
Concurrent Programming Without Locks

KEIR FRASER

University of Cambridge Computer Laboratory

and

TIM HARRIS

Microsoft Research Cambridge

Mutual exclusion locks remain the de facto mechanism for concurrency control on shared-memory
data structures. However, their apparent simplicity is deceptive: It is hard to design scalable locking
strategies because locks can harbor problems such as priority inversion, deadlock, and convoying.
Furthermore, scalable lock-based systems are not readily composable when building compound
operations. In looking for solutions to these problems, interest has developed in nonblocking sys-
tems which have promised scalability and robustness by eschewing mutual exclusion while still
ensuring safety. However, existing techniques for building nonblocking systems are rarely suitable
for practical use, imposing substantial storage overheads, serializing nonconflicting operations, or
requiring instructions not readily available on today’s CPUs.

In this article we present three APIs which make it easier to develop nonblocking implemen-
tations of arbitrary data structures. The first API is a multiword compare-and-swap operation
(MCAS) which atomically updates a set of memory locations. This can be used to advance a data
structure from one consistent state to another. The second API is a word-based software transac-
tional memory (WSTM) which can allow sequential code to be reused more directly than with MCAS
and which provides better scalability when locations are being read rather than being updated.
The third API is an object-based software transactional memory (OSTM). OSTM allows a simpler
implementation than WSTM, but at the cost of reengineering the code to use OSTM objects.

We present practical implementations of all three of these APIs, built from operations available
across all of today’s major CPU families. We illustrate the use of these APIs by using them to build
highly concurrent skip lists and red-black trees. We compare the performance of the resulting
implementations against one another and against high-performance lock-based systems. These
results demonstrate that it is possible to build useful nonblocking data structures with performance
comparable to, or better than, sophisticated lock-based designs.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—Concur-
rency, mutual exclusion, synchronization

This work was supported by donations from the Scalable Synchronization Research Group at Sun
Labs Massachusetts. The evaluation was carried out using the Cambridge-Cranfield High Perfor-
mance Computing Facility.
Authors’ addresses: K. Fraser, Computer Laboratory, University of Cambridge, 15JJ Thomson
Avenue, Cambridge, CB3 OFB, UK; T. Harris, Microsoft Research Cambridge, Roger Needham
Building, 7JJ Thomson Ave., Cambridge CB3 0FB, UK; email: tharris@microsoft.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1233307/2007/05-ART5 $5.00 DOI 10.1145/1233307.1233309 http://doi.acm.org/
10.1145/1233307.1233309

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

2 • K. Fraser and T. Harris

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Concurrency, lock-free systems, transactional memory

ACM Reference Format:
Fraser, K. and Harris, T. 2007. Concurrent programming without locks. ACM Trans. Comput.
Syst. 25, 2, Article 5 (May 2007), 61 pages. DOI = 10.1145/1233307.1233309 http://doi.acm.org/
10.1145/1233307.1233309

1. INTRODUCTION

Mutual-exclusion locks are one of the most widely used and fundamental ab-
stractions for synchronization. This popularity is largely due to their appar-
ently simple programming model and the availability of implementations which
are efficient and scalable. Unfortunately, without specialist programming care,
these benefits rarely hold for systems containing more than a handful of locks:

—For correctness, programmers must ensure that threads hold the neces-
sary locks to avoid conflicting operations being executed concurrently. To avoid
mistakes, this favors the development of simple locking strategies which pes-
simistically serialize some nonconflicting operations.

—For liveness, programmers must be careful to avoid introducing deadlock
and, consequently, they may cause software to hold locks for longer than would
otherwise be necessary. Also, without scheduler support, programmers must be
aware of priority inversion problems.

—For high performance, programmers must balance the granularity at
which locking operates against the time that the application will spend ac-
quiring and releasing locks.

This article is concerned with the design and implementation of software
which is safe for use on multithreaded multiprocessor shared-memory ma-
chines, but which does not involve the use of locking. Instead, we present three
different APIs for making atomic accesses to sets of memory locations. These
enable the direct development of concurrent data structures from sequential
ones. We believe this makes it easier to build multithreaded systems which are
correct. Furthermore, our implementations are nonblocking (meaning that even
if any set of threads is stalled, the remaining threads can still make progress)
and generally allow disjoint-access parallelism (meaning that updates made to
nonoverlapping sets of locations will be able to execute concurrently).

To introduce these APIs, we shall sketch their use in a code fragment that
inserts items into a singly-linked list which holds integers in ascending order.
In each case the list is structured with sentinel head and tail nodes whose keys
are, respectively, less than and greater than all other values. Each node’s key
remains constant after insertion. For comparison, Figure 1 shows the corre-
sponding insert operation when implemented for single-threaded use. In that
figure, as in each of our examples, the insert operation proceeds by identifying
nodes prev and curr between which the new node is to be placed.

Our three alternative APIs all follow a common optimistic style [Kung
and Robinson 1981] in which the core sequential code is wrapped in a loop

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 3

Fig. 1. Insertion into a sorted list.

which retries the insertion until it succeeds in committing the updates to
memory.

Our first API provides multiword compare-and-swap (MCAS) which gener-
alizes the single-word CAS operation found on many processors: It atomically
updates one or more memory locations from a set of expected values to a set of
new values. Figure 2 shows how the insertion could be expressed using MCAS.

There are two fundamental changes from the sequential algorithm. Firstly,
instead of updating shared locations individually, the code must call MCAS to
perform the complete set of memory accesses that need to be made atomically.
In the example there is only a single update to be made with MCAS, but a cor-
responding delete operation would pass two updates to MCAS: one to excise the
node from the list and a second to clear its next field to NULL to prevent con-
current insertion after a deleted node. Secondly, the code must call MCASRead
whenever it reads from a location that might be subject to a concurrent update
by MCAS in another thread.

MCAS and MCASRead present a rather low-level API: Programmers must
be careful to use MCASRead where necessary and must also remember that
the subsequent MCAS does not know which locations have been read. This can
lead to cumbersome code in which the program keeps lists of the locations it
has read from, and the values that it has seen in them, and then passes these
lists to MCAS to confirm that the values represent a consistent view of shared
memory.

The second abstraction provides a word-based software transactional mem-
ory (WSTM) which avoids some of these problems by allowing a series of reads
and writes to be grouped as a software transaction which can be applied to
the heap atomically [Harris and Fraser 2003]. Figure 3 shows our list example
using WSTM. The changes from sequential code are that reads and writes to
shared locations are performed through WSTMRead and WSTMWrite functions,
and that this whole set of memory accesses is wrapped in a call to WSTMStart-
Transaction and a call to WSTMCommitTransaction calls.

The third abstraction provides an object-based software transactional mem-
ory (OSTM) which allows a thread to “open” a set of objects for transactional
accesses and, once more, to commit updates to them atomically [Fraser 2003].

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

4 • K. Fraser and T. Harris

Fig. 2. Insertion into a sorted list managed using MCAS. In this case the arrays specifying the
update need contain only a single element.

Fig. 3. Insertion into a sorted list managed using WSTM. The structure mirrors Figure 2 except
that the WSTM implementation tracks which locations have been accessed based on the calls to
WSTMRead and WSTMWrite.

Figure 4 illustrates this style of programming: Each object is accessed through
an OSTM handle which must be subject to an OSTMOpenForReading or
OSTMOpenForWriting call in order to obtain access to the underlying data. In
short examples, the code looks more verbose than WSTM, but the OSTM im-
plementation is more straightforward and often runs more quickly.

While these techniques do not provide a silver bullet to designing scalable
concurrent data structures, they represent a shift of responsibility away from
the programmer: The API’s implementation is responsible for correctly ensur-
ing that conflicting operations do not proceed concurrently and for preventing
deadlock and priority inversion between concurrent operations. The API’s caller
remains responsible for ensuring scalability by making it unlikely that concur-
rent operations will need to modify overlapping sets of locations. However, this
is a performance problem rather than a correctness or liveness one, and in
our experience, even straightforward data structures, developed directly from

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 5

Fig. 4. Insertion into a sorted list managed using OSTM. The code is more verbose than Figure 3
because data is accessed by indirection through OSTM handles which must be opened before use.

sequential code, offer performance which competes with and often surpasses
state-of-the-art lock-based designs.

1.1 Goals

We set ourselves a number of goals in order to ensure that our designs are
practical and perform well when compared with lock-based schemes:

—Concreteness. We must consider the full implementation path down to the
instructions available on commodity CPUs. This means we build from atomic
single-word read, write, and compare-and-swap (CAS) operations. We define
CAS to return the value it reads from the memory location.

atomically word CAS (word a, word e, word n,) {
word x := *a;
if (x = e) *a := n;
return x;

}
—Linearizability. In order for functions such as MCAS to behave as expected

in a concurrent environment, we require that their implementations be lin-
earizable, meaning that they appear to occur atomically at some point between
when they are called and when they return [Herlihy and Wing 1990].

—Nonblocking progress guarantee. In order to provide robustness against
many liveness problems such as deadlock, implementations of our APIs should
be nonblocking. This means that even if any set of threads is stalled, the re-
maining threads can still progress.

—Disjoint-access parallelism. Implementations of our APIs should not intro-
duce contention in the sets of memory locations they access: Operations which
access disjoint parts of a data structure should be able to execute in parallel
[Israeli and Rappoport 1994].

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

6 • K. Fraser and T. Harris

Table I. Assessment of Our Implementations of These Three APIs Against Our Goals

MCAS WSTM OSTM

Disjoint-access
parallelism

when accessing
disjoint sets
of words

when accessing words that
map to disjoint sets of
ownership records under
a hash function used in
the implementation

when accessing
disjoint sets of
objects

Read parallelism no yes yes

Space overhead (when
no operations are in
progress)

2 bits reserved
in each word

fixed-size table (e.g.,
65,536 double-word
entries)

one word in each
object handle

Composability no yes yes

—Read parallelism. Implementations of our APIs should allow shared data
that is read on different CPUs to remain in shared mode in those CPUs’ data
caches: Fetching a location from the cache of another CPU can be hundreds of
times slower than fetching it from a local cache [Hennessy and Patterson 2003]
and so we must preserve sharing where possible.

—Dynamicity. Implementations of our APIs should be able to support
dynamically-sized data structures, such as lists and trees, in which constituent
objects are allocated and reclaimed over time.

—Practicable space costs. Space costs should scale well with the number of
threads and volume of data managed using the API. It is generally unacceptable
to reserve more than two bits in each word (often such bits are always zero if
locations hold aligned pointers) and it is desirable to avoid reserving even this
much if words are to hold unrestricted values, rather than being restricted to
aligned pointers.

—Composability. If multiple data structures separately provide operations
built with one of our APIs, then these should be composable to form a sin-
gle compound operation which still occurs atomically (and which can itself be
composed with others).

All of our APIs have concrete, linearizable, nonblocking implementations
which can be used to build dynamically-sized data structures. Table I indicates
the extent to which they meet our other goals.

We also have a number of non-goals.
Firstly, although our implementations of these APIs can be used concurrently

in the same application, we do not intend that they be used to manage parts of
the same data structure.

Secondly, we assume that a separate mechanism will be used to control con-
tention between concurrent threads. This separation between progress in iso-
lation and progress under contention follows Herlihy et al. [2003a, 2003b] and
Scherer and Scott’s [2005] recent work.

Finally, although our implementations support dynamically-sized data struc-
tures, our algorithms do not mandate the use of any particular method for

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 7

determining when a particular piece of memory can be deallocated. In some
settings this is achieved naturally by automatic garbage collection [Jones and
Lins 1996] which can readily be extended to manage the data structures used
by the implementations of our APIs [Harris et al. 2005]. Our examples in
Figures 2–4 all assume a garbage collector. In Section 8.1.3 we describe the
memory reclamation techniques that we used for our evaluation. Other authors
have developed techniques that can be used in systems without a garbage col-
lector: Herlihy et al.’s. “Repeat Offender” problem [2005] and Michael’s “Safe
Memory” reclamation [2002] both allow threads to issue tentative deallocation
requests that are deferred until it is established that no other thread can access
the memory involved.

1.2 Source Code Availability

Source code for our MCAS, WSTM, and OSTM systems, data structure imple-
mentations, and test harnesses is available for Alpha, Intel IA-32, Intel IA-64,
MIPS, PowerPC, and SPARC processor families at http://www.cl.cam.ac.uk/
netos/lock-free.

1.3 Structure of This Article

In Section 2 we present the three alternative APIs and compare and contrast
their features and the techniques for using them effectively. We discuss previous
work with respect to our goals in Section 3. In Section 4 we describe our overall
design method and the facets common to each of our designs. In Sections 5–7
we explore the details of these three APIs in turn and present our implemen-
tations of them, their relationship to previous work, and, where applicable, to
contemporary work with similar goals of practicability.

In Section 8 we evaluate the performance of data structures built over our
implementations of each of the APIs, both in comparison with one another and
with sophisticated lock-based schemes. We use skip lists and red-black trees as
running examples, highlighting any particular issues that arise when adapting
a sequential implementation for concurrent use.

2. PROGRAMMING APIS

In this section we present the programming interfaces for using MCAS
(Section 2.1), WSTM (Section 2.2), and OSTM (Section 2.3). These provide
mechanisms for accessing and/or modifying multiple unrelated words in a sin-
gle atomic step; however, they differ in the way in which those accesses are
specified and the adaptation required to make a sequential operation safe for
multithreaded use.

After presenting the APIs themselves, Section 2.4 discusses how they may
be used in practice in sharedmemory multithreaded programs.

2.1 Multiword Compare-and-Swap (MCAS)

Multiword compare-and-swap (MCAS) extends the well-known hardware CAS
primitive to operate on an arbitrary number of memory locations simultane-
ously. As with the linked-list example shown in Figure 2, it is typically used by

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

8 • K. Fraser and T. Harris

preparing a list of updates to make in a thread-private phase before invoking
MCAS to apply them to the heap. MCAS is defined to operate on N distinct mem-
ory locations (ai), expected values (ei), and new values (ni): Each ai is updated to
value ni if and only if each ai contains the expected value ei before the operation.
MCAS returns TRUE if these updates are made and FALSE otherwise.

Heap accesses to words which may be subject to a concurrent MCAS must
be performed by calling MCASRead. This restriction is needed because, as we
show in Section 5, the MCAS implementation places its own values in these
locations while they are being updated. Furthermore, the MCAS implementa-
tion reserves two bits in each location that it may work on. In practice this
means that these locations must hold aligned pointer values in which at least
two low-order bits are ordinarily clear on a machine with 32-bit or 64-bit words.
The full API is consequently

1 // Update locations a[0]..a[N-1] from e[0]..e[N-1] to n[0]..n[N-1]
bool MCAS (int N, word **a[], word *e[], word *n[]);

3 // Read the contents of location a
word *MCASRead (word **a);

This API is effective when a small number of locations can be identified which
need to be accessed to update a data structure from one consistent state to
another.

Using MCAS also allows expert programmers to reduce contention between
concurrent operations by paring down the set of locations passed to each atomic
update, or by decomposing a series of related operations into a series of MCAS
calls. For instance, when inserting a node into a sorted linked list, we relied
on the structure of the list and the immutability of key fields to allow us to
update just one location, rather than needing to check that the complete chain of
pointers traversed has not been modified by a concurrent thread. However, this
flexibility presents a potential pitfall for programmers directly using MCAS.

