular run configuration,



transactions can be short and have small read and write set
which will make it more favorable to HTMs. A run configu-
ration with large transactions that have large read and write
set would be more favorable to STMs. Worms with differ-
ent body length and head size may be suitable for hybrid
solutions that either virtualizes HTMs or accelerate STMs.

4. ANALYZING WORMBENCH
The overall behavior of the WormBench application depends
on the run configuration passed as input by the user. The
runtime characteristics of the application can be altered by
tuning any of the following parameters:

• Size of the BenchWorld;

• Number of worms (number of threads);

• Body length of each worm;

• Head size of each worm;

• The number and type of worm operations that each
worm has to perform while moving; and

• Synchronization type - atomic, lock.

Altering any of these configuration parameters, we can pre-
pare a run configuration to reproduce runtime behavior that
might be general enough and represent a typical multi-threaded
application or specific that stresses a particular aspect of the
TM system such as many aborting transactions.

In this section we present several run configurations with the
purpose of studying the relationship between the configura-
tion parameters and the behavior of WormBench. We also
compare the obtained results in the transactional version of
WormBench with the lock based version.

4.1 Experimental Settings
We performed all measurements on a Dell PE6850 worksta-
tion with 4 dual-core x64 Intel Xeon processors with 32KB
IL1 and 32KB DL1 private per-core, 4MB L2 shared between
the two cores on-die, 8MB L3 shared between all cores, and
32GB RAM. During our experiments hyper-threading was
enabled, thus having 16 logical CPUs. The operating sys-
tem is Windows Server 2003 SP2. The processor scheduling
and the memory management policies were adjusted to favor
foreground applications instead of background services. To
compile the WormBench source code we used Bartok com-
piler [8]. Bartok is an optimizing compiler and managed
runtime system for the Common Intermediate Language. It
has compiler level and runtime support for STM. The STM
runtime library does eager version management, lazy con-
flict detection and reads are not visible among the threads.
The memory management in WormBench is performed by a
two-generation copying garbage collector.

4.2 Description of the Run Configurations
In our experiments we used a single stream of 800.000 move
operations. Both the operation type and the direction to
move to were randomly generated with uniform distribution
of the described worm operations and the three directions

Figure 2: Using worms initialized for small BenchWorld in a
large BenchWorld. (a) using worms initialized for 128x128 in
1024x2024; (b) using worms initialized for 256x256 in 1024x2024;
(c) using worms initialized for 512x512 in 1024x2024; (d) using
worms initialized for 1024x2024 in 1024x2024.

(ahead, left, right). To analyze the impact of the Bench-
world size we used 4 different BenchWorlds with 128x128,
256x256, 512x512, and 1024x1024 sizes. To analyze how the
worm’s body length and head size affect the execution we
used four different (body length, head size) configurations
- all the worms have body length and head size 1 (indi-
cated as B[1.1]H[1.1]), all the worms have body length and
head size 4 (B[4.4]H[4.4]), all the worms have body length
8 and head size 8 (B[8.8]H[8.8]), and all the worms have
both body length and head size randomly generated in range
[1, 8] (B[1.8]H[1.8]). Also, we prepared four different ini-
tializations for the worms based on the underlying Bench-
World size - 128x128, 256x256, 512x512, 1024x1024. To see
how the worms initialization affect the execution, we run
worms initialized for smaller BenchWorld in larger Bench-
World. For example, we ran worms initialized for 128x128
BenchWorld in a 1024x1024 BenchWorld. As shown on Fig-
ure 2, worms initialized for smaller BenchWorld are rela-
tively closer to each other and likely to be source of frequent
conflicts. Based on the synchronization - we prepared two
different executables with transactions and global lock. We
made all the possible combinations from the so far described
different configurations and ran with 1, 2, 4, 8 and 16 worms
(threads). This resulted in total of 80 combinations with 400
independent runs. We repeated each of these runs 3 times
and present the averaged results.

