
Securing software by enforcing data-flow integrity

Miguel Castro
Microsoft Research

Manuel Costa
Microsoft Research

University of Cambridge

Tim Harris
Microsoft Research

Abstract

Software attacks often subvert the intended data-flow in
a vulnerable program. For example, attackers exploit
buffer overflows and format string vulnerabilities to write
data to unintended locations. We present a simple tech-
nique that prevents these attacks by enforcing data-flow
integrity. It computes a data-flow graph using static anal-
ysis, and it instruments the program to ensure that the
flow of data at runtime is allowed by the data-flow graph.
We describe an efficient implementation of data-flow in-
tegrity enforcement that uses static analysis to reduce
instrumentation overhead. This implementation can be
used in practice to detect a broad class of attacks and
errors because it can be applied automatically to C and
C++ programs without modifications, it does not have
false positives, and it has low overhead.

1 Introduction

Most software is written in unsafe languages like C and
C++. Even programs written in type-safe languages
have libraries and runtimes written in unsafe languages.
Therefore, software is vulnerable to attacks and it is
likely to remain vulnerable in the foreseeable future.

Almost all these attacks subvert the intended data-
flow in the program. They exploit software vulnerabil-
ities to write data to unintended locations. For exam-
ple, control-data attacks exploit buffer overflows or other
vulnerabilities to overwrite a return address [32], a func-
tion pointer [28], or some other piece of control-data.
Non-control-data attacks exploit similar vulnerabilities
to overwrite security critical data without subverting the
intended control-flow in the program [14]. Non-control-
data attacks have not been observed in the wild but they
are just as serious and there are no good defenses against
them. Non-control-data attacks will become common as
we deploy defenses for control-data attacks.

This paper presents a technique that can prevent both

control and non-control-data attacks by enforcing a sim-
ple safety property that we call data-flow integrity. This
technique computes a data-flow graph for a vulnerable
program using static analysis, and instruments the pro-
gram to ensure that the flow of data at runtime is allowed
by the data-flow graph. It can be applied to existing C
and C++ programs automatically because it requires no
modifications and it does not generate false positives.

There are many proposals to prevent attacks on soft-
ware, for example, [30, 24, 27, 5, 18, 34, 31, 16, 19, 13,
37]. CCured [30] and Cyclone [24] propose memory-
safe dialects of C that prevent all these attacks. The dis-
advantage of these approaches is that the effort to port
existing C code to these dialects is non-trivial and they
require significant changes to the C runtime, for exam-
ple, they replace malloc and free by a garbage collec-
tor. There are several techniques that can be applied
to existing programs but can only defend from attacks
that overwrite specific targets, for example, return ad-
dresses [18], or that exploit specific types of vulnerabil-
ities, for example, buffer overflows [25, 34]. Program
shepherding [27] and control-flow integrity [5] provide a
generic defense against control-data attacks but they can-
not defend against non-control-data attacks. Techniques
that perform dynamic taint analysis [37, 15, 19, 31, 13,
16, 22, 33] can prevent control-data attacks and they can
prevent some non-control-data attacks [37, 16, 13], but
they may have false positives and they incur a very high
overhead without hardware support.

We implemented data-flow integrity enforcement us-
ing the Phoenix compiler infrastructure [29]. The imple-
mentation uses reaching definitions analysis [7] to com-
pute a static data-flow graph. For each value read by an
instruction, it computes the set of instructions that may
write the value. The analysis relies on the same assump-
tions that existing compilers rely on to implement stan-
dard optimizations. These are precisely the assumptions
that attacks violate and data-flow integrity enforcement
detects when they are violated.



To enforce data-flow integrity at runtime, our imple-
mentation instruments the program to compute the defi-
nition that actually reaches each use at runtime. It main-
tains a table with the identifier of the last instruction to
write to each memory position. The program is instru-
mented to update this table before every write and to
prevent the attacker from tampering with the table. We
also instrument reads to check if the identifier of the in-
struction that wrote the value being read is an element of
the set computed by the static analysis. If it is not, we
raise an exception. Our implementation does not gener-
ate false positives; when we raise an exception, the pro-
gram has an error.

