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Abstract
Programmers writing distributed systems are poorly served
by current optimization technologies. Although there are
well-known ways to improve performance – batching re-
quests, caching results, speculation and so on – these must be
applied manually, adding to the burden already faced when
writing distributed systems. We argue that this kind of trans-
formation should be done automatically by a compiler or
runtime system. To do this we propose that components’ in-
terfaces provide high-level summaries of the semantics of
their operations. These are used to identify when operations
can be batched together, when the results of one operation
can be cached on a client, when cached results must be in-
validated, and when operations can be issued speculatively.
We present a prototype which we use to improve the perfor-
mance a multi-tier web application that accesses a remote
database and business tool that queries an LDAP server.

1. Introduction
Programmers face a raft of challenges that have emerged
over the last decade: (i) processor road-maps show increas-
ing degrees ofparallelismrather than increased clock rates:
software must use this parallelism if its performance is to
increase on newer hardware, (ii ) distribution across the in-
ternet means that applications are often structured as inter-
acting components raising problems of independent failures,
high-latency wide-area communication and, in turn leading
to (iii ) securitychallenges when interacting with untrusted
parties or across untrusted network links. We are investigat-
ing how languages and software stacks should be structured
to tackle these challenges.

This paper focuses on one part of this problem: the chal-
lenge of optimizing RPC-like interactions between compo-
nents in distributed systems, for instance optimizing a se-
ries of calls on a set of database stored procedures, or the
sequence of messages exchanged between an application’s
front end on one machine and its back end on another, or a
series of XML-RPC requests from a JavaScript client to a
Web Service. Our goal, in each case, is to reduce the number
of communication delays incurred.

For the majority of the paper we consider a very simple
system model in which a single client interacts with a com-

ponent by making invocations and receiving responses on a
typed interface that the component implements:
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In this model, when we talk about a ‘component’ we mean
any part of a system whose internal state is encapsulated by
an interface – this means that we can analyze and transform
the stream of invocations and responses on the interface
without the encapsulated state being modified ‘behind our
back’. As we illustrate with some of our examples, this can
include suitably structured modules within a single process,
as well as our motivating examples from distributed systems.

The role of the optimizer in this model is to reduce the
number of round trips that must actually be made to the
component. We assume that the remote component and its
interface are written by expert programmers, but that the
client code may be written by less experienced program-
mers – for example the client may be a quick web ‘mashup’
or prototype business tool. The optimizations we use are
well known: client-sidecachingof the results of previous re-
quests,batchingof multiple requests into a single message,
andspeculatingabout future requests so that they can be per-
formed before their results are needed.

The novelty is that we propose automating these tech-
niques rather than requiring programmers to use them by
hand. Of course, a suitably skilled programmer can out-
perform our system: the value of our approach is that it de-
livers benefits without requiring such expertise; if we can do
this well enough then we can make it easier for more pro-
grammers to write distributed systems that perform well.

Our approach is for a component’s interface to include
what we call anabstract implementation(AI) containing a
simple reference implementation of the interface’s opera-
tions. These AIs are used to identify optimizations to make
to client code: if the reference implementations commute
then so do the underlying operations on the component, and
if the reference implementation is side-effect free in a given
context then the underlying operation can be ommitted or
issued speculatively.

AIs are written in a simple imperative language that is
designed to make it easy to answer this kind of question
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at compile-time and at run-time, and also to make it clear
to a component’s author what kinds of transformation will
be made. We give some examples of AIs in Section 3. Op-
timizations can be deployed incrementally: only a compo-
nent’s external interface needs an AI, and no transformations
are made on un-annotated interfaces.

In Section 4 we show how to use AIs at compile time to
derive data-flow equations to use in static optimizations like
common sub-expression elimination and dead code elimina-
tion, and also how to use AIs dynamically to identify opti-
mizations that cannot be made at compile-time. We conclude
by demonstrating the benefit of these runtime transforma-
tions with two case studies (Section 5) where we have accel-
erated access to stored procedures by a web application, and
to an LDAP directory by an business tool.