The API also precludes our goal of composability.

2.2 Word-Based Software Transactional Memory (WSTM)

Although MCAS eases the burden of ensuring correct synchronization of up-
dates, many data structures also require consistency among groups of read
operations and it is cumbersome for the application to track these calls to
MCASRead and to use the results to build arrays of “no-op” updates to pass
to MCAS. For instance, consider searching within a move-to-front list, in which
a successful search promotes the discovered node to the head of the list. As in-
dicated in Figure 5, a naı̈ve algorithm which does not consider synchronization
between concurrent searches may incorrectly fail.

Software transactional memories provide a way of dealing with these prob-
lems by grouping shared-memory accesses into transactions. These transac-
tions succeed or fail atomically. Furthermore, composability is gained by allow-
ing nested transactions: A series of WSTM transactions can be composed by
bracketing them within a further transaction.

Typically, our implementation of the WSTM API allows a transaction to com-
mit, so long as no other thread has committed an update to one of the accessed

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 9

Fig. 5. The need for read consistency: A move-to-front linked list subject to two searches for node
3. In snapshot (a), search A is preempted while passing over node 1. Meanwhile, in snapshot
(b), search B succeeds and moves node 3 to the head of the list. When A continues execution, it will
incorrectly report that 3 is not in the list.

locations. However, as we show in Section 6.1, this is not a guarantee because
false conflicts can be introduced if there are collisions under a hash function
used in the WSTM implementation.

Within a transaction, data accesses are performed by WSTMRead and
WSTMWrite operations. As with MCAS, the caller is responsible for using
these operations when accessing words which may be subject to a concurrent
WSTMCommitTransaction.

Unlike MCAS, our WSTM implementation does not reserve space in each
word, allowing it to act on full word-size data, rather than just pointer-valued
fields in which “spare” bits can be reserved. The full API is

1 // Transaction management
wstm transaction *WSTMStartTransaction();

3 bool WSTMCommitTransaction(wstm transaction *tx);
bool WSTMValidateTransaction(wstm transaction *tx);

5 void WSTMAbortTransaction(wstm transaction *tx);
// Data access

7 word WSTMRead(wstm transaction *tx, word *a);
void WSTMWrite(wstm transaction *tx, word *a, word d);

As we will show later, the interface often results in reduced performance com-
pared with MCAS.

2.3 Object-Based Software Transactional Memory (OSTM)

The third API, OSTM, provides an alternative transaction-based interface. As
with WSTM, data managed with OSTM can hold full word-size values and
transactions can nest, allowing composability.

However, rather than accessing words individually, OSTM exposes OSTM
objects through a level of indirection provided by OSTM handles. OSTM objects
are allocated and deallocated by OSTMNew and OSTMFree, respectively, which
behave analogously to standard malloc and free functions, but act on pointers
to OSTM handles rather than directly on pointers to objects.

Before the data it contains can be accessed, an OSTM handle must be opened
in order to obtain access to the underlying object: This is done by OSTMOpen-
ForReading and OSTMOpenForWriting which, along with a transaction ID, take
pointers to handles of type ostm handle<t*> and return object pointers of type
t* on which ordinary memory access operations can be invoked in that transac-
tion. In the case of OSTMOpenForWriting, this return value refers to a shadow

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

10 • K. Fraser and T. Harris

copy of the underlying object, that is, a private copy on which the thread can
work before attempting to commit its updates.

Both OSTMOpenForReading and OSTMOpenForWriting are idempotent: If
the object has already been opened in the same access mode within the same
transaction, then the same pointer will be returned.

The caller must ensure that objects are opened in the correct mode: The
OSTM implementation may share data between objects that have been opened
for reading between multiple threads. The caller must also be careful if a trans-
action opens an object for reading (obtaining a reference to a shared copy C1)
and subsequently opens the same object for writing (obtaining a reference to
a shadow copy C2): Updates made to C2 will, of course, not be visible when
reading from C1.

The OSTM interface leads to a different cost profile from WSTM: OSTM
introduces a cost on opening objects for access and potentially producing shadow
copies to work on, but subsequent data access is made directly (rather than
through functions like WSTMRead and WSTMWrite). Furthermore, it admits a
simplified nonblocking commit operation.

The OSTM API is
1 // Transaction management

ostm transaction *OSTMStartTransaction();
3 bool OSTMCommitTransaction(ostm transaction *tx);

bool OSTMValidateTransaction(ostm transaction *tx);
5 void OSTMAbortTransaction(ostm transaction *tx);

// Data access
7 t *OSTMOpenForReading(ostm transaction *tx, ostm handle<t*> *o);

t *OSTMOpenForWriting(ostm transaction *tx, ostm handle<t*> *o);
9 // Storage management

ostm handle<void*> *OSTMNew(size t size);
11 void OSTMFree(ostm handle<void*> *ptr);

2.4 Programming with Our APIs

This section discusses some general questions that arise when developing soft-
ware that uses any of our three APIs.

2.4.1 Programming Languages. This article concentrates on the mecha-
nisms that can be used for making atomic nonblocking accesses to sets of mem-
ory locations. In practice there are two scenarios in which we envisage our APIs
being used:

Firstly, our APIs may be used directly by expert programmers. For instance,
when the code implementing a data structure is small and self-contained, then
the shared-memory accesses in the code can be replaced directly with oper-
ations on WSTM, or the data structure’s layout reorganized to use OSTM
objects.

Secondly, and more generally, the mechanisms we have developed can form
a layer within a complete system. For instance, transactional memory can be
used as a basis for language features such conditional critical regions [Hoare
1972]. If this is implemented as part of a compiler, then it automates the typ-
ical way in which WSTM is used [Harris and Fraser 2003]. An alternative (in

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 11

those languages which support it) is to use runtime code generation to add the
level of indirection that programming using OSTM objects requires [Herlihy
2005]. Aside from CCRs, hybrid designs are possible which combine lock-based
abstractions with optimistic execution over transactional memory [Welc et al.
2004].

A further direction, again beyond the scope of the current article, is using a
language’s type system to ensure that the only operations attempted within a
transaction are made through an STM interface [Harris et al. 2005]. This can
avoid programming errors in which irrevocable operations (such as network
I/O) are performed in a transaction that subsequently aborts.

2.4.2 Invalidity During Execution. A nonobvious complication when us-
ing our APIs is that atomicity is only enforced at the point of a call to MCAS,
WSTMCommitTransaction, or OSTMCommitTransaction. It remains possible for
a thread to see a mutually inconsistent view of shared memory if it performs
a series of MCASRead, WSTMRead, or OSTMOpen calls. This can happen due
to atomic updates by other threads. Note that in all three APIs, arbitrary val-
ues cannot be returned: The value returned by MCASRead must have been
current at some time during the call, and the values read through WSTMRead
or OSTMOpenForReading must have been current at some point during the
transaction.

If a thread does see a mutually inconsistent set of values, then its subsequent
MCAS or STM commit operation will not succeed. However, it is possible that
the inconsistency may cause an algorithm to crash, loop, or recurse deeply
before it attempts to commit.

We do not seek to provide a general-purpose solution to this problem at the
level of APIs in this article: The solution, we believe, depends on how the APIs
are being used.

In the first scenario we discussed before—where one of our APIs is being
used directly by an expert programmer—it is the responsibility of that pro-
grammer to consider the consequences of transactions that see inconsistent
views of memory during their execution. Two different cases arise in the ex-
amples we have seen. Firstly, some simple algorithms are guaranteed to reach
a call to MCAS or a STM commit operation even if they see a mutually incon-
sistent set of values; they can be used without modification. Secondly, other
algorithms can loop internally, recurse deeply, or dereference NULL pointers
if they see an inconsistent set of values. In these cases, we ensure that some
validation is performed within every loop and function call and we use a signal
handler to catch NULL-dereferences (explicit tests against NULL could be used
in environments without signal handlers). We emphasize that these are only
the cases that arise in the examples we have studied: Other programs using
these APIs may need additional “hardening” against floating point exceptions,
out-of-bound memory accesses, and so on, if these are possible due to sets of
inconsistent reads.

As others have explored, an alternative approach would be to ensure validity
throughout a transaction by performing work on WSTMRead and OSTMOpen
operations. This ensures that the values seen within a transaction always form

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

12 • K. Fraser and T. Harris

a mutually consistent snapshot of part of the heap. This is effectively the ap-
proach taken by Herlihy et al.’s [2003b] DSTM, and leads to the need either
to make reads visible to other threads (making read parallelism difficult in a
streamlined implementation) or to explicitly revalidate invisible reads (leading
to O(n2) behavior when a transaction opens n objects in turn). Either of these
approaches could be integrated with WSTM or OSTM if the API is to be ex-
posed directly to programmers whilst shielding them from the need to consider
invalidity during execution.

In the second scenario, where calls on the API are generated automatically
by a compiler or language runtime system, we believe it is inappropriate for the
application programmer to have to consider mutually inconsistent sets of values
within a transaction. For instance, when considering the operational semantics
of atomic blocks built over STM in Haskell [Harris et al. 2005], definitions where
transactions run in isolation appear to be a clean fit with the existing language,
while it is unclear how to define the semantics of atomic blocks that may expose
inconsistency to the programmer. Researchers have explored a number of ways
to shield the programmer from such inconsistency [Harris and Fraser 2003;
Harris et al. 2005; Riegel et al. 2006; Dice et al. 2006]. These can broadly be
classified as approaches based on hardening the runtime system against behav-
ior due to inconsistent reads, and approaches based on preventing inconsistent
reads from occuring. The selection between these goes beyond the scope of the
current article.

2.4.3 Optimizations and Hints. The final aspect we consider is the avail-
ability of tuning facilities for a programmer to improve the performance of an
algorithm using our APIs.

The key problem is false contention, where operations built using the APIs are
deemed to conflict even though logically they commute. For instance, if a set of
integers is held in numerical order in a linked list, then a thread transactionally
inserting 15 between 10 and 20 will perform updates that conflict with reads
from a thread searching through that point for a higher value.

It is not clear that this particular example can be improved automati-
cally when a tool is generating calls on our APIs; realizing that the opera-
tions do not logically conflict relies on knowledge of their semantics and the
set’s representation. Notwithstanding this, the ideas of disjoint-access par-
allelism and read-parallelism allow the programmer to reason about which
operations will be able to run concurrently without interfering with each
other.

However, our APIs can be extended with operations for use by expert pro-
grammers. As with Herlihy et al.’s DSTM [2003b], our OSTM supports an ad-
ditional early release operation that discards an object from the sets of accesses
that the implementation uses for conflict detection. For instance, in our list ex-
ample, a thread searching the list could release the lists, nodes as it traverses
them, eventually trying to commit a minimal transaction containing only the
node it seeks (if it exists) and its immediate predecessor in the list. Similarly,
as we discuss in Section 6.5, WSTM supports discard operations to remove
addresses from a transaction.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 13

These operations all require great care: Once released or discarded, data
plays no part in the transaction’s commit or abort. A general technique for
using them correctly is for the programmer to ensure that: (i) As a transaction
runs, it always holds enough data for invalidity to be detected; and (ii) when
a transaction commits, the operation it is performing is correct, given only the
data that is still held. For instance, in the case of searching a sorted linked
list, it would need to hold a pair of adjacent nodes to act as a “witness” of the
operation’s result. However, such extreme use of optimization APIs loses many
of the benefits of performing atomic multiword updates (the linked-list example
becomes comparably complex to a list built directly from CAS [Harris 2001] or
sophisticated locking [Heller et al. 2005]).

3. RELATED WORK

The literature contains several designs for abstractions, such as MCAS, WSTM,
and OSTM. However, many of the foundational designs have not shared our re-
cent goals of practicality, for instance, much work builds on instructions such as
strong-LL/SC or DCAS [Motorola 1985] which are not available as primitives in
contemporary hardware. Our experience is that although this work has identi-
fied the problems which exist and has introduced terminology and conventions
for presenting and reasoning about algorithms, it has not been possible to ef-
fectively implement or use these algorithms by layering them above software
implementations of strong-LL/SC or DCAS. For instance, when considering
strong-LL/SC, Jayanti and Petrovic’s recent design reserves four words of stor-
age per thread for each word that may be accessed [Jayanti and Petrovic 2003].
Other designs reserve N or log N bits of storage within each word when used
with N threads: Such designs can only be used when N is small. When consid-
ering DCAS, it appears no easier to build a general-purpose DCAS operation
than it is to implement our MCAS design.

In discussing related work, the section is split into three parts. Firstly,
in Section 3.1 we introduce the terminology of nonblocking systems and de-
scribe the progress guarantees that they make. These properties underpin the
liveness gurantees that are provided to users of our algorithms. Secondly, in
Section 3.2 we discuss the design of “universal” transformations that build
nonblocking systems from sequential or lock-based code. Finally, in Section 3.3,
we present previous designs for multiword abstractions, such as MCAS, WSTM,
and OSTM, and assess them against our goals.

3.1 Nonblocking Systems

Nonblocking algorithms have been studied as a way of avoiding the liveness
problems that are possible when using traditional locks [Herlihy 1993]. A de-
sign is nonblocking if the suspension or failure of any number of threads cannot
prevent the remainder of the system from making progress. This provides ro-
bustness against poor scheduling decisions, as well as against arbitrary thread
termination. It naturally precludes the use of ordinary locks because unless a
lock-holder continues to run, the lock will never be released.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

14 • K. Fraser and T. Harris

Nonblocking algorithms can be classified according to the kind of progress
guarantee that they make:

—Obstruction-freedom is the weakest guarantee: A thread performing an
operation is only guaranteed to make progress so long as it does not contend
with other threads for access to any location [Herlihy et al. 2003a]. This requires
an out-of-band mechanism to avoid livelock; exponential backoff is one option.

—Lock-freedom adds the requirement that the system as a whole makes
progress, even if there is contention. In some cases, lock-free algorithms can be
developed from obstruction-free ones by adding a helping mechanism: If thread
t2 encounters thread t1 obstructing it, then t2 helps t1 to complete t1’s operation.
Once that is done, t2 can proceed with its own operation and hopefully not be
obstructed again. This is sufficient to prevent livelock, although it does not offer
any guarantee of per-thread fairness.

—Wait-freedom adds the requirement that every thread makes progress, even
if it experiences contention. It is seldom possible to directly develop wait-free
algorithms that offer competitive practical performance. However, Fich et al.
have recently developed a transformation which converts an obstruction-free
algorithm into one that is wait-free in the unknown-bound semisynchronous
model of computation [Fich et al. 2005].

Some previous work has used the terms “lock-free” and “nonblocking” inter-
changeably: We follow Herlihy et al.’s recent use of lock-freedom to denote a
particular kind of nonblocking guarantee [Herlihy et al. 2003a]. In this article
we concentrate on lock-free algorithms, although we highlight where simplifi-
cations can be made to our implementations by designing them to satisfy the
weaker requirement of obstruction-freedom.

We must take care to deliberate over what it means for an implementa-
tion of an API like WSTM and OSTM to offer a given form of nonblocking
progress: We care not just about the progress of individual operations on the
API, but also about the progress of complete transactions through to successful
WSTMCommitTransaction or OSTMCommitTransaction calls.