We have developed a number of optimizations to re-
duce the instrumentation overhead. The first optimiza-
tion computes equivalence classes of instructions and as-
signs the same identifier to all the instructions in the same
class. This reduces the number of bits required to repre-
sent identifiers and simplifies the code to check set mem-
bership on reads. Additionally, we perform static anal-
ysis of the low level intermediate representation of the
compiler to remove unnecessary read and write instru-
mentation. This analysis is more conservative than the
one used to compute the data-flow graph; it does not rely
on any assumptions that may be invalidated by attacks.

We evaluated the efficacy and overhead of our im-
plementation. The results show that data-flow integrity
enforcement can prevent many control-data and non-
control-data attacks, and that it can detect errors in ex-
isting programs. The instrumentation overhead is low:
the space overhead is approximately 50%, and the aver-
age runtime overhead is between 44% and 103% in CPU
intensive Spec 2000 benchmarks. In a Web server run-
ning Spec Web 1999, the runtime overhead is even lower:
the average response time increases by 0.1% and peak
throughput decreases by 23%. Thus, data-flow integrity
enforcement can be used in practice to defend software
from attacks.

2 Data flow integrity enforcement

This section starts by providing a high level overview
of data-flow integrity enforcement. Then it describes in
detail the static analysis and the instrumentation.

2.1 Overview

Data-flow integrity enforcement has three phases. The
first phase uses static analysis to compute a data-flow
graph for the vulnerable program. The second instru-
ments the program to ensure that the data-flow at run-
time is allowed by this graph. The last one runs the in-
strumented program and raises an exception if data-flow

integrity is violated. We will use the simple example in
Figure 1 to illustrate how these phases work.

1: int authenticated = 0;
2: char packet[1000];
3:
4: while (!authenticated) {
5: PacketRead(packet);
6:
7: if (Authenticate(packet))
8: authenticated = 1;
9: }
10:
11: if (authenticated)
12: ProcessPacket(packet);

Figure 1: Example vulnerable code in C.

Figure 1 shows a code fragment that is inspired by a
vulnerability in SSH [3] that can be exploited to launch
both control-data and non-control-data attacks [14]. In
this example, we assume that PacketRead can write
more than 1000 bytes to packet when it receives a
packet from the network. This vulnerability could be ex-
ploited to overwrite the return address of the function or
to overwrite authenticated. The first attack is a form
of control-data attack that may allow the attacker to gain
control over the execution. The second is a non-control-
data attack that allows the attacker to bypass authenti-
cation and get its packet processed. Data-flow integrity
enforcement can prevent both attacks.

We use reaching definitions analysis [7] to com-
pute the static data-flow graph. Using the terminology
from [7], an instruction that writes to a memory position
defines the value in the memory position, and an instruc-
tion that reads the value is said to use the value. The
analysis computes the set of reaching definitions for each
use and assigns an identifier to each definition. It returns
a map from instructions to definition identifiers and a set
of reaching definition identifiers for each use, which we
call the static data-flow graph.

For example, authenticated is used in lines 4 and
11. If we ran reaching definitions analysis in the source
code, it might conclude that the definitions in lines 1 and
8 reach both uses. Therefore, the set of reaching defini-
tion identifiers for both uses would be

���������
, if we used

the line numbers to identify the definitions.
The analysis can be imprecise but it is important that it

be conservative. It must include in the set all definitions
that may reach a use at runtime but it may include ad-
ditional definitions. For example, only the definition in
line 8 can reach the use in line 11 but the analysis might
compute the set of reaching definitions

���������
. This en-

sures that imprecisions can lead to false negatives but not
false positives: data-flow integrity enforcement may miss



some attacks but it will never signal an error unless there
is one. We believe that this property is very important
because users are not likely to deploy security solutions
that can break running systems in the absence of errors.

The second phase instruments the program to enforce
a simple safety property that we call data-flow integrity,
i.e., whenever a value is read, the definition identifier of
the instruction that wrote the value is in the set of reach-
ing definitions for the read (if there is one).