2. Design space & related work
Optimization goal. Our transformations aim to makefewer
calls on a component. In contrast, many domain-specific op-
timization techniques aim to make individual callsfaster.
These complementary approaches reflect the different bottle-
necks systems may have: we want to reduce network round-
trips caused by RPCs, while others want to reduce computa-
tion within each call. For example, Puet al. use specializa-
tion and partial evaluation to accelerate system calls [7],and
compilers like Broadway [5] and active library systems [9]
select between different implementations of general oper-
ations – e.g. using the numerical examples that motivate
Broadway’s design, selecting based on whether or not a ma-
trix passed to a method is in some known special form.

Generality. We aim to support a broad class of compile-
time and run-time transformations, driven by the same se-
mantic descriptions. Some distributed computing frame-
works provide support for very specific optimizing trans-
formations. The C-JDBC [2] database access middleware
can cache SQL query results and invalidate the cache as
updates are made. The .NET FrameworkCacheDuration

property allows a result to be cachedon the serverfor a fixed
duration. This can avoid re-computing costly operations but
does not reduce round-trips from the client. Extensible com-
pilers, such as MAGIK [3], can support general purpose
transformations. However, they do so by using additional
compiler modules to define the new transformations. Such a
framework could be used as a foundation on which to build
our system, but using it directly requires programmers to be
aware of the specific compiler’s intermediate code format,
working at a much lower level than our AIs.

Semantics preservation. A contentious view we take is
that a component’s AIcanchange the behavior of programs
that use it – e.g. the abstract implementation may indicate
that two operations commute when in fact they do not. If this
happens then we argue that the component is incorrect: the
AI forms part of the interface specificationto the component
albeit one that is not yet amenable to static checking. There

is a complex trade-off here and our decision is experimen-
tal. Broadway also allows annotations to change the seman-
tics of a program [5] and we agree with the argument that
representing semantic information on an interface enables
researchers to try to verify it, whereas just documenting it
in comments encourages client code to use ad-hoc caching
which can be a source of subtle errors. Other systems guar-
antee semantics preservation but the techniques do not seem
to scale beyond small cases [8], or deal with non-memory
side effects [4].

3. Abstract implementations
Consider the following code using a library-implemented
extensible array:

for (int i = 0; i < v.Count(); i ++) {

if (v.GetAt(i) == a) {

...

} else if (v.GetAt(i) == b) {

...

} }

There are several opportunities for optimization: the firstcall
to GetAt makes the second call redundant, and the call to
Count would be better placed outside of the loop. Assuming
for now that these are the only two operations on the array’s
interface, these transformations could be enabled by writing:

[FactType("ITEM(int) -> Object")]

[FactType("NUMITEMS() -> int")]

public interface ExtensibleArray {

[Effect("NUMITEMS() = return")]

public int Count();

[Effect("ITEM(idx) = return")]

public Object GetAt(int idx);

...

}

This example lets us introduce the basic concepts.FactType

definitions declare the type of information that the abstract
implementation will be working on. We call this information
theabstract stateand it comprises a set offactsthat the AI
reads and writes as operations are called on the component.
As an example, Figure 1 shows the abstract state just before
the second call toGetAt(0): everything the facts indicate is
true (10 is in the list, there are 3 items in total), but the facts
omit some information (whether or not 20 is in the list), and
abstract away details of the particular implementation (that
the array is built out of chunks holding 2 elements).

Effect statements provide the AIs themselves, describ-
ing how operations change the abstract state:GetAt’s AI
ITEM(idx)=return allows the second call toGetAt(0) to
return the value10 recorded in the abstract state by matching
it with the factITEM(0)=10 defined by the first call.

A more complex example comes from our earlier work
on optimizing software transactional memory (STM) [6]. In
outline, the STM library exposes operationsOpenForRead
andOpenForUpdate that are called before the first time an
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Figure 1: Abstract and concrete states for an extensible
array interface and a list-based implementation of it.

object is read or updated within a transaction. The compiler
we used insertsOpen* calls before every data access and
then removes those that it can prove are redundant (i.e. where
the object is already open).