We say that an implementation of a transactional abstraction provides a
given nonblocking progress guarantee if complete transactions running over it
have that guarantee. For example, an obstruction-free transactional abstraction
requires transactions to eventually commit successfully if run in isolation,1 but
allows a set of transactions to livelock, aborting one another if they contend.
Similarly, a lock-free transactional abstraction requires some transaction to
eventually commit successfully even if there is contention.

3.2 Universal Constructions

Universal constructions are a class of design technique that can transform a
sequential data structure into one that is safe for concurrent usage. Herlihy’s
original scheme requires a shadow copy of the entire data structure to be taken.

1We say eventually because the transaction may have to be reexecuted before this occurs (just as
an obstruction-free algorithm may involve internal retry steps to remove obstructions). Crucially,
it cannot run in isolation an unbounded number of times before committing.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 15

A thread then makes updates to this in private before attempting to make them
visible by atomically updating a single “root” pointer of the structure [Herlihy
1993]. This means that concurrent updates will always conflict, even when they
modify disjoint sections of the data structure.

Turek et al. devised a hybrid scheme that may be applied to develop lock-free
systems from deadlock-free lock-based ones [Turek et al. 1992]. Each lock in
the original algorithm is replaced by an ownership reference which is either
NULL or points to a continuation describing the sequence of virtual instruc-
tions that remain to be executed by the lock “owner”. This allows conflicting
operations to avoid blocking: instead, they execute instructions on behalf of the
owner and then take ownership themselves. Interpreting a continuation is cum-
bersome: After each “instruction” is executed, a virtual program counter and
a nonwrapping version counter are atomically modified using a double-width
CAS operation which acts on an adjacent pair of memory locations.

Barnes proposes a similar technique in which mutual-exclusion locks are
replaced by pointers to operation descriptors [Barnes 1993]. Lock-based algo-
rithms are converted to operate on shadow copies of the data structure; then,
after determining the sequence of updates to apply, each “lock” is acquired in
turn by making it point to the descriptor, the updates are performed on the
structure itself, and finally the “locks” are released. Copying is avoided if con-
tention is low by observing that the shadow copy of the data structure may be
cached and reused across a sequence of operations. This two-phase algorithm
requires strong-LL/SC operations.

3.3 Programming Abstractions

Although universal constructions have the benefit of requiring no manual mod-
ification to existing sequential or lock-based programs, each exhibits some sub-
stantial performance or implementation problem which places it beyond practi-
cal use. Another class of technique provides programming APIs which, although
not automatic “fixes” to the problem of constructing nonblocking algorithms,
make the task of implementing nonblocking data structures much easier com-
pared with using atomic hardware primitives directly. The two best-known
abstractions are multiword compare-and-swap (MCAS), and forms of software
transactional memory (STM).

Israeli and Rappaport described the first design which builds a lock-free
MCAS from strong-LL/SC, which in turn is built from CAS [Israeli and
Rappoport 1994]. For N threads, their method for building the required LL/SC
from CAS reserves N bits within each updated memory location; the MCAS
algorithm then proceeds by load-locking each location in turn, and then at-
tempting to conditionally store each new value in turn. Although the space cost
of implementing the required strong-LL/SC makes their design impractical, the
identification of disjoint-access parallelism as a goal has remained a valuable
contribution.

Anderson and Moir [1995] designed a wait-free version of MCAS that also
requires strong-LL/SC. They improved on Israeli and Rappaport’s space costs
by constructing strong-LL/SC using log N reserved bits per updated memory

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

16 • K. Fraser and T. Harris

location, rather than N . This bound is achieved at the cost of considerable
bookkeeping to ensure that version numbers are not reused. A further drawback
is that the accompanying MCASRead operation is based on primitives that
acquire exclusive cache-line access for the location, preventing read parallelism.

Moir developed a streamlined version of this algorithm which provides “con-
ditionally wait-free” semantics [Moir 1997]. Specifically, the design is lock-free,
but an out-of-band helping mechanism may be specified which is then respon-
sible for helping conflicting operations to complete. This design suffers many
of the same weaknesses as its ancestor; in particular, it requires strong-LL/SC
and does not provide a read-parallel MCASRead.

Anderson et al. provide two further versions of MCAS suitable for systems
using strict priority scheduling [Anderson et al. 1997]. Both algorithms store
a considerable amount of information in memory locations subject to MCAS
updates: a valid bit, a process identifier (log N bits), and a “count” field (which
grows with the base-2 logarithm of the maximum number of addresses specified
in an MCAS operation). Furthermore, their multiprocessor algorithm requires
certain critical sections to be executed with preemption disabled, which is not
generally feasible.

Greenwald presents a simple MCAS design in his Ph.D. dissertation [1999].
This constructs a record describing the entire operation and installs it into a
single shared location which indicates the sole in-progress MCAS. If installa-
tion is prevented by an existing MCAS operation, then the existing operation
is helped to completion and its record is then removed. Once installed, an op-
eration proceeds by executing a DCAS operation for each location specified by
the operation: One update is applied to the address concerned, while the other
updates a progress counter in the operation record. This can be seen as a de-
velopment of Turek’s continuation-based scheme [Turek et al. 1992]. The use
of a single shared installation point prevents the design from being disjoint-
access parallel. Greenwald’s subsequent technique of “two-handed emulation”
generalized this scheme, but did not address the lack of disjoint-access paral-
lelism [Greenwald 2002].

Herlihy and Moss first introduced the concept of a transactional memory
which allows shared-memory operations to be grouped into atomic transac-
tions [1993]. They originally proposed a hardware design which leverages ex-
isting multiprocessor cache-coherency mechanisms.

Shavit and Touitou introduced the idea of implementing transactional mem-
ory in software [1995], showing how a lock-free transactional memory could be
built from strong-LL/SC primitives. A notable feature is that they abort con-
tending transactions rather than recursively helping them, as is usual in lock-
free algorithms; lock-free progress is still guaranteed because aborted trans-
actions help the transaction that aborted them before retrying. Their design
supports only “static” transactions, in which the set of accessed memory loca-
tions is known in advance, the interface is therefore analogous to MCAS rather
than to subsequent STM designs.

Moir presents lock-free and wait-free STM designs with a dynamic program-
ming interface [Moir 1997]. The lock-free design divides the transactional mem-
ory into fixed-size blocks which form the unit of concurrency. A header array

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 17

contains a word-size entry for each block in the memory, consisting of a block
identifier and a version number. The initial embodiment of this scheme required
arbitrary-sized memory words and suffered the same drawbacks as the condi-
tionally wait-free MCAS on which it builds: Bookkeeping space is statically
allocated for a fixed-size heap, and the read operation is potentially expensive.
Moir’s wait-free STM extends his lock-free design with a higher-level helping
mechanism.

Herlihy et al. have designed and implemented an obstruction-free STM con-
currently with our work [Herlihy et al. 2003b]. It shares many of our goals.
Firstly, the memory is dynamically sized: Memory blocks can be created and
destroyed on-the-fly. Secondly, a practical implementation is provided which is
built using CAS. Finally, the design is disjoint-access parallel and, in one im-
plementation, transactional reads do not cause contended updates to occur in
the underlying memory system. These features serve to significantly decrease
contention in many multiprocessor applications, and are all shared with our
lock-free OSTM. We include Herlihy et al.’s design in our performance evalua-
tion in Section 8.

Recently, researchers have returned to the question of building various
forms of hardware transactional memory (HTM) [Rajwar and Goodman 2002;
Hammond et al. 2004; Ananian et al. 2005; Moore et al. 2005; McDonald et al.
2005; Rajwar et al. 2005]. While production implementations of these schemes
are not available, and so it is hard to compare their performance with software
systems, in many ways they can be seen as complementary to the development
of STM. Firstly, if HTM becomes widely deployed, then effective STM imple-
mentations are necessary for machines without the new hardware features.
Secondly, HTM designs either place limits on the size of transactions or fix pol-
icy decisions into hardware; STM provides flexibility for workloads that exceed
those limits or benefit from different policies.

4. DESIGN METHOD

Our implementations of the three APIs in Sections 2.1–2.3 have to solve a set
of common problems and, unsurprisingly, use a number of similar techniques.

The key problem is that of ensuring that a set of memory accesses appears
to occur atomically when implemented by a series of individual instructions
accessing one word at-a-time. Our fundamental approach is to deal with this
problem by decoupling the notion of a location’s physical contents in memory
from its logical contents when accessed through one of the APIs. The physical
contents can, of course, only be updated one word at-a-time. However, as we
shall show, we arrange that the logical contents of a set of locations can be
updated atomically.

For each of the APIs there is only one operation which updates the logical con-
tents of memory locations: MCAS, WSTMCommitTransaction, and OSTMCommit-
Transaction. We call these operations (collectively) the commit operations and
they are the main source of complexity in our designs.

For each of the APIs we present the design of our implementation in a series
of four steps:

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

18 • K. Fraser and T. Harris

(1) Define the format of the heap, the temporary data structures used, and how
an application goes about allocating and deallocating memory for the data
structures that will be accessed through the API.

(2) Define the notion of logical contents in terms of these structures and show
how it can be computed using a series of single-word accesses. This un-
derpins the implementation of all functions other than the commit opera-
tions. In this step we are particularly concerned with ensuring nonblocking
progress and read-parallelism so that, for instance, two threads can per-
form WSTMRead operations to the same location at the same time, without
producing conflicts in the memory hierarchy.

(3) Show how the commit operation arranges to atomically update the logical
contents of a set of locations when it executes without interference from con-
current commit operations. In this stage we are particularly concerned with
ensuring disjoint-access parallelism so that threads can commit updates to
disjoint sets of locations at the same time.

(4) Show how contention is resolved when one commit operation’s progress
is impeded by another, conflicting, commit operation. In this step we are
concerned with ensuring nonblocking progress so that the progress is not
prevented if, for example, the thread performing the existing commit oper-
ation has been preempted.

Before considering the details of the three different APIs, we discuss the
common aspects of each of these four steps in Sections 4.1–4.4, respectively.

4.1 Memory Formats

All three of our implementations introduce descriptors which: (i) set out the
“before” and “after” versions of the memory accesses that a particular commit
operation proposes to make, and (ii) provide a status field indicating how far
the commit operation has progressed. These descriptors satisfy three properties
which make it easier to manage them in a concurrent system:

Firstly, descriptors are conceptually managed by garbage collection rather
than being reused directly. This means that if a thread holds a reference to a
given descriptor, then it can be sure that it has not been reused for another
purpose.2

The second property is that, aside from its status field, a descriptor’s contents
are unchanged once it is made reachable from shared memory. This means that
if one thread t1 encounters a descriptor allocated by another thread t2, then t1
can read a series of values from it and be sure of receiving mutually consistent
results. For instance, in the case of an MCAS descriptor, t1 can read details both
about a location that t2 accessed and the value that t2 proposes to write there.

The third property is that once the outcome of a particular commit operation
has been decided, the descriptor’s status field remains constant: If a thread

2This does not mean that the designs can only be used in languages that traditionally provide
garbage collection. For instance, in our evaluation in Section 8.1.3, we use reference counting [Jones
and Lins 1996] on the descriptors to allow prompt memory reuse and affinity between descriptors
and threads.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 19

wishes to retry a commit operation, for example, if the code in Figures 2–4
loops, then each retry uses a fresh descriptor. This means that threads reading
from a descriptor and seeing that the outcome has been decided can be sure
that the status field will not subsequently change.

The combination of the first two properties is important because it allows us
to avoid many A-B-A problems in which a thread is about to perform a CAS
conditional on a location holding a value A, but then a series of operations by
other threads changes the value to B and then back to A, allowing the delayed
CAS to succeed. These two properties mean that there is effectively a one-to-
one association between descriptor references and the intent to perform a given
atomic update.

Our implementations rely on being able to distinguish pointers to descriptors
from other values. In our pseudocode in Sections 5–7 we abstract these tests
with predicates, for instance, IsMCASDesc to test if a pointer refers to an MCAS
descriptor. We discuss ways in which these predicates can be implemented in
Section 8.1.2.

4.2 Logical Contents

Each of our implementations uses descriptors to define the logical contents of
memory locations by providing a mechanism for a descriptor to own a set of
memory locations.

In general, when a commit operation relating to a location is not in progress,
then the latter is unowned and holds its logical contents directly. Otherwise,
when a location is owned, the logical contents are taken from the descriptor and
chosen from the “before” and “after” versions based on the descriptor’s status
field. This means that updating the status field has the effect of updating the
logical contents of the whole set of locations that the descriptor owns.

Each of our designs uses a different mechanism to represent the ownership
relationship between locations and transactions. This forms the key distinction
between them and we cover the details in Sections 5 (MCAS), 6 (WSTM), and 7
(OSTM).

4.3 Uncontended Commit Operations

The commit operations themselves are each structured in three stages. A first
phase acquires exclusive ownership of the locations being updated, and a second
read-check phase ensures that the locations which have been read, but not
updated, hold the values expected in them. This is followed by the decision
point at which the outcome of the commit operation is decided and made visible
to other threads through the descriptor’s status field, and then the final release
phase occurs, in which the thread relinquishes ownership of the locations being
updated.

There are four status values: UNDECIDED, READ-CHECK, SUCCESSFUL,
and FAILED. A descriptor’s status field is initially UNDECIDED at the start
of a commit operation. If there is a read-check phase then the status is set
to READ-CHECK for the relevant duration. At the decision point it is set to
SUCCESSFUL if all required ownerships were acquired and the read-checks

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

20 • K. Fraser and T. Harris

Fig. 6. Timeline for the three phases used in commit operations. The grey bar indicates when
the commit operation is executed; prior to this, the thread prepares the heap accesses that it
wants to commit. In this example location a1 has been read but not updated, and location a2 has
been updated. The first phase acquires exclusive access to the locations being updated. The second
phase checks that the locations read have not been updated by concurrent threads. The third phase
releases exclusive access after making any updates. The read-check made at point 2 ensures that
a1 is not updated between 0 and 2. The acquisition of a2 ensures exclusive access between 1 and 3.

succeeded; otherwise it is set to FAILED. These updates are always made using
CAS operations. If a thread initiating a commit operation is helped by another
thread, then both threads proceed through this series of steps, with the prop-
erties described in Section 4.1 ensuring that only one of these threads sets the
status to SUCCESSFUL or FAILED.

In order to show that an entire commit operation appears atomic, we identify
within its execution a linearization point at which it appears to operate atomi-
cally on the logical contents of the heap from the point of view of other threads.3

There are two cases to consider, depending on whether an uncontended commit
operation is successful:

Firstly, considering unsuccessful uncontended commit operations, the lin-
earization point is straightforward: Some step of the commit operation observes
a value that prevents the commit operation from succeeding, either a location
that does not hold the expected value (in MCAS) or a value that has been written
by a conflicting concurrent transaction (in WSTM and OSTM).

Secondly, considering successful uncontended commit operations, the lin-
earization point depends on whether the algorithm has a read-check phase.
Without a read-check phase the linearization point and decision point coincide:
The algorithm has acquired ownership of the locations involved, and has not
observed any values that prevent the commit from succeeding.

However, introducing a read-check phase makes the identification of a lin-
earization point more complex. As Figure 6 shows, in this case the linearization
point occurs at the start of the read-check phase, whereas the decision point (at
which the outcome is actually signaled to other threads) occurs at the end of
the read-check phase.

This choice of linearization point may appear perverse for two reasons:

(1) The linearization point comes before its decision point: How can an opera-
tion appear to commit its updates before its outcome is decided?