The program is instrumented to compute the defini-
tion that reaches each read at runtime and to check if
this definition is in the set of reaching definition iden-
tifiers that was computed statically. To compute reach-
ing definitions at runtime, we maintain the runtime def-
initions table (RDT) that records the identifier of the
last instruction to write to each memory position. Ev-
ery write is instrumented to update the RDT. The instru-
mentation before reads uses the address of the value be-
ing read to retrieve the identifier from the RDT. Then,
it checks if this identifier is in the statically-computed
set. For example in Figure 1, we would add code to set
RDT[&authenticated] to 8 in line 8, and to check if
RDT[&authenticated] 	 ��������� in lines 4 and 11.

We want to enforce data-flow integrity in the presence
of a strong attacker that can write anywhere and that can
even execute data. To achieve this goal, the attacker must
be prevented from tampering with the RDT, tampering
with the code, or bypassing the instrumentation.

RDT tampering is prevented by instrumenting writes
to check if the target address is within the memory re-
gion allocated to the RDT. Any attempt to write to the
RDT generates an exception. Code tampering can be
prevented with the same checks or by using read-only
protection for code pages; we use the latter, which is al-
ready available in most processors.

To prevent the attacker from bypassing the instru-
mentation, we must prevent tampering with the target
addresses of indirect control transfers. We instrument
writes and reads of programmer-defined control-data as
described before. In addition, we instrument writes and
reads of control-data added by the compiler in the same
way. For example, we set the RDT entry for a return
address to a well-known value and we check if the en-
try still holds the value on return. In our test cases,
this instrumentation is sufficient to prevent the attacker
from tampering with the target addresses of indirect con-
trol transfers. However, there may be cases where the
reaching definitions analysis is not precise enough. For
example, the reaching definitions set for the read of a
function pointer may contain the identifier of an array
store instruction that an attacker can use to overwrite
the function pointer. We can detect when this happens
and use existing techniques to ensure control-flow in-
tegrity [27, 5].

It is possible to trade off coverage for lower overhead
by removing reaching definitions sets for some uses:
some attacks may go undetected because those uses are
not instrumented but the overhead will be lower. We can
still ensure data-flow integrity for all other uses provided
uses of control-data are instrumented. We experimented
with a variant of our implementation that only instru-
ments uses of control-data and uses of local variables
without definitions external to the function. This vari-
ant is interesting because it has low overhead and it can
still catch many interesting attacks. For example, it can
prevent any attack that violates control-flow integrity and
the attack in our example.

When the instrumented program runs, any deviation
from the data-flow graph computed statically raises an
exception. Since the analysis is conservative, there are
no false positives. If there is an exception, the program
has an error. The error may or not be triggered by an
attack. In addition to detecting various known attacks,
we found several unknown errors in our test cases.

2.2 Static analysis

We compute reaching definitions using a combination
of two analyses: a flow-sensitive intra-procedural anal-
ysis and a flow-insensitive and context-insensitive inter-
procedural analysis. We implemented both analyses us-
ing the Phoenix compiler framework [29]. They oper-
ate on Phoenix’s high level intermediate representation
(HIR), which enables them to be applied to different lan-
guages and different target architectures. Figure 2 shows
the HIR for the vulnerable C code in Figure 1.

The intra-procedural analysis takes flow control into
account. It is implemented by traversing the static single-
assignment representation [10] produced by Phoenix.
We use this analysis to compute reaching definitions for
uses of local variables that have no definitions external
to the function in which they are declared. The inter-

_authenticated = ASSIGN 0 #1
$L6: t274 = CMP(NE) _authenticated, 0 #2

CBRANCH(NE) t274, $L7, $L8 #3
$L8: tv275 = CALL &_PacketRead, &_packet #4

t276 = CALL &_Authenticate, &_packet #5
t277 = CMP(NE) t276, 0 #6

CBRANCH(NE) t277, $L10, $L9 #7
$L10: _authenticated = ASSIGN 1 #8
$L9: GOTO $L6 #9
$L7: t278 = CMP(NE) _authenticated, 0 #10

CBRANCH(NE) t278, $L12, $L11 #11
$L12: tv279 = CALL &_ProcessPacket, &_packet #12
$L11:

Figure 2: Example vulnerable code in high-level inter-
mediate representation (HIR).



procedural analysis is used to compute reaching defini-
tions for all other uses.