Originally we did this by extending the compiler’s inter-
mediate code and analyses to handle theseOpen* operations.
That was several weeks of effort for people already experi-
enced in the compiler we were using. We can accomplish the
same effect in 7 lines with an AI for the STM interface:

[FactType("OPEN_FOR_READ(Object) -> bool")]

[FactType("OPEN_FOR_UPDATE(Object) -> bool")]

[DefaultEffect("OPEN_FOR_READ(*) = ?;

OPEN_FOR_UPDATE(*) = ?")]

public interface STM {

[Effect("OPEN_FOR_READ(obj) = true")]

public void OpenForRead(Object obj);

[Effect("OPEN_FOR_READ(obj) = true;

OPEN_FOR_UPDATE(obj) = true")]

public void OpenForUpdate(Object obj);

...

}

TheOPEN FOR * facts show which objects are already open.
These AIs allow the second and subsequent calls to open a
given object to be removed: after one call, any subsequent
ones have no side-effect on the abstract state and can there-
fore be removed (because theOPEN FOR * fact has already
been defined by the first call). TheDefaultEffect says that
operations without their ownEffect will leave objects in an
unknown state – e.g. management operations to start/commit
transactions.

4. Transformations
Informally, we treat the AI as a reference implementation: if
transformations can be made on operations’ abstract imple-
mentations then they can be made on the operations them-
selves. We can define this more formally in terms of traces
of invocations and responses on the component. Figure 2(a)
illustrates this: starting from abstract stateAR reached by a
series of method callsR consider two further series of calls,
S1 and S2, reaching abstract statesAS1 and AS2 respec-
tively, and then the subsequent execution of a final common
series of callsT . For all series of callsR andT , we require

Common initial 

sequence of 

method calls, R

AR

R

AS1 == AS2

S1

S2

Sequences of method calls 

(S1, S2) leading to equivalent 

abstract states

T

Subsequent calls ‘T’ 

have indistinguishable 

results

A

(a) If two series of calls have equivalent effects on the abstract
state, then they must be indistinguishable on the concrete state.

Common initial 

sequence of 

method calls, R

AR

R

AS == AR

S

Method call S’s result can be 

uniquely determined from the 

abstract state, with no effect on it

T

Subsequent calls T 

have indistinguishable 

results whether or not 

S was executed

A

(b) If an operation’s result can be derived from the abstract state,
with no side effect on it, then subsequent operations must be

indistinguishable whether or not it is actually called.

Figure 2: Criteria for making transformations.

that if the two abstract statesAS1 andAS2 are equal1 then
the calls inT must return the same results executed after
R;S1 and afterR;S2.

This definition lets us re-order operations (viewing the
original program asS1 and the optimized program asS2)
and remove an operation with avoid return type where it
does not change the abstract state. For methods with non-
void return types, we useEffect attributes to derive results
directly from the abstract state: if the set of assignments in an
Effect attribute can be satisfied by binding auniquevalue
to return then that value can be returned without invoking
the underlying method. Figure 2(b) depicts this.

We call an AI with these two properties afaithful abstrac-
tionof the data type being manipulated through the interface:
the abstract state must capture enough about the data type for
transformations based on it to be those intended2.

How can we check for conformance between a given
component implementation and an AI that it claims to adhere
to? Many of the transformations mentioned in Section 1 are
evidently safe only given domain knowledge of interfaces in
question – for example, the validity of eliding particular calls
on the STM library is dependent on a complicated argument
about the concurrent algorithms used by the STM. Other
examples involve external devices or network services both
of which remain research topics in terms of formal methods.
If correctness relies on this kind of argument then what can
we do to check a component against an AI?

Our current plan is to use dynamic testing. The compo-
nent implementation under test will provide anabstraction

1 We must be careful about what it means for two abstract states tobe equal:
each assignment of? creates a fact with adistinctunknown value which are
not equal to one another.
2 For readers familiar withabstract interpretation, this property distin-
guishes the information tracked by an AI from that tracked by other abstract
interpretations of the same operations.
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function that maps its internal state to a set of facts in the
abstract state. For instance, in the list-based set exampleof
Figure 1, the abstraction function would create facts that rep-
resent the set’s cardinality and each of the items present.