3In the presence of helping, the linearization point is defined with reference to the thread that
successfully performs a CAS on the status field at the decision point.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 21

The rationale for this is that holding ownership of the locations being up-
dated ensures that these remain under the control of this descriptor from
acquisition until release (1 until 3 in Figure 6). Similarly, read-checks en-
sure that any locations accessed in a read-only mode have not been updated4

between points 0 and 2. Both of these intervals include the proposed lin-
earization point, even though it precedes the decision point.

(2) If the operation occurs atomically at its linearization point, then what are
the logical contents of the locations involved before the descriptor’s status
is updated at the decision point?

Following the definition in Section 4.2, the logical contents are depen-
dent on the descriptor’s status field, thus updates are not revealed to other
threads until the decision point is reached. We reconcile this definition with
the use of a read-check phase by ensuring that concurrent readers help com-
mit operations to complete, retrying the read operation once the transaction
has reached its decision point. This means that the logical contents do not
need to be defined during the read-check phase because they are never
required.

4.4 Contended Commit Operations

We now consider contended commit operations. In order to achieve nonblock-
ing progress, we have to be careful about how to proceed when one thread t2
encounters a location that is currently owned by another thread t1. There are
three cases to consider:

The first and most straightforward case is when t1’s status is already decided,
that is, if its status is SUCCESSFUL or FAILED. In this case, all of our designs
rely on having t2 help t1 to complete its work, using the information in t1’s
descriptor to do so.

The second case is when t1’s status is not decided and the algorithm does not
include a READ-CHECK phase. In this case there are two general nonblocking
strategies for handling contention with an UNDECIDED transaction:

—The first strategy is for t2 to cause t1 to abort if it has not yet reached
its decision point; that is, if t1’s status is still UNDECIDED. This leads to an
obstruction-free progress property and the risk of livelock, unless contention
management is employed to prevent t1 retrying its operation and aborting
t2.

—The second strategy is for the threads to sort the locations that they require
and for t2 to help t1 complete its operation, even if the outcome is currently
UNDECIDED. This kind of recursive helping leads to a guarantee of lock-
free progress because each recursive step involves a successively higher ad-
dress, guaranteeing progress of the descriptor holding the highest contended
address.

4Of course, the correctness of this argument does not allow the read-checks to simply consider the
values in the locations because that would allow A-B-A problems to emerge if the locations are
updated multiple times between 0 and 2. Our WSTM and OSTM designs which use read-check
phases must check versioning information, rather than just values.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

22 • K. Fraser and T. Harris

Fig. 7. An example of a dependent cycle of two operations A and B. Each needs the other to exit
its read-check phase before it can complete its own.

The third and final case, and the most complicated, is when t1’s status is not
decided and the algorithm does include a READ-CHECK phase.

The complexity stems from the fact that, as we described in Section 4.3, a
thread must acquire access to the locations that it is updating before it enters
its READ-CHECK phase. This constraint on the order in which locations are
accessed makes it impossible to eliminate cyclic helping by sorting accesses
into a canonical order. Figure 7 shows an example: A has acquired data x for
update and B has acquired data y for update, but A must wait for B before
validating its read from y, while B in turn must wait for A before validating its
read from x.

The solution is to abort at least one of the operations to break the cycle;
however, care must be taken not to abort them all if we wish to ensure lock-
freedom rather than obstruction-freedom. For instance, with OSTM, this can be
done by imposing a total order ≺ on all operations, based on the machine address
of each transaction’s descriptor. The loop is broken by allowing a transaction
tx1 to abort a transaction tx2 if and only if: (i) both are in their read phase;
(ii) tx2 owns a location that tx1 is attempting to read; and (iii) tx1 ≺ tx2. This
guarantees that every cycle will be broken, but the “least” transaction in the
cycle will continue to execute. Of course, other orderings can be used if fairness
is a concern.

5. MULTIWORD COMPARE-AND-SWAP (MCAS)

We now introduce our practical design for implementing the MCAS API. MCAS
is defined to operate on N distinct memory locations (ai), expected values (ei),
and new values (ni). Each ai is updated to value ni if and only if each ai contains
the expected value ei before the operation. Note that we define our MCAS API to
work on memory locations containing pointers. As we described in Section 2.1,
the MCAS implementation reserves two bits in each location that it may work
on and so, in practice, these locations must hold aligned pointer values in which
at least two low-order bits are ordinarily clear on a machine with 32-bit or 64-bit
words. Sequentially, we define the MCAS operation as

atomically bool MCAS (int N, word **a[], word *e[], word *n[]) {
for (int i := 0; i < N; i++) if (*a[i] �= e[i]) return FALSE;
for (int i := 0; i < N; i++) *a[i] := n[i];
return TRUE;

}
We initially present the implementation of MCAS using an intermediate condi-
tional compare-and-swap operation. CCAS uses a second conditional memory

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 23

location to control the execution of a normal CAS operation. If the conditional
location holds the status value UNDECIDED, then the operation proceeds, oth-
erwise CCAS has no effect. The conditional location may not itself be subject to
updates by CCAS or MCAS. As with locations accessed by MCAS, two bits are
reserved in locations updated by CCAS and so the function is defined to work
on addresses holding pointers. Furthermore: (i) CCASRead operations must be
used to read from locations that may be updated by a concurrent CCAS, and (ii)
the implementation of CCAS must allow ordinary read, write, and CAS opera-
tions to be used on locations, so long as they are not being concurrently updated
by CCAS.

atomically word *CCAS (word **a, word *e, word *n, word *cond) {
word *x := *a;
if ((x = e) ∧ (*cond = 0)) *a := n;
return x;

}
atomically word *CCASRead (word **a) {

return *a;
}

This CCAS operation is a special case of the DCAS primitive that some pro-
cessors have provided [Motorola 1985] and which has often been used in re-
lated work on building MCAS. However, unlike the more general DCAS (or
even a double-compare single-swap), this restricted double-word operation has
a straightforward implementation using CAS; we present this implementation
in Section 5.4.

The implementation of MCAS is simpler than those of the two STMs because
it does not involve a read-check phase. If the arrays passed to MCAS happen to
specify the same value as ei and ni, then this is treated as an update between
two identical values.

5.1 Memory Formats

Each MCAS descriptor sets out the updates to be made (a set of (ai, ei, ni)
triples) and the current status of the operation (UNDECIDED, FAILED, or
SUCCESSFUL). In our pseudocode we define an MCAS descriptor as

1 typedef struct {
word status;

3 int N;
word **a[MAX N], *e[MAX N], *n[MAX N];

5 } mcas descriptor;

A heap location is ordinarily unowned, in which case it holds the value logically
stored there, or it refers to an MCAS (or CCAS) descriptor which is said to own
it and which describes an MCAS (or CCAS) operation that it is being attempted
on the location.

The type of a value read from a heap location can be tested using the
IsMCASDesc and IsCCASDesc predicates: If either predicate evaluates true
then the tested value is a pointer to the appropriate type of descriptor. As we
describe in Section 8.1.2, we implement these functions by using reserved bits
to distinguish the various kinds of descriptor from values being manipulated

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

24 • K. Fraser and T. Harris

Fig. 8. MCASRead operation used to read from locations which may be subject to concurrent
MCAS operations.

by the application; This is why the MCAS implementation needs two reserved
bits in the locations that it may update. However, for simplicity, in the pseu-
docode versions of our algorithms we use predicates to abstract these bitwise
operations. Many alternative implementation techniques are available: For in-
stance, some languages provide runtime type information, and in other cases
descriptors of a given kind can be placed in given regions of the process’ virtual
address space.

5.2 Logical Contents

There are four cases to consider when defining the logical contents of a location.
If the location holds an ordinary value, then that is the logical contents of the
location. If the location refers to an UNDECIDED descriptor then the descriptor’s
old value (ei) is the location’s logical contents. If the location refers to a FAILED
descriptor then, once more, the old value forms the location’s logical contents.
If the location refers to a SUCCESSFUL descriptor then the new value (ni) is
the logical contents.

The assumptions made about descriptor usage in Section 4.1 make it
straightforward to determine the logical contents of a location because a series
of words can be read from the descriptor without fear of it being deallocated or
updated (other than the status field at the decision point).

Figure 8 presents this in pseudocode. If the location does not refer to a de-
scriptor, then the contents are returned directly and this forms the linearization
point of the read operation (line 4). Otherwise, the descriptor is searched for
an entry relating to the address being read (line 7) and the new or old value
returned as appropriate so long as the descriptor still owns the location. In
this case the last check of the status field the before return forms the lin-
earization point (line 8), and the recheck of ownership (lines 9 or 11) ensures
that the status field was not checked “too late” once the descriptor had lost
ownership of the location and was consequently not determining its logical
contents.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 25

5.3 Commit Operations

Figure 9 illustrates the progress of an uncontended MCAS commit operation
attempting to swap the contents of addresses a1 and a2.

Figure 10 presents the lock-free implementation of this algorithm in pseu-
docode. The first phase (lines 12–19) attempts to acquire each location ai by
updating it from its expected value ei to a reference to the operation’s descrip-
tor. Note that the CCAS operation invoked on ai must preserve the logical con-
tents of the location: Either the CCAS fails (making no updates) or succeeds,
installing a reference to a descriptor holding ei as the old value for ai. The “con-
ditional” part of CCAS ensures that the descriptor’s status is still UNDECIDED,
meaning that ei is correctly defined as the logical contents of ai—this is needed
in case a concurrent thread helps complete the MCAS operation via a call to
mcas help at line 18.

Note that this lock-free implementation must acquire updated locations in
address order. As we explained in Section 4.4, this recursive helping eventually
results in system-wide progress because each level of recursion must be caused
by a conflict at a strictly higher memory address than the previous level. If
we do not want nonblocking progress, then we could omit the sorting step and
abort an MCAS operation if it encounters contention (branch from line 17 to
line 21 irrespective of the value seen in v).

The first phase terminates when the loop has completed each location (mean-
ing that the descriptor has been installed in each of them (line 16)), when an
unexpected nondescriptor value is seen (line 17), or when the descriptor’s status
is no longer UNDECIDED (line 16 or 17, because another thread has completed
the first phase).

The first thread to reach the decision point for a descriptor must succeed in
installing SUCCESSFUL or FAILED. If the MCAS has failed then the lineariza-
tion point of the first CCAS that failed for this descriptor forms the linearization
point of the MCAS operation: The unexpected value was the logical contents
of the location and contradicts the expected value ei for that location. Other-
wise, if the MCAS has succeeded, note that when the status field is updated
(line 23) then all of the locations ai must hold references to the descriptor, and
consequently the single status update changes the logical contents of all the
locations. This is because the update is made by the first thread to reach line
23 for the descriptor and so no threads can yet have reached lines 25–27 nor
started releasing the addresses.

The final phase then is to release the locations, replacing the references to
the descriptor with the new or old values according to whether the MCAS has
succeeded.

5.4 Building Conditional Compare-and-Swap

The MCAS implementation is completed by considering how to provide the
CCAS operation used for acquiring locations on behalf of a descriptor.

Figure 11 shows how CCAS and CCASRead can be implemented using CAS.
Figure 12 illustrates this graphically.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

26 • K. Fraser and T. Harris

Fig. 9. An uncontended commit swapping the contents of a1 and a2. Grey boxes show where CAS
and CCAS operations are to be performed at each step. While a location is owned, its logical contents
remain available through the MCAS descriptor.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 27

Fig. 10. MCAS operation.

CCAS proceeds by attempting to install a CCAS descriptor in the location
to be updated (line 8, Figure 12(a)). The descriptor is used to ensure that the
location’s logical contents match the expected value while the conditional loca-
tion is being tested. If the descriptor fails to be installed at line 8 then either:
(i) A descriptor for another CCAS was seen (line 10), which is helped to comple-
tion before retrying the proposed CCAS, or (ii) the expected value was not seen
(line 9), in which case the failed CAS at line 8 forms the linearization point of
the CCAS.

If the update location is successfully acquired, the conditional location is
tested (line 24, Figure 12(b)). Depending on the contents of this location, the
descriptor is either replaced with the new value or restored to the original value
(line 25, Figure 12(c)). CAS is used so that this update is performed exactly once,
even when the CCAS operation is helped to completion by other processes. A
CCAS operation whose descriptor is installed successfully linearizes when the
conditional location is read by the thread whose update at line 25 succeeds.

There is an interesting subtle aspect of the design and implementation of
CCAS: It does not return a Boolean indicating whether it succeeded. Our MCAS
algorithm does not need such a return value and, in fact, it is nontrivial to
extend CCAS to provide one. The reason is that one thread’s CCAS operation
may be helped to completion by another thread and so it would be necessary to

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

28 • K. Fraser and T. Harris

Fig. 11. Conditional compare-and-swap (CCAS). CCASRead is used to read from locations which
may be subject to concurrent CCAS operations.

communicate the success/failure result back to the first thread. This cannot be
done by extending the descriptor with a Boolean field for the result: There may
be multiple threads concurrently helping the same descriptor, each executing
line 25 with different result values.

CCASRead proceeds by reading the contents of the supplied address. If this
is a CCAS descriptor, then the descriptor’s operation is helped to completion
and the CCASRead retried. CCASRead returns a nondescriptor value once one
is read. Notice that CCASHelp ensures that the descriptor passed to it has been
removed from the address by the time that it returns, so CCASRead can only
loop while other threads are performing new CCAS operations on the same
address.

5.5 Discussion

There are a number of final points to consider in our design for MCAS. The
first is to observe that when committing an update to a set of N locations
and proceeding without experiencing contention, the basic operation performs
3N + 1 updates using CAS: 2N CAS operations are performed by the calls
to CCAS, N CAS operations are performed when releasing ownership, and a
further single CAS is used to update the status field. However, although this
is more than a factor of three increase over updating the locations directly,

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 29

Fig. 12. The steps involved in performing the first CCAS operation needed in Figure 9. In this
case the first location a1 is being updated from 100 to refer to MCAS descriptor tx1. The update is
conditional on the descriptor tx1 being UNDECIDED.

it is worth noting that the three batches of N updates all act on the same
locations: Unless evicted during the MCAS operation, the cache lines holding
these locations need only be fetched once.

We did develop an alternative implementation of CCAS which uses an ordi-
nary write in place of its second CAS. This involves leaving the CCAS descriptor
linked into the location being updated and recording the success or failure of
the CCAS within that descriptor. This 2N + 1 scheme is not a worthwhile im-
provement over the 3N + 1 design: It writes to more distinct cache lines and
makes it difficult to reuse CCAS descriptors in the way we describe in Sec-
tion 8.1.3. However, this direction may be useful if there are systems in which
CAS operates substantially more slowly than an ordinary write.

Moir explained how to build an obstruction-free 2N +1 MCAS which follows
the same general structure as our lock-free 3N + 1 design [Moir 2002]. His de-
sign uses CAS in place of CCAS to acquire ownership while still preserving the

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

30 • K. Fraser and T. Harris

logical contents of the location being updated. The weaker progress guarantee
makes this possible by avoiding recursive helping: If t2 encounters t1 perform-
ing an MCAS then t2 causes t1’s operation to abort if it is still UNDECIDED.
This avoids the need to CCAS because only the thread initiating an MCAS can
now update its status field to SUCCESSFUL: There is no need to check it upon
each acquisition.