The inter-procedural analysis is less precise to allow it
to scale to large programs. It ignores control-flow and it
does not take the calling context into account when an-
alyzing functions. We implemented Andersen’s points-
to analysis [9] to compute the set of objects that each
pointer can point to, and we use these points-to sets
to compute reaching definitions. The implementation
is similar to the one described in [21] but it is field-
insensitive rather than field-based (i.e., it does not distin-
guish between the different fields in a structure, union, or
class). These imprecisions can lead to false negatives, for
example, we may fail to detect an attack that overflows a
buffer in a structure to overwrite a security critical field
in the same structure. We plan to implement an analysis
with better precision in the future (e.g., [12]).

The points-to analysis makes a global pass over all
source files to collect subset constraints. Each assign-
ment 
���
 results in a subset constraint 
���
 , which
means that the set of possible values of 
 contains the
set of possible values of 
 . The analysis uses Phoenix to
compile each source file to HIR and it writes all subset
constraints in the HIR to a file. After this global pass, it
computes the points-to sets by iterating over all the con-
straints until it reaches a fixed point. Then, it stores the
points-to sets in a file.

During the global pass, we also collect the target lo-
cations and identifiers of instructions that write to loca-
tions that may be read in other functions. These include
writes to locations obtained by dereferencing pointers, to
static and global variables, and to local variables whose
address is taken. This information is also written to a file.

We compute inter-procedural reaching definitions us-
ing the points-to sets and information about write instruc-
tions collected during the global pass. For uses of vari-
ables and temporaries, the set of reaching definitions is
the union of the set containing the identifiers of all writes
to the variable (or temporary) with the sets containing the
identifiers of all writes to dereferences of pointers that
may point to the variable (or temporary). For pointer
dereferences, the set of reaching definitions is the union
of the set containing the identifiers of all writes to the
dereferenced pointer with the sets of reaching definitions
of all the variables the pointer can point to. The sets of
inter-procedural reaching definitions are written to a file
that is used to instrument the program.

Both the intra-procedural and the inter-procedural
analyses assume that the relative layout of independent
objects in memory is undefined [12]. They assume that
correct programs do not use pointer arithmetic to navi-
gate between independent objects in memory. For ex-
ample in Figure 2, the analyses assume that correct pro-
grams will not use a pointer to the packet array to write

to the authenticated variable. Existing compilers al-
ready make this assumption when implementing several
standard optimizations. Therefore, this assumption ap-
plies to the vast majority of programs. However, it is
precisely this assumption that is violated by most at-
tacks. Data-flow integrity enforcement detects and pre-
vents these attacks.

We applied the analysis to the sample code in Figure 2
using the numbers at the end of the lines to identify defi-
nitions. The set of reaching definitions is

���������
for both

uses of authenticated (in lines 2 and 10). The tem-
poraries have a single definition in the preceding instruc-
tion. Since we control code generation, we can ensure
that these temporaries are placed in registers beyond the
reach of an attacker. The attacker cannot violate data-
flow integrity by overwriting these registers because our
instrumentation prevents it from subverting the control
flow. We only compute reaching definitions and instru-
ment accesses of temporaries that are spilled to memory.

2.3 Instrumentation
We add instrumentation by inserting new high-level in-
structions into the HIR of the program. The instructions
have the form:

SETDEF opnd id
CHECKDEF opnd setName.

The first instruction sets the RDT entry for opnd to id.
The second retrieves the runtime definition identifier for
opnd from the RDT and checks if the identifier is in the
reaching definitions set with name setName. The com-
piler maintains a map from set names to set values that
is used when lowering CHECKDEF instructions to the as-
sembly of the target machine. Instrumenting a high-level
representation of the code has the advantage of making
the instrumentation machinery independent of the source
language and mostly independent of the target architec-
ture. Currently, we only target the x86 architecture but it
would be simple to target other architectures.