The test harness would invoke operations and compare
the facts generated by the AI (FA) against the facts derived
from the concrete implementation (FC). An error is reported
if FA contains a fact not inFC : this would indicate that
the abstract state includes knowledge that cannot be derived
from the concrete state. An error is also reported if two runs
leading to equal abstract statesFA1 andFA2 are followed
by different results to a subsequent operation, showing that
a transformation that could be made according to the criteria
in Figure 2 could change a program’s behavior.

4.1 Static transformations

AIs can extend the reach of static analyses, allowing com-
mon subexpression elimination (CSE) [1] and dead code
elimination (DCE) [1] to remove redundant calls.

CSE avoids re-computation of the same expression. It is
based onavailable expression analysiswhich is a forwards
data flow analysis that produces a set,avail(n) which, for an
instructionn, includes expressions guaranteed to be evalu-
ated on all paths that lead ton without any of the variables
they depend on having been subsequently changed.

We extend these sets to include facts that are guaranteed
to be in a component’s abstract state. Facts are added to the
sets by executing operations’ AIs. Facts are removed from
the sets whenever (i) explicitly storing ? into an object’s
abstract state, (ii ) replacing an existing fact with a new one
with the same left hand side, (iii ) updating a value on which
an existing fact depends, or (iv) invoking a method on an
object reference that may be aliased with the one that a
fact relates to. For instance, a factl1:CONTAINS(r1)=True

indicating that listl1 contains elementr1would be removed
by an update to the referencer1 (because the new objectr1
refers to may not be in the list), or by an invocation of a
method on an object that may be aliased withl1.

Given the result of this analysis, we use the rules from
Figure 2 to identify calls that can be removed: if an opera-
tion’s AI has no effect on the facts at a given point, then its
effect on the concrete state must be indistinguishable.

DCE removes computations that have no effect on the
program’s subsequent behavior – e.g. those that compute
values that are never used. We can use AIs as the basis of
a backwards dataflow analysis to identify opportunities for
this kind of transformation: we remove an operation if its
effect on the abstract state will be overwritten by another
operation without being read in the mean time.

4.2 Dynamic transformations

Working at run time it’s often possible to identify transfor-
mations that are impossible to make statically – e.g. ones
based on the particular path taken through a program, or
based on knowledge of exactly which object a given ref-

erence refers to. Conversely, identifying transformations at
run time introduces costs. This makes dynamic optimiza-
tions best suited to components with significant redundancy
in their usage and which take a sufficient time to execute
that the cost of identifying redundancy is worthwhile. The
systems used in our case studies provide two such examples.

Static CSE is straightforward to transfer to a dynamic
setting. The general idea is to track facts that must be present
in a component’s abstract state, and to use the interaction
between this state and operations’ AIs to identify and avoid
redundant invocations. For each component we start with an
empty abstract state, and iteratively apply the effects of each
operation invoked. We eliminate calls whenever an operation
with avoid return type has equivalent abstract states before
and after invocation or, for non-void methods, if the abstract
state provides a unique binding forreturn.

Static DCE is abackwardsdata flow analysis and so is
harder to apply during forwards execution at run-time. Our
solution is to buffer operations in adeferred queue, in the
hope that a later operation will allow a deferred operation
to be removed without being sent to the component. Fur-
thermore, if operations accumulate in the queue they can be
issued in a batch rather than sequentially.

In our prototype, only certain methods can be deferred:
they must havevoid return types, and the parameters of their
AIs must be marked as cloneable with* in the FactType

definitions so their parameters can be cloned when buffering
them. A deferred operationopi must be performed if a later
operationopj is performed and the two operations do not
commute in their effect on the component’s abstract state.