Finally, notice that algorithms built over MCAS will not meet the goal of read-
parallelism from Section 1.1. This is because MCAS must still perform CAS
operations on addresses for which identical old and new values are supplied:
These CAS operations force the address’s cache line to be held in exclusive mode
on the processor executing the MCAS.

6. WORD-BASED SOFTWARE TRANSACTIONAL MEMORY

We now turn to the word-based software transactional memory (WSTM) that
we have developed. WSTM improves on the MCAS API from Section 5 in three
ways: (i) by removing the requirement that space be reserved in each location
in the heap, (ii) by presenting an interface in which the WSTM implementation
is responsible for tracking the locations accessed, rather than the caller, and
(iii) by providing read parallelism: Locations that are read (but not updated)
can usually remain cached in shared mode.

Unfortunately, the cost of this is that the WSTM implementation is substan-
tially more complex. Due to this complexity we split our presentation of WSTM
into three stages: firstly presenting the core framework without support for
resolving contention (Sections 6.1–6.3), then showing how to provide a basic
lock-based instantiation of this framework, and then showing how to provide
one that supports obstruction-free transactions (Section 6.4).

The complexity of WSTM motivates the simpler obstruction-free OSTM in
Section 7.

6.1 Memory Formats

WSTM is based on the idea of associating version numbers with locations in
the heap and using updates to these version numbers as a way of detecting
conflicts between transactions.

Figure 13 illustrates this with an example. The application heap comprises
the memory locations holding data being manipulated through the WSTM API;
in this case values 100, 200, 300, and 400 at addresses a1, a2, a101, and a102,
respectively.

A table of ownership records (orecs) hold the information that WSTM uses
to coordinate access to the application heap. The orec table has a fixed size. A
hash function is used to map addresses to orecs. One possible hash function is
to use a number of the low-order bits of the address: In this case addresses a1
and a101 map to r1 while addresses a2 and a102 map to r2.

In the basic design each orec either holds a version number or a reference
to a transaction descriptor. It holds a version number when the orec is quies-
cent, that is, when no transaction is trying to commit an update to a location
with which it is associated. For example, orec r2 is quiescent. Alternatively,

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 31

Fig. 13. The heap structure used in the lock-based WSTM. The commit operation acting on de-
scriptor tx1 is midway through an update to locations a1 and a2: 200 is being written to a1 and 100
to a2. Locations a101 and a102 are examples of other locations which happen to map to the same
ownership records, but which are not part of the update.

when an update is being committed, the orec refers to the descriptor of the
transaction involved. In the figure, transaction tx1 is committing an update to
addresses a1 and a2; it has acquired orec r1 and is about to acquire r2. Within
the transaction descriptor, we indicate memory accesses using the notation
ai:(oi, voi) → (ni, vni) to indicate that address ai is being updated from value oi

at version number voi to value ni at version number vni. For a read-only access,
oi = ni and voi = vni. For an update, vni = voi + 1.

Figure 14 shows the definition of the data types involved. A wstm transaction
comprises a status field and a list of wstm entry structures. As indicated in the
figure, each entry provides the old and new values and old and new version
numbers for a given memory access. In addition, the obstruction-free version
of WSTM includes a prev ownership field to coordinate helping between trans-
actions.

The lock-based WSTM uses orecs of type orec basic: Each orec is a simple
union holding either a version field or a reference to the owning transaction.
The obstruction-free WSTM requires orecs of type orec obsfree holding either
a version field or a pair containing an integer count alongside a reference to
the owning transaction.5 In both implementations the current usage of a union
can be determined by applying the predicate IsWSTMDesc: If it evaluates true
then the orec contains a reference to a transaction, else it contains a version
number. As before, these predicates can be implemented by a reserved bit in
the space holding the union.

A descriptor is well formed if, for each orec, it either: (i) contains at most one
entry associated with that orec, or (ii) contains multiple entries associated with
that orec, but the old version number is the same in all of them, as is the new.

5The maximum count needed is the maximum number of concurrent commit operations. In practice,
this means that orecs in the obstruction-free design are two-words wide. Both IA-32 and 32-bit
SPARC provide double-word-width CAS. On 64-bit machines without double-word-width CAS, it
is possible either to reserve sufficient high-order bits in a sparse 64-bit address space or to add a
level of indirection between orecs and temporary double-word structures.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

32 • K. Fraser and T. Harris

Fig. 14. Data structures and helper functions used in the WSTM implementation.

6.2 Logical Contents

As with MCAS, we proceed by defining the logical contents of a location in the
heap. There are three cases to consider:

LS1 : If the orec holds a version number then the logical contents comes
directly from the application heap. For instance, in Figure 13, the logical
contents of a2 is 200.

LS2 : If the orec refers to a descriptor that contains an entry for the address,
then that entry gives the logical contents (taking the new value from
the entry if the descriptor is SUCCESSFUL, and the old value if it is

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 33

UNDECIDED or FAILED). For instance, the logical contents of a1 is 100
because the descriptor status is UNDECIDED.

LS3 : If the orec refers to a descriptor that does not contain an entry for the
address then the logical contents come from the application heap. For
instance, the logical contents of a101 is 300 because descriptor tx1 does
not involve a101 even though it owns r1.

Figure 15 shows how the logical contents of a location are determined in
the WSTMRead and WSTMWrite functions. As usual, since we do not define the
logical contents during a READ-CHECK phase, we rely on threads encountering
such a descriptor to help decide its outcome (reaching states SUCCESSFUL or
FAILED and hence LS2 if an entry is found at line 15, or LS3 if not).

Both of these are built over get entry, which finds (or adds) a wstm entry
structure to the given list of entries. get entry begins by checking whether
the given address is already in the list (lines 2–3). If not then a new entry
is needed, holding the logical contents along with the version number associ-
ated with that value. Lines 5–29 determine this following the structure of cases
LS1–3. The properties from Section 4.1 are key to allowing one thread to read
another’s transaction descriptor: Recall that aside from the status field, the de-
scriptor is unchanged once made reachable in shared storage. Note that we call
force decision at line 14 to ensure that any other descriptor we encounter is in
either the FAILED or SUCCESSFUL state; this ensures that: (i) The descriptor
cannot change status while we are reading from it, and (ii) as in Section 4.4, we
do not read from a descriptor in the READ-CHECK state, as the logical contents
cannot be determined.

Lines 32–38 ensure that the descriptor will remain well formed when the new
entry is added. This is done by searching for any other entries relating to the
same orec (line 33). If there is an existing entry then the old version number is
examined (line 34). If the numbers do not match then a concurrent transaction
has committed an update to a location involved with the same orec: tx is doomed
to fail (line 35). Line 36 ensures the descriptor remains well formed even if it is
doomed to fail. Line 37 ensures that the new entry has the same new version
as existing entries, for example, if there was an earlier WSTMWrite in the same
transaction that was made to another address associated with this orec.

WSTMRead (lines 42–46) simply returns the new value for the entry for addr.
WSTMWrite (lines 47–53) updates the entry’s new value (lines 48–50). It must

ensure that the new version number indicates that the orec has been updated
(lines 51–52), both in the entry for addr and, to ensure well-formedness, in any
other entries for the same orec.

6.3 Uncontended Commit Operations

Figure 16 shows the overall structure of WSTMCommitTransaction built using
helper functions for actually acquiring and releasing ownership of orecs. The
structure follows the design method in Section 4: The orecs associated with
updated locations are acquired (lines 25–27), then a read-check phase checks
that the version numbers in orecs associated with reads are still current
(lines 28–31). If both phases succeed then the descriptor status is attempted to

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

34 • K. Fraser and T. Harris

Fig. 15. WSTMRead and WSTMWrite functions built over get entry.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 35

Fig. 16. Basic implementation of WSTMCommitTransaction using helper functions to manage
orecs.

be set to SUCCESSFUL (lines 33–34) and if successful, the updates are made
(lines 35–37). Finally, ownership of the orecs is released (lines 38–39). Notice
how the definition of LS2 means that setting the status to SUCCESSFUL
atomically updates the logical contents of all of the locations written by the
transaction.

The read-check phase uses read check orec to check that the current version
number associated with an orec matches the old version in the entries in a
transaction descriptor. As with get entry in Figure 15, if it encounters another
transaction descriptor then it ensures that its outcome is decided (line 12) before
examining it.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

36 • K. Fraser and T. Harris

Fig. 17. Basic lock-based implementation of the helper functions for WSTMCommitTransaction.

In our lock-based WSTM implementation the helper functions pre-
pare descriptor, acquire orec, and release orec are straightforward, as shown
in Figure 16.

This implementation is based on using the orecs as mutual exclusion locks,
allowing at most one transaction to own an orec at a given time. A transaction
owns an orec when the orec contains a pointer to the transaction descriptor.
To avoid deadlock, prepare descriptor (lines 1–4) ensures that the entries are
sorted, for instance, by address. Ownership acquisition involves two cases: (i)
The orec is owned by tx because its descriptor holds multiple entries for the
same orec (line 9), or (ii) the orec is not owned by tx, in which case CAS is
used to replace the current transaction’s old version number with a reference
to its descriptor (lines 11–13). Note that the loop at line 13 will spin while the
value seen in the orec is another transaction’s descriptor. Releasing an orec is
straightforward: Mutual exclusion allows us to directly update any orecs that
we acquired (lines 19–22).

Figure 18 shows graphically how an uncontended commit operation can pro-
ceed for the transaction in Figure 13.

6.4 Obstruction-Free Contended Commit Operations

Designing a nonblocking way to resolve contention in WSTM is more complex
than in MCAS. This is because in MCAS, it was possible to resolve contention
by having one thread help another to complete its work. The key problem with
WSTM is that a thread cannot be helped while it is writing updates to the
heap (lines 35–37 of Figure 16, or the steps to be performed in Figure 18(e)).

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 37

Fig. 18. An uncontended commit swapping the contents of a1 and a2, showing where updates are
to be performed at each step.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

38 • K. Fraser and T. Harris

If a thread is preempted just before one of the stores in line 37, then it can be
rescheduled at any time and perform that delayed update [Harris and Fraser
2005], overwriting updates from subsequent transactions.

Aside from the lock-based scheme from the previous section and the com-
plicated obstruction-free scheme we will present here, there are two further
solutions that we note for completeness:

(1) As described in an earlier paper [Harris and Fraser 2005], operating system
support can be used either to: (i) prevent a thread from being preempted
during its update phase, or (ii) to ensure that a thread preempted while
making its updates will remain suspended while being helped and then
be resumed at a safe point, for example, line 40 in WSTMCommitTransac-
tion with a new status value SUCCESSFUL HELPED, indicating that the
transaction has been helped (with the helper having made its updates and
released its ownership).

(2) CCAS from Section 5 can be used to make the updates in line 37, conditional
on the transaction descriptor still being SUCCESSFUL rather than SUC-
CESSFUL HELPED. Of course, using CCAS would require reserved space
in each word in the application heap, negating a major benefit of WSTM
over MCAS.

The approach we take to making an obstruction-free WSTM without using
CCAS or operating system support is to make delayed updates benign by en-
suring that an orec remains owned by some transaction while it is possible that
delayed writes may occur at locations associated with it. This means that the
logical contents of locations that may be subject to delayed updates are taken
from the owning transaction (under case LS2 of Section 6.2).

This is coordinated through the orec’s count field that we introduced in Sec-
tion 6.1: An orec’s count is increased each time a thread successfully acquires
ownership in the obstruction-free variant of acquire orec. The count is decreased
each time a thread releases ownership in the obstruction-free variant of re-
lease orec. A count of zero therefore means that no thread is in its update
phase for locations related to the orec.

The main complexity in our obstruction-free design comes from allowing
ownership to transfer directly from one descriptor to another: Notice that if a
thread committing one transaction, say t2 performing tx2, encounters an orec
that has been acquired by another transaction, say tx1, then t2 cannot simply
replace the <count, owner> pair <1, tx1> with <2, tx2>. The reason is that
addresses whose logical contents were determined from tx1 under case LS2
may change because tx2 may not have entries for these addresses.

Figure 19 shows the obstruction-free prepare descriptor function that enables
safe ownership stealing. This is based on the idea that before a transaction
tx starts acquiring any ownerships, its descriptor is extended to include rele-
vant entries from the descriptors from which it may need to steal. This means
that the logical contents of these entries’ addresses will be unchanged if steal-
ing occurs. Of course, good runtime performance depends on contention, hence
stealing, being rare.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 39

Fig. 19. Obstruction-free implementation of the prepare descriptor helper function for WSTMCom-

mitTransaction.

prepare descriptor works in two stages. Firstly, it builds up a set containing
the orecs that it will need to acquire (lines 2–8), recording the previous value
so that if stealing is necessary, it is possible to check that the ownership has
not changed subsequent to the value being stashed in prev ownership at line 6.
Secondly, it examines whether each of these orecs is currently owned (lines 11–
12). If it is owned then the owner is forced to a decision so that its descriptor
can be examined (line 14), and the descriptor is searched for entries relating
to the orec. For each such entry, the logical contents and version number are
determined (lines 16–22), and it is checked that tx will remain wellformed if
those entries are merged into it (lines 23–24), otherwise tx is doomed to fail
(lines 35–37). Assuming tx would remain well formed, tx is checked for an ex-
isting entry for the same address (line 25). If there is an existing entry then tx’s
old value and version are the same as those of the owning transaction (by the

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

40 • K. Fraser and T. Harris

Fig. 20. Obstruction-free implementation of the acquire orec and release orec helper functions for
WSTMCommitTransaction.

check in line 24). Otherwise, if there is no such entry, a new entry is added to
tx containing the logical contents of the address (lines 26–29).

Figure 20 shows how acquire orec and release orec are modified to enable
stealing. A third case is added to acquire orec: Lines 13–17 steal ownership, so
long as the contents of the orec have not changed since the victim’s entries were
merged into tx in prepare descriptor (i.e., the orec’s current owner matches the
prev ownership value recorded during prepare descriptor). Note that we reuse
the prev ownership field in acquire orec to indicate which entries led to a suc-
cessful acquisition; this is needed in release orec to determine which entries to
release. release orec itself is now split into three cases. Firstly, if the count field

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 41

will remain above 0, the count is simply decremented because other threads
may still be able to perform delayed writes to locations controlled by the orec
(lines 27–28). Secondly, if the count is to return to 0 and our descriptor tx is still
the owner, we take the old or new version number, as appropriate (lines 30–31).

The third case is that the count is to return to 0, but ownership has been
stolen from our descriptor (lines 33–36). In this case we must reperform the
updates from the current owner before releasing the orec (lines 34–36). This
ensures that the current logical contents are written back to the locations,
overwriting any delayed writes from threads that released the orec earlier. Note
that we do not need to call force decision before reading from the current owner:
The count is 1, meaning that the thread committing tx is the only one working
on that orec and so the descriptor referred by the orec must have already been
decided (otherwise there would be at least two threads working on the orec).

6.5 Discussion

The obstruction-free design from Figures 19 and 20 is clearly extremely com-
plicated. Aside from its complexity, the design has an undesirable property
under high contention: If a thread is preempted between calling acquire orec
and release orec, then the logical contents of locations associated with that
orec cannot revert to being held in the application heap until the thread is
rescheduled.