Figure 3 shows the HIR for the vulnerable code with
high-level instrumentation generated from the informa-
tion computed by the reaching definitions analysis. The
set with name 100 has the value

���������
. We do not in-

strument temporaries that we can ensure are allocated
to registers, and we also do not instrument the uses of
&packet because addresses of local variables are com-
puted by adding a constant to the frame pointer.

Before describing how the high-level instrumentation
is lowered to assembly, we need to describe how we im-
plement the RDT. To enable efficient accesses, the RDT
is implemented as an array with a definition identifier for
each 32-bit memory word in the instrumented program.
Each definition identifier is two bytes long, which seems
sufficient even for large programs. This results in a space



SETDEF _authenticated 1
_authenticated = ASSIGN 0 #1

$L6: CHECKDEF _authenticated 100
t274 = CMP(NE) _authenticated, 0 #2

CBRANCH(NE) t274, $L7, $L8 #3
$L8: tv275 = CALL &_PacketRead, &_packet #4

t276 = CALL &_Authenticate, &_packet #5
t277 = CMP(NE) t276, 0 #6

CBRANCH(NE) t277, $L10, $L9 #7
$L10: SETDEF _authenticated 8

_authenticated = ASSIGN 1 #8
$L9: GOTO $L6 #9
$L7: CHECKDEF _authenticated 100

t278 = CMP(NE) _authenticated, 0 #10
CBRANCH(NE) t278, $L12, $L11 #11

$L12: tv279 = CALL &_ProcessPacket, &_packet #12
$L11:

Figure 3: Example vulnerable code in HIR with instru-
mentation.

overhead of approximately 50%.
There are some subtle issues on the choice of mem-

ory granularity for recording definition identifiers. Since
programs can access memory at byte granularity, it
would seem necessary to record a 2-byte definition iden-
tifier for every byte of memory. This would result in a
space overhead of approximately 200%, which may not
be practical. We are able to record a single identifier
for each 32-bit word because we can generate code in
which no two variables with distinct reaching definition
sets share the same aligned 32-bit memory word. Since
our reaching definitions analysis does not distinguish be-
tween different fields in objects and between different
elements in arrays, it is not necessary to change the lay-
out of arrays and objects. We only changed the compiler
to use a minimum alignment of 32 bits when laying out
local variables in a stack frame and globals in the data
segment. Function arguments and heap allocated objects
were already appropriately aligned.

In the current implementation, we allocate the low-
est 1GB of the virtual address space to the program be-
ing instrumented and 512MB to the RDT with a guard
page between them, that is, the guard page is at ad-
dress 40000000h and the base of the RDT is at address
40001000h. So, to compute the address of the RDT en-
try for an operand, we simply take the address of the
operand shift it right by two, multiply the result by two,
and add 40001000h. This layout also enables efficient
bounds checking of the target addresses of writes to pre-
vent tampering with the RDT: we raise an exception if
the bitwise and of the target address with c0000000h is
non-zero (as in [39]). The guard page allows us to check
only the target address for the write and ignore the size.

The high-level instrumentation is lowered to x86 as-
sembly as illustrated by the following examples. We

lower SETDEF authenticated 1 to:

lea ecx,[_authenticated]
test ecx,0C0000000h
je L
int 3

L: shr ecx,2
mov word ptr [ecx*2+40001000h],1

The first instruction loads the target address of the write
into ecx and the following three instructions perform
the bounds check on the address. If the check fails, we
currently generate a breakpoint (int 3), which is very
convenient for debugging. Another exception would be
more appropriate in production use. The shr instruc-
tion is used to compute the address of the RDT entry for
_authenticated and the mov instruction updates the
entry. If the size of the operand is greater than 32 bits,
it is necessary to update the entries in the RDT corre-
sponding to the other words. We can update entries for
64-bit operands with a single mov instruction by moving
the concatenation of two copies of the identifier. But we
add additional instructions with larger operands.

The CHECKDEF authenticated 100 instruc-
tion is lowered to:

lea ecx,[_authenticated]
shr ecx,2
mov cx, word ptr [ecx*2+40001000h]
cmp cx,1
je L
cmp cx,8
je L
int 3

L:

This code compares the definition identifier in the RDT
entry for _authenticated with the definition identi-
fiers in set 100. When the operand is larger than 32 bits,
we add additional comparisons for the other words.

