
Learning Communication Patterns in Singularity

Paul Barham, Rebecca Isaacs, Richard Mortier and Tim Harris

{pbar,risaacs,mort,tharris}@microsoft.com

Microsoft Research, Cambridge, UK.

1 Introduction

Modern software is so complicated that it is often
infeasible to get a good understanding of a sys-
tem’s dynamic behaviour simply from its source
code. Commodity operating systems are a good
example: they comprise numerous separately-
authored components, large numbers of interact-
ing threads, and extensibility mechanisms that al-
low new components to be plugged in based on
boot-time or run-time configuration settings. Ide-
ally it should be possible to understand this kind
of complex system by capturing dynamic traces of
its behaviour and then applying machine learning

techniques to these traces to elucidate the struc-
ture present in them. In practice, this is extremely
difficult because such systems are usually poorly
specified and structured, and component interac-
tions are largely unconstrained [2].

In order to sidestep these issues, this work is
based on the Singularity research operating sys-
tem [5] in which all component interactions are
well-specified and statically verified. In Singu-
larity, inter-process communication (IPC) is per-
formed over type-safe message channels. Each
channel is statically checked to conform to a chan-

nel contract that defines named message types
that the channel can carry, and a finite state
machine (FSM) whose edges define the message
send/receive operations that are valid in a given
state.

This environment is extremely suitable for the
application of machine learning techniques to un-
derstand runtime behaviour. Component commu-
nications conform to a statically verified FSM that
the OS tracks at runtime, we can be sure that we
track all forms of IPC, and we can present results
using the names of channel contracts and message
types. Section 2 describes IPC in Singularity in
more detail.

To explore the potential of applying machine
learning in this more structured context we have
developed a series of preliminary techniques for
capturing the runtime dependencies and dominant

interaction patterns between components in Sin-
gularity. We have explored three techniques that
provide progressively more detailed information:

• Firstly, we capture dynamic traces of the mes-
sages that an individual thread sends and re-
ceives over a single channel (Section 3). This
lets us build a probabilistic finite state ma-
chine (PFSM) for the channel, capturing how
frequently each edge is followed in a given
run. The PFSM can help with code cover-
age testing and performance tuning.

• Secondly, when a thread communicates over
multiple channels, we combine the individual
state machines to form a joint-PFSM (Section
4). This lets us learn about some of the re-
lationships between different processes – for
instance, a file-server thread receives a “re-
quest” message on one channel, then performs
series of disk I/O operations over a second
channel, before responding to the request.

• Finally, we use our traces as input to
the ALERGIA grammar inference algorithm
(Section 5). This lets us infer multi-channel
PFSMs that capture message sequencing pat-
terns more clearly by allowing multiple nodes
to represent the same combination of channel
states. For instance, in the file-server exam-
ple, this lets us observe how frequently the
file-server thread is able to respond to a re-
quest without requiring any disk I/O.

Ultimately we would like to use this information
about runtime interactions as a basis for learn-
ing performance models of complex systems. Such
models are useful for performance prediction, self-
management and anomaly detection.

2 Channel contracts

Communication between processes in Singular-
ity occurs only by sending messages on bidirec-
tional channels, which are strongly-typed accord-

contract TestContract {
in message A(int x);
in message B(int x);
in message C(int x);

out message X(int x);
out message Y(int x);
out message Z(int x);

state Start: one {
A? -> X! -> Start;
B? -> Y! -> Start;
C? -> Choice;

}

state Choice: one {
Y! -> Start;
Z! -> Start;

}
}

Choice

Start

Y! Z! C?

A? B?X! Y!

Figure 1: Example channel contract written in Sing#.
From the initial state Start, receipt of an A or B message
causes a transition to an unnamed intermediate state, from
which an X or Y message respectively is returned, before
moving back to the Start state. Receipt of a C message
moves the channel endpoint to state Choice, from which
either a Y or a Z type message is sent. The symbol “?”
indicates message receive, and “!” message send. The con-
tract is expressed from the point of view of the exporter
(i.e. the server), which must be prepared to receive the in

messages and to transmit the out messages. Conversely,
the importer (client), sends the in messages and receives
the out messages.

ing to a contract. The Sing# language is an ex-
tension of C# that adds support for Singularity
communication primitives such as channels and
contracts. Channel contracts are defined as fi-
nite state machines, specifying the message types
and sequence orderings permitted for each type of
channel. Compiler verification ensures that con-
tracts are adhered to at runtime. Figure 1 con-
tains the declaration of a simple channel contract,
written in Sing#, and a diagram of the equiva-
lent state machine. The channel state machine is
expressed from the point of view of the contract
exporter (i.e. the server).