Although we do not present them here in detail, there are a number of exten-
sions to the WSTM interface which add to the range of settings in which it can
be used. In particular, we make note of a WSTMDiscardUpdate operation which
takes an address and acts as a hint that the WSTM implementation is permitted
(but not required) to discard any updates made to that address in the current
transaction. This can simplify the implementation of some data structures in
which shared “write-only” locations exist. For instance, in the red-black trees
we use in Section 8, the implementation of rotations within the trees is simpli-
fied if references to dummy nodes are used in place of NULL pointers. If a single
dummy node is used then updates to its parent pointer produce contention be-
tween logically nonconflicting transactions: In this case we can either use sep-
arate nodes or use WSTMDiscardUpdate on the dummy node’s parent pointer.

7. OBJECT-BASED SOFTWARE TRANSACTIONAL MEMORY

We now turn to the third of our APIs: OSTM. Following previous transac-
tional memory designs [Moir 1997], and concurrently with Herlihy et al.’s
work [2003b], our design organizes memory locations into objects which act
as the unit of concurrency and update. Rather than containing pointers, data
structures contain opaque references to OSTM handles which may be converted
to directly-usable machine pointers by opening them as part of a transaction.
As a transaction runs, the OSTM implementation maintains sets holding the
handles that it has accessed. When the transaction attempts to commit, these
handles are validated to ensure that they represent a consistent snapshot of
the objects’ contents, and any updates to the objects are made visible to other
threads.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

42 • K. Fraser and T. Harris

Fig. 21. Memory formats used in the OSTM implementation.

This means that OSTM offers a very different programming model than
WSTM because OSTM requires data structures to be reorganized to use han-
dles. Introducing handles allows the STM to more directly associate its coor-
dination information with parts of the data structure, rather than using hash
functions within the STM to maintain this association. This may be an impor-
tant consideration in some settings: There is no risk of false contention due to
hash collisions. Also note that while WSTM supports obstruction-free transac-
tions, OSTM guarantees lock-free progress.

7.1 Memory Formats

We begin this section by describing the memory layout when no transactions are
in progress. We then describe how the OSTM implementation tracks the objects
that a transaction opens for reading and writing and how, as with WSTM,
transaction descriptors are used during commit operations.

The current contents of an OSTM object are stored within a data block. As
with transaction descriptors, we assume for the moment that data blocks are not
reused and so a pointer uniquely identifies a particular use of a specific block
of memory. Outside of a transaction context, shared references to an OSTM
object point to a word-sized OSTM handle. Figure 21(a) shows an example

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 43

OSTM-based structure which might be used by the linked-list pseudocode de-
scribed in the Introduction.

The state of incomplete transactions is encapsulated within a per-transaction
descriptor which indicates the current status of the transaction and lists of
objects that have been opened in read-only and read-write modes. To guarantee
system progress when faced with contending transactions, the latter list must
be maintained in sorted order: Hence we call it the sorted write list. Each list
entry holds pointers to an OSTM handle and a data block. In addition, entries
in the sorted write list hold a pointer to a thread-local shadow copy of the data
block. Figure 21(b) illustrates the use of transaction descriptors and OSTM
handles by showing a transaction in the process of deleting a node from an
ordered linked list.

Ordinarily, OSTM handles refer to the current version of the object’s data via
a pointer to the current data block. However, if a transaction is in the process
of committing an update to the object, then they can refer to the descriptor for
the owning transaction. If the transaction in Figure 21(b) were attempting to
commit, then the OSTM handle for node 2 will be updated to contain a pointer
to the transaction’s descriptor. Concurrent reads can still determine the object’s
current value by searching the sorted write list and returning the appropriate
data block, depending on the transaction’s status. Once again notice that unlike
MCAS, a commit is coordinated without needing to use reserved values in the
application’s data structures, and so full word-size values can be held in OSTM
objects.

As usual, a predicate IsOSTMDesc distinguishes between references to a
data block and those to a transaction descriptor.

7.2 Logical Contents

As with MCAS and WSTM, we proceed by defining the logical contents of an ob-
ject. However, the definition is more straightforward than with WSTM because
we avoid the aliasing problems attributable to the many-to-one relationship
between orecs and heap words.

There are two cases which can be distinguished by applying the predicate
IsOSTMDesc to an OSTM handle:

LS1 : If the OSTM handle refers to a data block then that block forms the
object’s logical contents.

LS2 : If the OSTM handle refers to a transaction descriptor then we take the
descriptor’s new value for the block if it is SUCCESSFUL, and its old
value for the block if it is UNDECIDED or FAILED.

As usual, we require threads encountering a READ-CHECK descriptor to
help advance it to its decision point, at which time the objects involved have
well-defined logical contents.

7.3 Commit Operations

A transaction’s commit operation follows the three-phase structure introduced
in Section 4.3 and subsequently used with MCAS and WSTM.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

44 • K. Fraser and T. Harris

—Acquire phase. The handle of each object opened in read-write mode is
acquired in some global total order (e.g., arithmetic ordering of OSTM-handle
pointers) by using CAS to replace the data-block pointer with a pointer to the
transaction descriptor.

—Read-check phase. The handle of each object opened in read-only mode is
checked against the value recorded in the descriptor.

—Decision point. Success or failure is then indicated by updating the status
field of the transaction descriptor to indicate the final outcome.

—Release phase. Finally, upon success, each updated object has its data-
block pointer updated to reference the shadow copy. Upon failure, each updated
object has its data-block pointer restored to the old value in the transaction
descriptor.

7.4 Pseudocode

Figures 22 and 23 present pseudocode for the OSTMOpenForReading, OST-
MOpenForWriting, and OSTMCommitTransaction operations. Both OSTMOpen
operations use obj read to find the most recent data block for a given OSTM
handle; we therefore describe this helper function first. Its structure follows
the definitions from Section 7.2. In most circumstances, the logical contents are
defined by LS1: The latest data-block reference can be returned directly from
the OSTM handle (lines 6 and 17). However, if the object is currently owned by
a committing transaction then the correct reference is found by searching the
owner’s sorted write list (line 9) and selecting the old or new reference based
on the owner’s current status (line 15). As usual, LS2 is defined only for UNDE-
CIDED, FAILED, and SUCCESSFUL descriptors and so if the owner is in its read
phase, then the owner must be helped to completion or aborted, depending on
the status of the transaction that invoked its obj read and its ordering relative
to the owner (lines 10–14).

OSTMOpenForReading proceeds by checking whether the object is already
open by that transaction (lines 20–23). If not, a new list entry is created and
inserted into the read-only list (lines 24–28).

OSTMOpenForWriting proceeds by checking whether the object is already
open by that transaction; if so, the existing shadow copy is returned (lines 32–
33). If the object is present on the read-only list then the matching entry is
removed (line 35). If the object is present on neither list then a new entry is
allocated and initialized (lines 37–38). A shadow copy of the data block is made
(line 40) and the list entry inserted into the sorted write list (line 41).

OSTMCommitTransaction itself is divided into three phases. The first phase
attempts to acquire each object in the sorted write list (lines 4–9). If a more re-
cent data-block reference is found then the transaction is failed (line 7). If the
object is owned by another transaction then the obstruction is helped to comple-
tion (line 8). The second phase checks that each object in the read-only list has
not been updated subsequent to being opened (lines 11–12). If all objects were
successfully acquired or checked then the transaction will attempt to commit
successfully (lines 15–16). Finally, each acquired object is released (lines 17–18)

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 45

Fig. 22. OSTM’s OSTMOpenForReading and OSTMOpenForWriting interface calls. Algorithms for
read and sorted write lists are not given here. Instead, search, insert, and remove operations are
assumed to exist, for example, acting on linked lists of obj entry structures.

and data-block reference returned to its previous value if the transaction failed,
otherwise it is updated to its new value.

7.5 Discussion

Our lock-free OSTM was developed concurrently with an obstruction-free de-
sign by Herlihy et al. [2003b]. We include both in our experimental evaluation.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

46 • K. Fraser and T. Harris

Fig. 23. OSTM’s OSTMCommitTransaction interface calls.

The two designs are similar in their use of handles as a point of indirection
and the use of transaction descriptors to publish the updates that a transaction
proposes to make.

The key difference lies in how transactions proceed before they attempt to
commit. In our scheme, transactions operate entirely in private and so descrip-
tors are only revealed when a transaction is ready to commit. In Herlihy et al.’s
DSTM design, their equivalent to our OSTMOpen operation causes the trans-
action to acquire the object in question. This allows a wider range of contention
management strategies because contention is detected earlier than with our
scheme. Conversely, it appears difficult to make DSTM transactions lock-free
using the same technique as our design: In our scheme, threads can help one an-
other’s commit operations, but in their scheme it appears it would be necessary
for threads to help one another’s entire transactions if one thread encounters
an object opened by another.

It is interesting to note that unlike MCAS, there is no clear way to simplify
our OSTM implementation by moving from lock freedom to obstruction freedom.
This is because the data pointers in OSTM handles serve to uniquely identify a
given object-state and so lock-freedom can be obtained without need for CCAS
so as to avoid A-B-A problems when acquiring ownership.

8. EVALUATION

There is a considerable gap between the pseudocode designs presented for
MCAS, WSTM, and OSTM and a useful implementation of those algorithms
on which to base our evaluation. In this section we highlight a number of these
areas elided in the pseudocode and then assess the practical performance of

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 47

our implementations by using them to build concurrent skip lists and red-black
trees.

8.1 Implementation Concerns

We consider three particular implementation problems: supporting nested
transactions for composition (Section 8.1.1), distinguishing descriptors from
application data (Section 8.1.2), and managing the memory within which de-
scriptors are contained (Section 8.1.3).

8.1.1 Nested Transactions. In order to allow composition of STM-based op-
erations, we introduce limited support for nested transactions. This takes the
simple form of counting the number of StartTransaction invocations that are
outstanding in the current thread and only performing an actual CommitTrans-
action when the count is returned to zero. This means that it is impossible to
abort an inner transaction without aborting its enclosing transactions.

An alternative implementation would be to use separate descriptors for en-
closed transactions and, upon commit, to merge these into the descriptors for
the next transaction out. This would allow an enclosed transaction to be aborted
and retried without requiring that all enclosing transactions be aborted.

8.1.2 Descriptor Identification. To allow implementation of the IsMCAS-
Desc, IsCCASDesc, IsWSTMDesc, and IsOSTMDesc predicates from Sections 5–
7, there must be a way to distinguish pointers to descriptors from other valid
memory values.

We do this by reserving the two low-order bits in each pointer that may refer
to a descriptor. This limits CCAS and MCAS so as to only operate on pointer-
typed locations, as dynamically distinguishing a descriptor reference from an
integer with the same representation is not generally possible. However, OSTM
descriptors are always only installed in place of data-block pointers, so OSTM
trivially complies with this restriction. Similarly, WSTM descriptor-pointers
are only installed in orecs in place of version numbers which are under the
implementation’s control: An implementation could use even values to indicate
descriptor pointers and odd values to indicate version numbers.

An implementation using reserved bits would need to extend our pseudocode
to perform bit-setting and bit-masking operations when manipulating descrip-
tor references. Of course, other implementation schemes are possible, for in-
stance, using runtime type information or placing descriptors in distinct mem-
ory pools.

8.1.3 Reclamation of Dynamically-Allocated Memory. We face two sepa-
rate memory management problems: how to manage the memory within which
descriptors are held and the storage within which application data structures
are held. The latter problem has been subject to extensive recent work, such
as SMR [Michael 2002] and pass-the-buck [Herlihy et al. 2005]. Both these
schemes require mutator threads to publish their private references. Our im-
plementation avoids this small mutator overhead by a scheme similar to that

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

48 • K. Fraser and T. Harris

of Kung and Lehman [1980], in which tentative deallocations are queued until
all threads pass through a quiescent state, after which it is known that they
hold no private references to defunct objects.6

This leaves the former problem of managing descriptors: So far, we have
assumed that they are reclaimed by garbage collection and we have benefited
from this assumption by being able to avoid the A-B-A problems that would
otherwise be caused by reuse. We use Michael and Scott’s reference-counting
garbage collection method [1995], placing a count in each MCAS, WSTM, and
OSTM descriptor and updating this to count the number of threads which may
have active references to the descriptor.

We manage CCAS descriptors by embedding a fixed number of them within
each MCAS descriptor. This avoids the overheads of memory management head-
ers and reference counts that would otherwise be associated with the small
CCAS descriptors. Since the logical contents of a CCAS descriptor is computable
from the contents of the containing MCAS descriptor, our CCAS descriptors con-
tain nothing more than a back pointer to the MCAS descriptor. Apart from sav-
ing memory, the fact that a CCAS descriptor contains no data specific to a par-
ticular CCAS suboperation allows it to be safely reused by the thread to which it
was originally allocated. Since we know the number of threads participating in
our experiments, embedding a CCAS descriptor per thread within each MCAS
descriptor is sufficient to avoid any need to fall back to dynamic allocation. In
situations where the number of threads is unbounded, dynamically-allocated
descriptors can be managed by the same reference-counting mechanism as
MCAS descriptors. However, unless contention is very high, it is unlikely that
recursive helping will occur often, and so the average number of threads par-
ticipating in a single MCAS operation will not exhaust the embedded supply of
descriptors.

A similar storage method is used for the per-transaction object lists main-
tained by OSTM. Each transaction descriptor contains a pool of embedded en-
tries that are sequentially allocated as required. If a transaction opens a very
large number of objects, then further descriptors are allocated and chained
together to extend the list.

8.2 Performance Evaluation

We evaluate the performance of our implementations of the three APIs by using
them to build implementations of shared set data structures and then compar-
ing the performance of these implementations against a range of lock-based
designs. All experiments were run on a Sun Fire 15K server populated with
106 UltraSPARC III CPUs, each running at 1.2GHz. The server comprises 18
CPU/memory boards, each of which contains four CPUs and several gigabytes
of memory. The boards are plugged into a backplane that permits communica-
tion via a high-speed crossbar interconnect. An addition 34 CPUs reside on 17
smaller CPU-only boards.

6As we explain in Section 8.2, this article considers workloads with at least one CPU available for
each thread. Schemes like SMR or pass-the-buck would be necessary for prompt memory reuse in
workloads with more threads than processors.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 49

The set data type that we implement for each benchmark supports lookup,
add, and remove operations, all of which act on a set and a key. lookup returns
a Boolean indicating whether the key is a member of the set; add and remove
update membership of the set in the obvious manner.

Each experiment is specified by three adjustable parameters:

S — the search structure that is being tested;
P — the number of parallel threads accessing the set; and
K — the initial (and mean) number of key values in the set.

The benchmark program begins by creating P threads and an initial set,
implemented by S, containing the keys 0, 2, 4, . . . , 2(K − 1). All threads then
enter a tight loop which they execute for five wallclock seconds. On each it-
eration they randomly select whether to execute a lookup (p = 75%), add
(p = 12.5%), or remove (p = 12.5%) on a random key chosen uniformly from
the range 0. . . 2(K − 1). This distribution of operations is chosen because reads
dominate writes in many observed real workloads; it is also very similar to
the distributions used in previous evaluations of parallel algorithms [Mellor-
Crummey and Scott 1991b; Shalev and Shavit 2003]. Furthermore, by setting
equal probabilities for add and remove in a key space of size 2K , we ensure
that K is the mean number of keys in the set throughout the experiment.
When five seconds have elapsed, each thread records its total number of com-
pleted operations. These totals are summed to get a system-wide total. The
result of the experiment is the system-wide amount of CPU time used dur-
ing the experiment, divided by the system-wide count of completed operations.
When plotting this against P , a scalable design is indicated by a line parallel
with the x-axis (showing that adding extra threads does not make each oper-
ation require more CPU time), whereas faster designs are indicated by lines
closer to the x-axis (showing that less CPU time is required for each completed
operation).