5. Case studies
We have built a prototype of our system which implements
the dynamic optimization ideas from Section 4.2. Our proto-
type runs on Version 2 of the .NET Framework. The user’s
bytecode is rewritten so that classes that implement inter-
faces with abstract implementations wrap each of the opera-
tions with a call to a new library that is responsible for pro-
cessing the abstract implementations and deciding whether
or not to call the underlying method. In a full implementa-
tion we would use dynamic bytecode generation to compile
the AIs to bytecode which could then be compiled to native
code by the .NET Framework.

5.1 Case study 1: stored procedure calls

Our first case study uses DotNetNuke (http://www.dotnet

nuke.com/), a web forum application which uses stored
procedure calls to query and update a database; generating
a single web page can involve dozens of stored procedure
calls. Many calls are for the same stored procedures, and of-
ten with the same arguments. For example, loading the “site
settings” administration page generates 35 calls, of which
10 are made redundant by earlier calls in the same page –
e.g. theGetSkin stored procedure takes three arguments to
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looks up the appropriate skin (i.e. web site theme) from the
database, and each page callsGetSkin several times.

We added AIs to theSqlDataProvider component in
DotNotNuke which defines methods corresponding to the
stored procedures. In this case methods such asGetSkin()

returnIDataReader objects which act as iterators over the
rows that the stored procedure selects. We therefore pro-
vide custom clone operations to keep a buffer to remem-
ber values read from the database and recall them when an
IDataReader is cloned and reused by a subsequent call. In a
full implementation we would modify the .NET Framework
rather than the application, and would attach the abstract im-
plementations directly to the signatures of the stored proce-
dures rather than needing to find an internal interface like
SqlDataProvider within the application.

Quantitative results are clearly highly dependent on the
test involved, but the AIs we used allowed all 10 redundant
calls to be removed, providing some confidence in the ex-
pressiveness of our approach.

5.2 Case study 2: LDAP queries

Our second case study isOrgNavigator, an internal tool
to view Microsoft’s org-chart based on information from
LDAP queries. It behaves responsively when used in Red-
mond (where the server it queries is located), but slowly
when used from Europe because it makes synchronous trans-
Atlantic queries. Queries are repeated from scratch each time
the user navigates to another employee – even though the
typical forms of navigation are to an employee’s immediate
manager, or one of the people that reports to them.

The tool is built around a class for querying management
chains. Within this is the method:

public Employee FindEmployee(string name,

string[] extra)

The second argument is a list of strings to select additional
information to collect from the LDAP server. For these man-
agement chain queries, the second argument is a singleton
list containing the stringmanager. The simplest form of AI
is to indicate that anEmployee object can be re-used when
it is the result of a query with the samename andextra
information, usingEquals/Clone methods on the mutable
extra array. The FactType and annotation are therefore:

[FactType("EMPLOYEE(String, *String[])

-> Employee")]

...

[Effect("EMPLOYEE(name, extra) = return")]

An alternative form of annotation is possible at a lower
level in the system – placing it in the implementation of the
DirectorySearcher class that is used to query the LDAP
server, without needing to change the application at all.

As expected, with our optimizations turned on, the tool
can navigate between employees without incurring network
traffic for those that have already been seen.

6. Future work and conclusions
In this paper we have introduced the idea of extending the
interfaces between parts of a system withabstract imple-
mentationsfrom which the compiler or runtime system can
identify opportunities for optimizing series of calls across
the interface. The general approach has been to use a simple
imperative language for writing the AIs, in the expectation
that this will provide a setting in which component authors
will intuitively understand the transformations that the sys-
tem will and will not perform.

There are several topics we do not have space to talk
about in detail in this paper. In particular, we have focused
on transformations made on a single client interacting witha
component, rather than the case of multiple clients interact-
ing concurrently with the same component.

This later case is more complicated and leads to interest-
ing analogies with memory consistency models (when can
reads and writes appear to be re-ordered by the compiler
or memory subsystem?). One approach we are exploring is
to follow that taken in memory subsystems by using AIs to
build invalidation protocols: when a component performs an
operation for one client then the component will send inval-
idation messages to other clients that may have cached state
that the update conflicts with. An alternative approach, with
synergy with our work on transactions, is to only perform
transformationswithin a transaction since those operations
will, in any case, run in isolation from other clients.
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