Compilation of the example contract pro-
duces the classes TestContract.Imp and
TestContract.Exp implementing the client and
server endpoints of the channel and supporting
methods such as ep.SendA() and ep.RecvZ().
Message send is an asynchronous operation
while receive is synchronous, and messages are
guaranteed to be delivered in order.

Channel endpoints are owned by one thread at
a time, but can be sent inside messages to other
processes, thus enabling ownership to be trans-
ferred from one thread to another. This transfer
is also statically verified.

We observe the inter-process communications
by using Singularity’s built-in event tracing to
log every message as it is sent and received by
the respective endpoints. These events record the

T2

T5

Y!
50%

Z!
50%

C?
25%

T4

A?
50%

T3

B?
25%

X!
100%

Y!
100%

Figure 2: Probabilistic state machine for the Test Con-
tract observed under a synthetic workload. The PFSM
demonstrates that, from the start state (T5), the A! mes-
sage is twice as likely as either B! or C!, and that the two
replies to the C! message are equally likely. Note that the
state numbers are arbitrary, assigned by the Sing# com-
piler.

timestamp, contract type, message type, process
id, thread id, endpoint id and contract state.

3 Channel PFSMs

The contract for a channel specifies all possible
states and transitions, but doesn’t say anything
about their expected likelihood. In practice, not
all states will be observed equally often, and in-
deed, different processes may exercise the vari-
ous parts of a contract with different probabili-
ties. Therefore the probabilistic FSM of a chan-
nel contract is a useful augmentation of the static
FSM declaration. In particular, the state machine
observed at runtime may contain a much smaller
number of states and messages than its defining
contract. This is valuable code coverage informa-
tion that can inform testing and performance opti-
misation. We could also annotate the PFSM with
other information such as performance measure-
ments, and this might be useful for performance
debugging.

In Singularity, learning the PFSM is rendered
straightforward by having an upfront declaration
of the state machine. It is then simply a matter of
counting the frequency that each state transition
occurs. Figure 2 shows the runtime behaviour of
the test contract when it was exercised using a
very simple test program in which the client sent
1000 messages.

Although this simple annotation of the stati-
cally declared state machine is useful for certain
tasks, it is not expressive enough to capture crit-
ical information about system behaviour. For ex-

Application FileSystem DeviceDriver

FileContract:Read

DiskContract:Read

DiskContract:AckReadFileContract:AckRead

time

Figure 3: The nesting of the FileContract and DiskCon-
tract state machines.

ample, the ordering of state transitions is omitted
from the model. This suggests that a richer model
is required.

4 Joint PFSMs

Because all inter-process communication in Singu-
larity occurs by sending messages on channels, it is
normal for a single thread to simultaneously own
more than one channel endpoint. Since there are
in fact dependencies between the state machines,
the messages of these contracts are usually not
arbitrarily interleaved. Crucial to understanding
these system dependencies is understanding which
interleavings actually occur in practice. For ex-
ample, a file system thread will typically act as a
server in the File Contract, receiving file access re-
quests, and a client in the Disk Contract, issuing
disk access requests. Figure 3 depicts this situa-
tion.

By participating in multiple channel state ma-
chines, each thread instantiates its own “joint”
state machine. Every joint FSM provides evidence
for causal relationships among its constituent con-
tract types. Unlike the channel FSMs, these joint
FSMs can not be declared explicitly, and so their
structure, as well as transition probabilities, must
be inferred.

To learn the joint probabilistic FSM, we model
thread activity using a larger state machine whose
states are tuples of the endpoint-states of each
endpoint owned by that thread, and whose actions
are the union of all messages from their contracts.
For example, consider the thread that participates
in both the File and Disk contracts as shown in
Figure 3. The thread receives read and write re-
quests on a FileSystem contract (with states Sfs

and messages Mfs) and services these requests by
making invocations on the DiskDevice contract
(Sdisk , Mdisk). The behaviour of this thread can
be captured using a state space of tuples from
Sfs × Sdisk and edges chosen from Mfs ∪ Mdisk .