A timed duration of five seconds is sufficient to amortize the overheads asso-
ciated with warming each CPU’s data caches, as well as starting and stopping
the benchmark loop. We confirmed that doubling the execution time to ten sec-
onds does not measurably affect the final result. We plot results showing the
median of five benchmark runs with error bars indicating the minimum and
maximum results achieved.

For brevity, our experiments only consider nonmultiprogrammed workloads
where there are sufficient CPUs for running the threads in parallel. The main
reason for this setting is that it enables a fairer comparison between our non-
blocking designs and those based on locks. If we did use more threads than
available CPUs, then when testing lock-based designs, a thread could be pre-
empted at a point where it holds locks, potentially obstructing the progress of
the thread scheduled in its place. Conversely, when testing nonblocking designs,
even obstruction freedom precludes preempted threads from obstructing oth-
ers: In all our designs, the time taken to remove or help an obstructing thread
is vastly less than that of a typical scheduling quantum. Comparisons of mul-
tiprogrammed workloads would consequently be highly dependent on how well
the lock implementation is integrated with the scheduler.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

50 • K. Fraser and T. Harris

In addition to gathering the performance figures presented here, our bench-
mark harness can run in a testing mode, logging the inputs and results, as well
as the invocation and response timestamps for each operation. Although logging
every operation incurs a significant performance penalty, this mode of opera-
tion would never be enabled in normal use. We used an offline tool to check that
these particular observations are linearizable. Although this problem is gen-
erally NP-complete [Wing and Gong 1993], a greedy algorithm which executes
a depth-first search to determine a satisfactory ordering for the invocations
works well in practice [Fraser 2003]. This was invaluable for finding imple-
mentation errors such as missing memory-ordering barriers, complementing
other techniques (such as proofs and model checking) which ensure algorith-
mic correctness.

We compare 14 different set implementations: 6 based on red-black trees and
8 on skip lists. Many of these are lock-based and, in the absence of published
designs, were created for the purpose of running these tests to provide as strong
contenders as possible; we have made their source code publicly available for
inspection and Fraser describes these contenders in more detail as part of his
Ph.D. dissertation [Fraser 2003]. Fraser also considers general binary search
trees and develops a range of nonblocking and lock-based designs.

As well as our own STM designs, we also include Herlihy’s DSTM coupled
with a simple “polite” contention manager that uses exponential backoff to deal
with conflicts [Herlihy et al. 2003b]. We include this primarily because it is a
configuration widely studied in the literature and so serves as a good common
point for comparison between different designs. As others have shown, DSTM
results are sensitive to contention management strategies and so our results
should not be seen as a thorough comparison between DSTM and other STMs.

Where needed by lock-based algorithms, we use Mellor-Crummey and Scott’s
(MCS) scalable queue-based spinlocks which avoid unnecessary cache-line
transfers between CPUs that are spinning on the same lock [Mellor-Crummey
and Scott 1991a]. Although seemingly complex, the MCS operations are highly
competitive even when the lock is not contended; an uncontended lock is ac-
quired or released with a single read-modify-write access. Furthermore, con-
tended MCS locks create far less memory traffic than standard test-and-set or
test-and-test-and-set locks.

Where multireader locks are required, we use another queue-based design by
the same authors which allows adjacently-queued readers to enter their critical
regions simultaneously when the first of the sequence reaches the head of the
queue [Mellor-Crummey and Scott 1991b].

In summary, the 14 set implementations considered here are:

(1) Skip lists with per-pointer locks. Pugh describes a highly-concurrent
skip list implementation which uses per-pointer mutual-exclusion locks [Pugh
1990]. Any update to a pointer must be protected by its lock. Deleted nodes have
their pointers updated to link backwards, thus ensuring that a search correctly
backtracks if it traverses into a defunct node.

(2) Skip lists with per-node locks. Although per-pointer locking successfully
limits the possibility of conflicts, the overhead of acquiring and releasing so

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 51

many locks is an important consideration. We therefore include Pugh’s design
using per-node locks. The operations are identical to those for per-pointer locks,
except that a node’s lock is acquired before it is initially updated and contin-
uously held until after the final update to the node. Although this slightly
increases the possibility of conflict between threads, in many cases this is more
than repaid by the reduced locking overheads.

(3) Skip lists built directly from CAS. The direct CAS design performs com-
posite update operations using a sequence of individual CAS instructions. This
means that great care is needed to ensure that updates occur atomically and
consistently. Fraser [2003] and Sundell et al. [2004] both provide pseudocode al-
gorithms for nonblocking versions of the usual skip-list operations. In outline,
list membership is defined according to presence in the lowest level. Inser-
tion or deletion is performed on each level in turn as an independent linked
list, using Harris’s marking technique [2001] to logically delete a node from
each level of the skip list. This implementation is used to show the perfor-
mance gains that are possible using an intricate nonblocking system when com-
pared with one built from MCAS, WSTM, or OSTM. Of course, the STM-based
implementations do allow composability, whereas the CAS-based design does
not.

(4) Skip lists built using MCAS. Insertions and deletions proceed by building
up batches of memory updates to make through a single MCAS invocation. As
with Pugh’s schemes, pointers within deleted nodes are reversed to aid concur-
rent searches.

(5) and (6) Skip lists built using WSTM. Skip lists can be built straight-
forwardly from single-threaded code using WSTM. We consider two variants:
the obstruction-free WSTM built using double-word-width compare-and-swap
(Section 6.4), and a version using operating system support [Harris and Fraser
2005].

(7) and (8) Skip lists built using OSTM. Skip lists can be built straightfor-
wardly using OSTM by representing each list node as a separate OSTM object.
We consider two variants: the lock-free OSTM scheme described in Section 7
and Herlihy et al.’s obstruction-free STM [2003b]. We couple the obstruction-
free STM with a “polite” contention manager which introduces exponential
backoff to deal with conflicts [Scherer III and Scott 2005].

(9) Red-black trees with serialized writers. Unlike skip lists, there has been
little practical work on parallelism in balanced trees. Our first design [Fraser
2003] builds on Hanke’s [1999] and uses lock-coupling when searching down the
tree, upgrading to a write mode when performing rebalancing (taking care to
avoid deadlock by upgrading in down-the-tree order). A global mutual-exclusion
lock is used to serialize concurrent writers.

(10) Red-black trees with concurrent writers. Our second scheme allows con-
current writing by decomposing tree operations into a series of local updates
on tree fragments [Fraser 2003]. This is similar to Hanke’s relaxed red-black
tree in that it decouples the steps of rebalancing the tree from the actual inser-
tion or deletion of a node [Hanke et al. 1997]. Although lock-based, the style of
the design is reminiscent of optimistic concurrency control because each local

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

52 • K. Fraser and T. Harris

update is preceded by checking part of the tree in private to identify the sets of
locks needed, retrying this stage if inconsistency is observed.

(11) and (12) Red-black trees built using WSTM. As with skip lists, red-black
trees can be built straightforwardly from single-threaded code using WSTM.
However, there is one caveat. In order to reduce the number of cases to consider
during rotations, and in common with standard designs, we use a black-sentinel
node in place of NULL child pointers in the leaves of the tree. We use write
discard to avoid updates to sentinel nodes introducing contention when making
needless updates to the sentinel’s parent pointer.

(13) and (14) Red-black trees built using OSTM. As with skip lists, each node
is represented by a separate OSTM object, so nodes must be opened for the
appropriate type of access as the tree is traversed. We consider implementations
using OSTM from Section 7 and Herlihy et al.’s obstruction-free STM [2003b]
coupled with the “polite” contention manager. As before, we use write discard
on the sentinel node.7

We now consider our performance results under a series of scenarios. Sec-
tion 8.2.1 looks at scalability under low contention. This shows the performance
of our nonblocking systems when running on machines with few CPUs, or when
they are being used carefully to reduce the likelihood that concurrent opera-
tions conflict. Our second set of results, in Section 8.2.2, considers performance
under increasing levels of contention.

8.2.1 Scalability Under Low Contention. The first set of results measures
performance when contention between concurrent operations is very low. Each
experiment runs with a mean of 219 keys in the set, which is sufficient to ensure
that parallel writers are extremely unlikely to update overlapping sections of
the data structure. A well-designed algorithm which provides disjoint-access
parallelism will avoid introducing contention between these logically noncon-
flicting operations.

Note that all graphs in this section show a significant drop in performance
when parallelism increases beyond five to ten threads. This is due to the
architecture of the underlying hardware: Small benchmark runs execute
within one or two CPU “quads”, each of which has its own on-board memory.
Most or all memory reads in small runs are therefore serviced from local
memory, which is considerably faster than transferring cache lines across the
switched interquad backplane.

Figure 24 shows the performance of each skip-list implementation. As ex-
pected, STM-based implementations perform poorly compared with other lock-
free schemes; this demonstrates that there are significant overheads associated
with the read and write operations (in WSTM), with maintaining the lists of
opened objects and constructing shadow copies of updated objects (in OSTM), or

7Herlihy et al.’s DSTM cannot readily support write discard because only one thread may have
a DSTM object open for writing at-a-time. Their early release scheme applies only to read-only
accesses. To avoid contention on the sentinel node, we augmented their STM with a mechanism
for registering objects with nontransactional semantics: Such objects can be opened for writing by
multiple threads, but the shadow copies remain thread private and are discarded on commit or
abort.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 53

Fig. 24. Graph (a) shows the performance of large skip lists (K = 219) as parallelism is increased
to 90 threads. Graph (b) is a “zoom” of (a), showing the performance of up to five threads. As with
all our graphs, lines marked with boxes represent lock-based implementations, circles are OSTMs,
triangles are WSTMs, and crosses are implementations built from MCAS or directly from CAS. The
ordering in the key reflects that of the lines at the right-hand side of the graph: Lower lines are
achieved by faster implementations.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

54 • K. Fraser and T. Harris

with commit-time checks that verify whether the values read by an optimistic
algorithm represent a consistent snapshot.

Lock-free CAS-based and MCAS-based designs perform extremely well be-
cause, unlike the STMs, they add only minor overheads on each memory ac-
cess. Interestingly, under low contention, the MCAS-based design has almost
identical performance to the much more complicated CAS-based design, thus
indicating that the extra complexity of directly using hardware primitives is
not always worthwhile. Both schemes surpass the two lock-based designs, of
which the finer-grained scheme is slower because of the costs associated with
traversing and manipulating a larger number of locks.

Figure 25, presenting results for red-black trees, gives the clearest indication
of the kinds of setting where our different techniques are effective. Neither of
the lock-based schemes scales effectively with increasing parallelism; indeed,
both OSTM- and WSTM-based trees outperform the schemes using locking
with only two concurrent threads. Of course, the difficulty of designing effective
lock-based trees motivated the development of skip lists, so it is interesting to
observe that a straightforward tree implementation, layered over STM, does
scale well and often performs better than a skip list implemented over the
same STM.

Surprisingly, the lock-based scheme that permits parallel updates performs
hardly any better than the much simpler and more conservative design with
serialised updates. This is because the main performance bottleneck in both
schemes is contention when accessing the multi-reader lock at the root of the
tree. Although multiple readers can enter their critical region simultaneously,
there is significant contention for updating the shared synchronisation fields
within the lock itself. Put simply, using a more permissive type of lock (i.e.,
multi-reader) does not improve performance because the bottleneck is caused
by cache-line contention rather than lock contention.

In contrast, the STM schemes scale very well because transactional reads do
not cause potentially-conflicting memory writes in the underlying synchroni-
sation primitives. We suspect that, under low contention, OSTM is faster then
Herlihy’s design due to better cache locality. Herlihy’s STM requires a double
indirection when opening a transactional object: thus three cache lines are ac-
cessed when reading a field within a previously-unopened object. In contrast
our scheme accesses two cache lines; more levels of the tree fit inside each CPU’s
caches and, when traversing levels that do not fit in the cache, 50% fewer lines
must be fetched from main memory.

8.2.2 Performance Under Varying Contention. The second set of results
shows how performance is affected by increasing contention. This is a particular
concern for nonblocking algorithms, which usually assume that conflicts are
rare. This assumption allows the use of optimistic techniques for concurrency
control; when conflicts do occur they are handled using a fairly heavyweight
mechanism such as recursive helping or interaction with the thread scheduler.
Contrast this with using locks, where an operation assumes the worst and
“announces” its intent before accessing shared data: That approach introduces
unnecessary overheads when contention is low because fine-grained locking

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 55

Fig. 25. Graph (a) shows the performance of large red-black trees (K = 219) as parallelism is
increased to 90 threads. Graph (b) is a “zoom” of (a), showing the performance of up to five threads.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

56 • K. Fraser and T. Harris

Fig. 26. Effect of contention on concurrent skip lists (P = 90).

requires expensive juggling of acquire and release invocations. The results here
allow us to investigate whether these overheads pay off as contention increases.

All experiments are executed with 90 parallel threads (P = 90). Contention
is varied by adjusting the benchmark parameter K and hence the mean size
of the data structure under test. Although not a general-purpose contention
metric, this is sufficient to allow us to compare the performance of a single data
structure implemented over different concurrency-control mechanisms.

Figure 26 shows the effect of contention on each of the skip-list implemen-
tations. It indicates that there is sometimes a price for using MCAS, rather
than programming directly using CAS. The comparatively poor performance of
MCAS when contention is high is because many operations must retry several
times before succeeding: It is likely that the data structure will have been mod-
ified before an update operation attempts to make its modifications globally
visible. In contrast, the carefully implemented CAS-based scheme attempts
to do the minimal work necessary to update its “view” when it observes a
change to the data structure. This effort pays off under very high contention;
in these conditions the CAS-based design performs as well as per-pointer
locks. Of course, we could postulate a hybrid implementation in which the pro-
grammer strives to perform updates using multiple smaller MCAS operations.
This could provide an attractive middle ground between the complexity of us-
ing CAS and the “one-fails-then-all-fail” contention problems of large MCAS
operations.

These results also demonstrate a particular weakness of locks: The optimal
granularity of locking depends on the level of contention. Here, per-pointer
locks are the best choice under very high contention, but introduce unnecessary
overheads compared with per-node locks under moderate to low contention.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 57

Fig. 27. Effect of contention on concurrent red-black trees (P = 90).

Lock-free techniques avoid the need to make this particular tradeoff. Finally,
note that the performance of each implementation drops slightly as the mean
set size becomes very large. This is because the time taken to search the skip
list begins to dominate the execution time.

Figure 27 presents results for red-black trees, and shows that locks are not
always the best choice when contention is high. Both lock-based schemes suffer
contention for cache lines at the root of the tree, where most operations must
acquire the multireader lock. For this workload, the OSTM and WSTM schemes
using suspension perform well in all cases, although conflicts still significantly
affect performance.