4.3 Analysis of the Run Configurations
Figure 3 shows how the throughput is affected by the dif-
ferent synchronization, TM (atomic) and locks. From this
figure we can conclude that although the atomic version
of WormBench scales, its best performance with 16 worms
(threads) is less than the lock based synchronization with
1thread. The reason for this is that the STM systems incur
significant overheads when doing versioning of the accessed
read and write set, especially on the case when the worms
body and head is 8 (B[8.8]H[8.8]) and the transaction has
big read and write set. Another issue that can be observed
is that the performance of lock based version degrades when
ran with more than 1 thread. The reason for this is that the
Bartok runtime is optimized for the case when the ”lock”
operation targets a lock that is not held. If the ”lock” op-
eration finds that the runtime lock has been already set by
an earlier compare-and-swap operation then an OS mutex
is created and thread blocked. In our case WormBench uses
global lock which is most likely acquired and this way re-
flected negatively to the total throughput.

Figure 4 summarizes the relationship between the through-
put (total number of moves per millisecond), the body length
and head size, and the BenchWorld size. From the different
charts (a), (b), (c) and (d) altogether is interesting to note
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(a) B[1.1]H[1.1] (b) B[4.4]H[4.4]

(c) B[8.8]H[8.8] (d) B[1.8]H[1.8]

Figure 3: Comparing the performance between lock based syn-
chronization and transactional memory synchronization (higher
values are better). (a) all worms have body length and head size
1; (b) all worms have body length and head size 4; (c) all worms
have body length and head size 8; (d) both the body length and
head size of every worm is randomly selected from the range [1,
8].

here that the increase in the body length and head size have
significant impact on the throughput. The obvious reason
for this is that when the body length and head size becomes
larger (especially head size, which has a O(n2) impact) the
input to the worm operations become larger and they spend
more time doing computation. For example, in the case with
a head size of 1 summing has only one node to add but in
the case with head size of 8 has 64 nodes. Another reason is
that when body length and head size increase, transactions
become larger and their working set increases super linearly.
The overhead for maintaining big read and write sets along
with the increased probability for aborts becomes higher.
This can be better seen in Figure 3-c with B[8.8]H[8.8], when
the transactional version of WormBench always performs
worse because of the overhead incurred by the versioning
and frequent aborts.

Figure 5 shows the ratio between the read and write set
for the different worms’ sizes (body length and head size).
The results are averaged across the different sizes of the
BenchWorlds. In the analyized run configurations, there are
insignificant differences in the results between the different
worms and mostly the reads are about 80% and writes are
about 20%.

Figure 6 shows the average number of the objects opened for
read or write per transaction. The unfiltered read set and
write set (denoted as UfR and UfW ) represent all the objects
to which the TM system attempted to access and the filtered
read and write set (denoted as FR and FW) represents the
actual number of objects versioned by the TM systems. For
example, it may happen that one object or memory location
is once versioned and later accessed again. In this case the
TM system filters it and does not allocate an entry for the
second access. In Figure 6 is interesting to see that although
the unfiltered read and write set increases for the different
sizes of the worms, the filtered set remains constant.
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(a) B[1.1]H[1.1] (b) B[4.4]H[4.4]

(c) B[8.8]H[8.8] (d) B[1.8]H[1.8]

Figure 4: Relationship between throughput (total number
moves per millisecond), BenchWorld size and the worm’s body
length and head size (higher values are better). (a) all worms
have body length and head size 1; (b) all worms have body length
and head size 4; (c) all worms have body length and head size 8;
(d) both the body length and head size of every worm is randomly
selected from the range [1, 8].
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Figure 5: The ratio between the objects in the read set and
writes set.

Figure 7 shows the rate of successful commits (opposite to
aborts). The commit rate in all the run configuration is
very high. One reason for this is mainly because of using
big BenchWorlds. Based on the results in this graph, we
can conclude our previous observation: since the commit
rate is high, the primary factor affecting the performance of
B[8.8]H[8.8] configuration is the versioning overhead.