Joint PFSMs enable us to identify quite com-

Application
thread

DirectoryService
thread

FileSystem
thread

AckConnect

AckBind

time

Bind()

Connect()

Success

ReadFile

DirectoryService FileSystem File

Contract types key

Figure 4: Three state machines inter-depend when an
application uses the Directory Service to find and connect
to the Filesystem service. This diagram shows how the
threads of the application and the two services participate
over time in the state machines. Note that the Success
and AckConnect messages may be sent by the Filesystem
thread in either order.

plex interactions between the various services. To
explore this idea in practice, we use a simple file
system performance benchmark program called
WebFiles that selects and reads files from Sin-
gularity’s port of the SPECweb99 benchmark[5].
Figure 4 describes one of the service inter-
dependencies that occurs in WebFiles, a trian-
gular dependency between state machines for ap-
plication, Directory Service (DS) and Filesys-
tem. The diagram shows two key points:
firstly that it is often the case that a tran-
sition in one state machine (for example the
DirectoryService:AckBind message), cannot occur
until a transition occurs in a completely different
state machine (the FileSystem:AckConnect). Sec-
ondly, the diagram illustrates a channel endpoint
being sent to a different thread inside a message
(DirectoryService:Bind sends a FileSystem end-
point). This is an instance of a causal relation-
ship between state machines that can be difficult
to identify and understand in a running system
without access to source code.

An even more complicated scenario appears in-
side the Filesystem process, which uses a pool
of worker threads. When a file request arrives,
the main thread pool control thread accepts the
request and then hands it off, along with the
application’s channel endpoint, to one of the
worker threads for processing. Figure 5 contains
the PFSM that results for one particular worker
thread, along with the FSMs for the consitutent
contracts. Note that the file read request from the
application does not appear in the joint FSM, as

DiskDevice_Imp

D11

D7

!Read ?AckRead

File_Exp

F3

F7

!Success

F6

?Read !AckRead

ThreadPoolControl_Imp

T3

T4

?AckTrackEndpoint !TrackEndpoint

Thread94

(D11,F6,T3)

(D11,F6,T4)

ThreadPoolControl.Imp
AckTrackEndpoint?

(100.0%)

(D11,F7,T4)

File.Exp
AckRead!
(40.2%)

(D7,F6,T4)

DiskDevice.Imp
Read!

(59.8%)

(D11,F7,T3)

ThreadPoolControl.Imp
TrackEndpoint!

(100.0%)

DiskDevice.Imp
AckRead?
(100.0%)

Figure 5: A file system worker thread channel FSMs
and the joint PFSM, built from the cross-product of all
state tuples and the union of its messages. The messages
AckTrackEndpoint and TrackEndpoint can be understood
to mean “Do work” and “Finished doing work” respec-
tively. States in the PFSM are labelled with tuples in which
each member identifies the current state of each of the three
contracts.

that message is in fact received by the thread pool
control thread instead.

This simple approach to learning the joint FSM
is analogous to program profiling, in that it re-
veals the proportions in which various transitions
occurred for a given execution run. However it
doesn’t capture the probabilistic distributions of
those transitions, which makes it less useful for
more sophisticated tasks such as critical path anal-
ysis. So, in the Filesystem joint PFSM shown
above, we do not have any information about the
distribution of the expected number of disk ac-
cesses per file request and consequently the pro-
portion of cache hits. In the next section, we ex-
plore how grammatical inference can be applied
to infer even richer joint PFSMs.

5 Using grammatical infer-

ence

In general, this problem can be cast as one of prob-
abilistic grammatical inference. Given a set of ex-
ample strings S, a probabilistic prefix tree accep-
tor (PPTA) can be constructed that accepts only

S2

S3

ThreadPoolControl.Imp
AckTrackEndpoint? (100.0%)

S4

DiskDevice.Imp
Read! (32.2%)

S5

File.Exp
AckRead! (67.8%)

S6

DiskDevice.Imp
AckRead? (100.0%)

S7

ThreadPoolControl.Imp
TrackEndpoint! (100.0%)

DiskDevice.Imp
Read! (78.4%)

File.Exp
AckRead! (21.6%)

Figure 7: The joint state machine for a WebFiles thread,
inferred using the ALERGIA algorithm. Compared to the
state machine of Figure 5, ALERGIA has generated an ad-
ditional state in order to capture the observed probability
distribution for disk reads. accesses. The FSM now reveals
that two thirds of file requests are served from the cache
without going to disk.

S. The PPTA is then generalized by merging com-
patible states. There are many algorithms for do-
ing this in the literature [4], of which ALERGIA[3]
is one of the most well-known.

ALERGIA learns a stochastic context-free
grammar from a positive set of sample strings in
the language by recursively merging states using
a statistical compatability measure based on the
Hoeffding bound. The resulting grammar gives a
compact, if generalized, representation.