Herlihy’s STM performs comparatively poorly under high contention when
using an initial contention-handling mechanism that introduces exponential
backoff to “politely” deal with conflicts. Other schemes may work better [Scherer
III and Scott 2005] and, since DSTM is obstruction-free, would be expected to
influence its performance more than OSTMs. Once again, the results here are
intended primarily to compare our designs with lock-based alternatives and we
include DSTM in this sample configuration because it has been widely studied
in the literature. Marathe et al. perform further comparisons of DSTM and
OSTM [2004].

Note that when using this basic contention manager, the execution times of
individual operations are very variable, which explains the performance “spike”
at the left-hand side of the graph. This low and variable performance is caused
by sensitivity to the choice of backoff rate: Our implementation uses the same
values as the original authors, but these were chosen for a Java-based imple-
mentation of red-black trees and they do not discuss how to choose a more
appropriate set of values for different circumstances.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

58 • K. Fraser and T. Harris

9. CONCLUSION

We have presented three APIs for building nonblocking concurrency-safe soft-
ware and demonstrated that these can match or surpass the performance of
state-of-the-art lock-based alternatives. Thus, not only do nonblocking systems
have many functional advantages compared with locks (such as freedom from
deadlock and unfortunate scheduler interactions), but they can also be imple-
mented on modern multiprocessor systems without the runtime overheads that
have traditionally been feared.

Furthermore, APIs such as STM have benefits in ease of use compared with
traditional direct use of mutual-exclusion locks. An STM avoids the need to
consider issues such as granularity of locking, the order in which locks should
be acquired to avoid deadlock, and composability of different data structures
or subsystems. This ease of use is in contrast to traditional implementations
of nonblocking data structures based directly on hardware primitives such as
CAS.

In conclusion, using the APIs that we have presented in this article, it is now
practical to deploy lock-free techniques, with all their attendant advantages,
in situations where lock-based synchronization would traditionally be the only
viable option.

9.1 Future Work

The work discussed in this article leads to many directions for future explo-
ration. As we briefly discussed in Section 2.4, we have already made progress
with some of these, most notably integrating transactional memories into man-
aged runtime environments and investigating the programming language ab-
stractions that can be provided as a consequence [Harris and Fraser 2003;
Harris 2004; Welc et al. 2004; Ringenburg and Grossman 2005; Harris et al.
2005].

Another direction relates to the direct use of our APIs by expert program-
mers. In particular, in the case of OSTM, it is necessary for the programmer to
be careful to ensure that the APIs do not write to objects that they have only
opened for reading. We do not currently check that programmers follow this
rule, but we could imagine tools to help with this. For instance, in a debugging
mode, OSTM could ensure that only the data blocks of objects that a transac-
tion has opened for writing are held on pages with write-permission enabled.
This could be achieved by using a fresh page or pages for the data blocks of
each transaction; this space cost, along with the time needed for system calls
to modify page permissions, means that it is not suitable for production use.

A further avenue of exploration is whether there are new primitives that
future processors might provide to improve the performance of nonblocking al-
gorithms such as our MCAS, WSTM, and OSTM implementations. It is clear
that mutliword atomic updates, such as DCAS, can simplifiy the complex al-
gorithms we have designed; it is less clear that such primitives can actually
enhance performance.

A final direction is the integration of software transactional memory with
hardware support of the kind originally conceived by Herlihy and Moss [1993]

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 59

and recently subject to vigourous research [Rajwar and Goodman 2002;
Hammond et al. 2004; Ananian et al. 2005; Moore et al. 2005; McDonald et al.
2005]. These hardware schemes are attractive for short-running transactions
in which all of the accesses can be contained in whatever structures future
hardware may provide. Conversely, software-based schemes are attractive for
longer-running transactions when these limits are exceeded or when blocking
operations are to be provided.

ACKNOWLEDGMENTS

We thank the anonymous referees for their particularly thorough reading of
earlier drafts of this article.

SOURCE CODE

Source code for the MCAS, WSTM, and OSTM implementations described in
this article is available at http://www.cl.cam.ac.uk/netos/lock-free. Also
included are the benchmarking implementations of skip lists and red-black
trees, and the offline linearizability checker described in Section 8.2.

REFERENCES

ANANIAN, C. S., ASANOVIĆ, K., KUSZMAUL, B. C., LEISERSON, C. E., AND LIE, S. 2005. Unbounded
transactional memory. In Proceedings of the 11th International Symposium on High-Performance
Computer Architecture (HPCA). (San Franscisco, CA). 316–327.

ANDERSON, J. H. AND MOIR, M. 1995. Universal constructions for multi-object operations. In Pro-
ceedings of the 14th Annual ACM Symposium on Principles of Distributed Computing (PODC).
184–193.

ANDERSON, J. H., RAMAMURTHY, S., AND JAIN, R. 1997. Implementing wait-free objects on priority-
based systems. In Proceedings of the 16th Annual ACM Symposium on Principles of Distributed
Computing (PODC). 229–238.

BARNES, G. 1993. A method for implementing lock-free data structures. In Proceedings of the 5th
Annual ACM Symposium on Parallel Algorithms and Architectures. 261–270.

DICE, D., SHALEV, O., AND SHAVIT, N. 2006. Transactional locking II. In Proceedings of the 20th
International Symposium on Distributed Computing (DISC).

FICH, F., LUCHANGCO, V., MOIR, M., AND SHAVIT, N. 2005. Obstruction-Free algorithms can be practi-
cally wait-free. In Distributed Algorithms, P. Fraigniaud, Ed. Lecture Notes in Computer Science,
vol. 3724. Springer Verlag, Berlin. 78–92.

FRASER, K. 2003. Practical lock freedom. Ph.D. thesis, Computer Laboratory, University of Cam-
bridge. Also available as Tech. Rep. UCAM-CL-TR-639, Cambridge University.

GREENWALD, M. 1999. Non-Blocking synchronization and system design. Ph.D. thesis, Stanford
University. Also available as Technical Rep. STAN-CS-TR-99-1624, Stanford University, Com-
puter Science Department.

GREENWALD, M. 2002. Two-Handed emulation: How to build non-blocking implementations of
complex data structures using DCAS. In Proceedings of the 21st Annual ACM Symposium on
Principles of Distributed Computing (PODC). 260–269.

HAMMOND, L., CARLSTROM, B. D., WONG, V., HERTZBERG, B., CHEN, M., KOZYRAKIS, C., AND OLUKOTUN,
K. 2004. Programming with transactional coherence and consistency (TCC). In Proceedings
of the 11th International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM Press, New York. 1–13.

HANKE, S. 1999. The performance of concurrent red-black tree algorithms. In Proceedings of the
3rd Workshop on Algorithm Engineering. Lecture Notes in Computer Science, vol. 1668. Springer
Verlag, Berlin. 287–301.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

60 • K. Fraser and T. Harris

HANKE, S., OTTMANN, T., AND SOISALON-SOININEN, E. 1997. Relaxed balanced red-black trees. In Pro-
ceedings of the 3rd Italian Conference on Algorithms and Complexity. Lecture Notes in Computer
Science, vol. 1203. Springer Verlag, Berlin. 193–204.

HARRIS, T. 2001. A pragmatic implementation of non-blocking linked lists. In Proceedings of the
15th International Symposium on Distributed Computing (DISC). Springer Verlag, Berlin. 300–
314.

HARRIS, T. 2004. Exceptions and side-effects in atomic blocks. In Proceedings of the PODC Work-
shop on Synchronization in Java Programs. 46–53. Proceedings published as Memorial Univer-
sity of Newfoundland CS Tech. Rep. 2004-01.

HARRIS, T. AND FRASER, K. 2003. Language support for lightweight transactions. In Proceedings
of the 18th Annual ACM-SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA). 388–402.

HARRIS, T. AND FRASER, K. 2005. Revocable locks for non-blocking programming. In Proceedings
of the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). ACM Press, New York. USA, 72–82.

HARRIS, T., MARLOW, S., PEYTON-JONES, S., AND HERLIHY, M. 2005. Composable memory transactions.
In Proceedings of the 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). ACM Press, New York. 48–60.

HELLER, S., HERLIHY, M., LUCHANGCO, V., MOIR, M., SCHERER, B., AND SHAVIT, N. 2005. A lazy con-
current list-based set algorithm. In 9th International Conference on Principles of Distributed
Systems (OPODIS).

HENNESSY, J. L. AND PATTERSON, D. A. 2003. Computer Architecture—A Quantitative Approach,
3rd ed. Morgan Kaufmann, San Francisco, CA.

HERLIHY, M. 1993. A methodology for implementing highly concurrent data objects. ACM Trans.
Program. Lang. Syst. 15, 5 (Nov.), 745–770.

HERLIHY, M. 2005. SXM1.1: Software transactional memory package for C#. Tech. Rep., Brown
University and Microsoft Research. May.

HERLIHY, M., LUCHANGCO, V., MARTIN, P., AND MOIR, M. 2005. Nonblocking memory manage-
ment support for dynamic-sized data structures. ACM Trans. Comput. Syst. 23, 2, 146–
196.

HERLIHY, M., LUCHANGCO, V., AND MOIR, M. 2003. Obstruction-Free synchronization: Double-
Ended queues as an example. In Proceedings of the 23rd IEEE International Con-
ference on Distributed Computing Systems (ICDCS). IEEE, Los Alamitos, CA. 522–
529.

HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER, W. 2003b. Software transactional memory for
dynamic-sized data structures. In Proceedings of the 22nd Annual ACM Symposium on Principles
of Distributed Computing (PODC). 92–101.

HERLIHY, M. AND MOSS, J. E. B. 1993. Transactional memory: Architectural support for lock-
free data structures. In Proceedings of the 20th Annual International Symposium on Computer
Architecture (ISCA). ACM Press, New York. 289–301.

HERLIHY, M. AND WING, J. M. 1990. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12, 3 (Jul.), 463–492.

HOARE, C. A. R. 1972. Towards a theory of parallel programming. In Operating Systems Tech-
niques. A.P.I.C. Studies in Data Processing, vol. 9. Academic Press, 61–71.

ISRAELI, A. AND RAPPOPORT, L. 1994. Disjoint-Access-Parallel implementations of strong shared
memory primitives. In Proceedings of the 13th Annual ACM Symposium on Principles of Dis-
tributed Computing (PODC). 151–160.

JAYANTI, P. AND PETROVIC, S. 2003. Efficient and practical constructions of LL/SC variables. In
Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing. ACM Press,
285–294.

JONES, R. AND LINS, R. 1996. Garbage Collection: Algorithms for Automatic Dynamic Memory
Management. John Wiley and Sons.

KUNG, H. T. AND LEHMAN, P. L. 1980. Concurrent manipulation of binary search trees. ACM Trans.
Database Syst. 5, 3 (Sept.), 354–382.

KUNG, H. T. AND ROBINSON, J. T. 1981. On optimistic methods for concurrency control. ACM Trans.
Database Syst. 6, 2, 213–226.

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

Concurrent Programming Without Locks • 61

MARATHE, V. J., SCHERER III, W. N., AND SCOTT, M. L. 2004. Design tradeoffs in modern software
transactional memory systems. In Proceedings of the 7th Workshop on Languages, Compilers,
and Run-Time Support for Scalable Systems.

MCDONALD, A., CHUNG, J., CHAFI, H., CAO MINH, C., CARLSTROM, B. D., HAMMOND, L., KOZYRAKIS, C.,
AND OLUKOTUN, K. 2005. Characterization of TCC on chip-multiprocessors. In Proceedings of
the 14th International Conference on Parallel Architectures and Compilation Techniques.

MELLOR-CRUMMEY, J. AND SCOTT, M. 1991a. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comput. Syst. 9, 1, 21–65.

MELLOR-CRUMMEY, J. AND SCOTT, M. 1991b. Scalable reader-writer synchronization for shared-
memory multiprocessors. In Proceedings of the 3rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 106–113.

MICHAEL, M. M. 2002. Safe memory reclamation for dynamic lock-free objects using atomic reads
and writes. In Proceedings of the 21st Annual ACM Symposium on Principles of Distributed
Computing (PODC).

MICHAEL, M. M. AND SCOTT, M. 1995. Correction of a memory management method for lock-
free data structures. Tech. Rep. TR599, University of Rochester, Computer Science Department.
December.

MOIR, M. 1997. Transparent support for wait-free transactions. In Distributed Algorithms, 11th
International Workshop. Lecture Notes in Computer Science, vol. 1320. Springer Verlag, Berlin.
305–319.

MOIR, M. 2002. Personal communication.
MOORE, K. E., HILL, M. D., AND WOOD, D. A. 2005. Thread-Level transactional memory. Tech. Rep.:

CS-TR-2005-1524, Deptartment of Computer Sciences, University of Wisconsin, Motorola Inc.,
Phoenix, AZ. 1–11.

MOTOROLA. 1985. MC68020 32-Bit Microprocessor User’s Manual.
PUGH, W. 1990. Concurrent maintenance of skip lists. Tech. Rep. CS-TR-2222, Department of

Computer Science, University of Maryland. June.
RAJWAR, R. AND GOODMAN, J. R. 2002. Transactional lock-free execution of lock-based programs.

ACM SIGPLAN Not. 37, 10 (Oct.), 5–17.
RAJWAR, R., HERLIHY, M., AND LAI, K. 2005. Virtualizing transactional memory. In Proceedings of

the 32nd Annual International Symposium on Computer Architecture. IEEE Computer Society,
Los Alamotos, CA. 494–505.

RIEGEL, T., FELBER, P., AND FETZER, C. 2006. A lazy snapshot algorithm with eager validation. In
Proceedings of the 20th International Symposium on Distributed Computing (DISC).

RINGENBURG, M. F. AND GROSSMAN, D. 2005. AtomCaml: First-Class atomicity via rollback. In
Proceedings of the 10th ACM SIGPLAN International Conference on Functional Programming
(ICFP). ACM Press, New York. 92–104.

SCHERER III, W. N. AND SCOTT, M. L. 2005. Advanced contention management for dynamic software
transactional memory. In Proceedings of the 24th Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing. ACM Press, New York. 240–248.

SHALEV, O. AND SHAVIT, N. 2003. Split-ordered lists: Lock-Free extensible hash tables. In Pro-
ceedings of the 22nd Annual ACM Symposium on Principles of Distributed Computing (PODC).
102–111.

SHAVIT, N. AND TOUITOU, D. 1995. Software transactional memory. In Proceedings of the 14th An-
nual ACM Symposium on Principles of Distributed Computing (PODC). 204–213.

SUNDELL, H. AND TSIGAS, P. 2004. Scalable and lock-free concurrent dictionaries. In Proceedings
of the ACM Symposium on Applied Computing. ACM Press, New York, NY. 1438–1445.

TUREK, J., SHASHA, D., AND PRAKASH, S. 1992. Locking without blocking: Making lock-based con-
current data structure algorithms nonblocking. In Proceedings of the 11th ACM Symposium on
Principles of Database Systems. 212–222.

WELC, A., JAGANNATHAN, S., AND HOSKING, T. 2004. Transactional monitors for concurrent objects.
In Proceedings of the European Conference on Object-Oriented Programming (ECOOP). 519–542.

WING, J. M. AND GONG, C. 1993. Testing and verifying concurrent objects. J. Parallel Distrib.
Comput. 17, 1 (Jan.), 164–182.

Received July 2004; revised January 2007; accepted January 2007

ACM Transactions on Computer Systems, Vol. 25, No. 2, Article 5, Publication date: May 2007.