Figure 8 shows the commit rate results of run configuration
with worms initialized for BenchWorld with size 128x128
and used in BenchWorlds with larger sizes (see Figure 2).
The results in this figure are different from Figure 7 since
its purpose is to show how the initialization of the worms
affect the commit rate. The obtained results does not signif-
icantly differ from those in Figure 7 because we initialized
the worms with big worm operations streams. Consequently,
this long execution has effectively decreased the impact of
the conflicts occurred at the beginning of the execution when
the worms were relatively closer to each other. This config-
uration can model a TM-execution which has phases: in
the first phase it starts with a high conflict rate and con-
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Figure 6: The number of unfiltered reads (UfR) and writes (UfW) per transaction and the number of filtered reads (FR) and writes
(FW) per transaction.
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Figure 7: The average commit rate for all configurations. We
omit the case for 1 worm (thread) because it is always 1.
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Figure 8: The commit rate when worms are initialized for
BenchWorld with size 128x128 and then used in larger Bench-
Worlds - 128x128, 256x256, 512x512 and 1024x1024.

tinues with a lower conflict rate in the second phase. This
characteristic of WormBench could be very useful in testing
how well adaptive TM systems perform in the presence of
changes in runtime TM-application behavior.

Based on the analyzed results in this section and the de-
scribed characteristics of WormBench in the previous sec-
tion, we will next show by example run configuration that
WormBench can mimic the behavior of genome application
from STAMP.

5. MODELING A TM APPLICATION
To demonstrate that WormBench is highly configurable we
prepared a run configuration that has the similar transac-
tional characteristics of the genome application from the
STAMP benchmark. Table 4 compares the TM and run-

time characteristics of the genome (Gen.) application and
the run configuration for WormBench (WB) that mimics
genome. Read per TX is the reads and Write per TX is the
Writes. The commit rate and the number of reads (R) is
very similar to the original values in genome. The proposed
run configuration scales up closely following the speedup rate
of the original application. The number of writes (W) per
transaction in WormBench is a little bit higher than in the
original application but a careful tuning would be possible to
lower writes and at the same time keep the other parameters
unchanged.

Table 4: Modeling Genome application with WormBench.

T# Commit Rate Read per TX Write per TX Speedup
Gen. WB Gen. WB Gen. WB Gen. WB

1 1 1 36.36 31.48 1.37 1.96 1 1
2 0.998 0.998 34.26 31.60 1.37 1.96 2.18 1.4
4 0.994 0.995 37.97 31.81 1.37 1.96 3.47 2.2
8 0.985 0.987 46.219 32.30 1.37 1.96 5.43 2.87

To obtain the results shown on Table 4 we used the following
run configuration:

• Worms body length = 1

• Worms head size = 4

• BenchWorld of size 52x52

• Randomly generated stream of worm operations, where
the ration between the worm operations was- Opera-
tions(1:2:3:4:5:6:7:8:9:10:11:12:13:14:15) =
Ration(1:1:1:0:0:2:1:1:1:1:1:1:2:0:0)

This is just a small example that demonstrates the high
configurability of WormBench and how it can be used to
reproduce the runtime and TM characteristics of a specific
multi threaded application.

6. CONCLUSION
This paper presented WormBench - a configurable workload
for evaluating Transactional Memory. It is designed and
implemented from the ground up by having in mind trans-
actional memory as a mechanism for concurrency control.
WormBench is parameterized and highly configurable. By
preparing a specific run configuration, one can easily obtain
a runtime and TM specific behavior that closely mimics the
behavior of a real multi-threaded application. We described
the transactional characteristics of each critical section ex-
isting in WormBench and also analyzed their characteristics



altogether in 40 different run configurations. We demon-
strated its flexibility by preparing a specific run configura-
tion that has similar transactional behavior like the genome
application from the STAMP benchmark suit.

Overall, being configurable, the goal of WormBench is to
serve as a handy tool for instrumenting a specific transac-
tional application that will stress a particular design or im-
plementation aspect of the low level implementation detail
or prepare a general enough set of run configurations that
can evaluate all aspects of transactional memory from the
hardware micro-architecture to the language extensions.

7. FUTURE WORK
We plan to soon release the WormbBench source code and
the auxiliary tool set to the research community. As a fur-
ther research work, we plan to analyze the effect of the
messaging between the worms. Messaging and collaboration
between worms would result in interesting synchronization
problems. We, also plan to provide different type of im-
plementations for the BenchWorld such as linked list, and
sparse matrix and study their impact on the runtime and
transactional behavior.

One another very interesting bullet in our future work list
is implementing a tool that can automatically build a run
configuration provided with the specific transactional char-
acteristics.
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