In Section 3 we noted that per-contract PF-
SMs are straightforward to infer by counting the
frequency of message types, but that this simple
technique loses useful information such as the or-
der in which states occur. In contrast, because
ALERGIA operates over “sentences” in the gram-
mar, it is able to discriminate between sequences
of states with different statistical properties. Fig-
ure 6 contains the Test PFSM produced by ALER-
GIA. This state machine was derived from the
same data that generated the original PFSM of
Figure 2, but conveys a great deal more informa-
tion about runtime behaviour.

Using ALERGIA to generate the joint PFSM
further demonstrates that the more sophisticated
technique results in richer behavioural models.
Figure 7 shows the state machine generated by

S0

S1

A!
50%

S2

B!
50%

S3

X?
100%

S4

Y?
100%

S5

A!
100%

S6

C!
100%X?

100%
S7

Y?
50%

Z?
50%

Figure 6: The PFSM inferred for the Test contract by ALERGIA. Compared with the PFSM in Figure 2, the state
machine captures much more information about the sequence of messages sent by the test application.

ALERGIA for the WebFiles worker thread that
participates in three contract state machines: File,
Disk and ThreadPoolControl. In comparison with
the model in Figure 5, this PFSM captures the
probability distributions of the thread making a
request to the Disk Contract in order to fulfil the
file Read request. We see that 68% of file requests
are served from the cache, and the model cap-
tures the exponentially decreasing probabilities of
making multiple disk reads. Note that from this
state machine it is possible to generate strings that
could never exist in reality, for example, by recurs-
ing infinitely on the DiskRead arcs.

Grammar inference algorithms are designed to
find the allowed transitions from a well-defined
start state, which is sometimes difficult to iden-
tify in a real system. In Figure 6, states S0, S3, S4
and S7 in the SCFG all correspond to the contrac-
tual Start state, which the thread passes through
several times on each iteration. Algorithms such
as Sequitur [7] efficiently find lexical structure in
a single long string by iteratively detecting re-
peated substrings and replacing them with pro-
duction rules. The resulting set of rules implicitly
identify the start positions of repetitive behaviour
and could potentially be used to solve this “start
state” problem.

The state machine structure extracted by
ALERGIA is very sensitive to the statistical sim-
ilarity test applied: for instance the loop between
S4 and S6 in Figure 7 could have been elided using
a less refined measure. We hope to address how
to set this test appropriately in future work.

6 Conclusion

In this paper we have examined a small number
of simple machine learning techniques to try and
capture the communication patterns of a complex
system at runtime. In Singularity the behaviour of
a thread as a whole is bounded by the joint FSM,
but runtime monitoring is still necessary to find
some of the feasible paths in the state machine
and to identify the dominant interactions under

the current workload. In a less well-specified sys-
tem the problem would be much harder, as the
underlying state machine would also have to be
computed. Related work from the program cor-
rectness community on inferring program specifi-
cations from the observed runtime behaviour [1, 6]
may provide a means of applying this approach to
a commodity operating system. Other important
future work is to extend the PFSMs with resource
demand distributions in order to incorporate per-
formance information in the derived models.

References

[1] G. Ammons, R. Bodk, and J. Larus. Mining spec-
ifications. In Proceedings of the 29th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 2002.

[2] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Us-
ing Magpie for request extraction and workload mod-
elling. In 6th Symposium on Operating Systems Design
and Implementation (OSDI’04), pages 259–272, Dec.
2004.

[3] R. Carrasco and J. Oncina. Learning stochastic regular
grammars by means of a state merging method. In
Grammatical Inference and Applications, volume 862
of Lecture Notes in Artificial Intelligence, pages 139–
152. Springer-Verlag, 1994.

[4] P. Dupont, F. Denis, and Y. Esposito. Links be-
tween probabilistic automata and hidden Markov mod-
els: probability distributions, learning models and in-
duction algorithms. Pattern Recognition, 38(9):1349–
1371, 2005.

[5] G. Hunt, J. Larus, M. Abadi, M. Aiken, P. Barham,
M. Fahndrich, C. Hawblitzel, O. Hodson, S. Levi,
N. Murphy, B. Steensgaard, D. Tarditi, T. Wobber, and
B. Zill. An overview of the Singularity project. Tech-
nical Report MSR-TR-2005-135, Microsoft Research,
2005.

[6] Z. Li and Y. Zhou. PR-Miner: Automatically extract-
ing implicit programming rules and detecting violations
in large software code. In 13th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering
(FSE’05), Sept 2005.

[7] C. G. Nevill-Manning and I. H. Witten. Compres-
sion and explanation using hierarchical grammars. The
Computer Journal, 40(2/3), 1997.