In addition, we instrument definitions and uses of
control-data introduced in the compilation process. For
example on function entry, we add the following code to
set the RDT entry corresponding to the function’s return
address to zero:

mov ecx, esp
shr ecx,2
mov word ptr [ecx*2+40001000h],0

Just before returning, we add code to check if the defi-
nition identifier that reaches the use of the return address
is zero.

mov ecx, esp
shr ecx,2
cmp word ptr [ecx*2+40001000h],0



je L
int 3

L: ret

Going back to our example, the instrumented code is
no longer vulnerable to either the control-data attack that
overwrites the return address or the non-control-data at-
tack that overwrites authenticated. Since the analy-
sis concludes that authenticated is not aliased with
packet, writes to packet have identifiers that are guar-
anteed to be distinct from 1 or 8. Additionally, the iden-
tifier zero is only used on function entry for return ad-
dresses. Therefore, any return address overwrite would
also be detected.

2.4 Runtime environment
Programs rely on a complex runtime environment that
includes several libraries. It is often impossible to ana-
lyze the source code of these libraries. Frequently, only
the binaries are available and, even when source code is
available, some functions are hand-written in assembly.
Yet, many attacks make use of libraries when exploiting
vulnerabilities. For example, string manipulation func-
tions in the C library are notorious for their use in ex-
ploits of buffer overflow vulnerabilities.

Techniques that use source code analysis to instrument
writes fail to provide any guarantees unless library calls
are wrapped to perform safety checks. These techniques
include array bounds checking [34, 25] and memory-safe
dialects of C [30, 24]. Sometimes wrappers are also
required to perform memory layout conversions [30].
Writing these wrappers can be onerous.

Data-flow integrity enforcement does not require any
wrappers for library functions that are not analyzed. If
a programs calls these functions, we cannot instrument
some uses but we guarantee integrity of the data-flow for
all other uses. To do this, we instrument library bina-
ries to set the RDT entries for any memory they write to
an invalid definition identifier (which can be done with-
out the source code). To prevent false positives, we do
not instrument uses of memory that is reachable from a
pointer that is passed to or received from one of these li-
brary functions. We determine these uses by running a
simple reachability analysis on the output of our points-
to analysis. We instrument all other uses. In particu-
lar, we can always instrument all uses of local variables
without definitions external to the function where they
are declared, which prevents the attack in our example.

We provide the option to define library wrappers to in-
crease coverage. To define a wrapper for a library func-
tion, one must write a wrapper function and describe the
subset constraints that calling the function adds to the
points-to analysis. The wrapper function checks defini-
tion identifiers for the memory read by the library, calls

the library, and sets definition identifiers for the memory
written by the library. We instrument the code to call the
wrapper instead of the original function and to supply
the wrapper with reaching definition sets for the mem-
ory read by the library function and a definition identi-
fier for the memory it writes. For example, a wrapper for
the Windows NT operating system call CreateProcess
can check the integrity of the application name and com-
mand line strings supplied as arguments.

void*
Dfi_memcpy(int** defArgs, void *dest,

const void *src, size_t count)
{

unsigned int defId = (unsigned) defArgs[0];
CHECK_BOUNDS(dest, count);
CHECK_ARRAY(defArgs,1,src,count);

memcpy(dest, src, count);

UPDATE_RDT(dest, count, defId);

return dest;
}

Figure 4: Example library function wrapper.

We have written wrappers for library functions used
in our test cases, which include some operating system
calls. Figure 4 shows an example wrapper for memcpy.
CHECK_BOUNDS ensures that memcpy does not write into
the RDT and CHECK_ARRAY checks if the identifiers in
the RDT for the bytes in src are in the reaching defini-
tions set supplied in defArgs. The RDT entries for the
bytes written to dest are set to defId by UPDATE_RDT.

3 Optimizations

A naı̈ve implementation of data-flow integrity enforce-
ment can perform poorly: each definition introduces a
write to the RDT and each use check introduces a read
from the RDT followed by comparisons against each
identifier in the set of reaching definitions for the use.
This section discusses a number of techniques that we
have developed to reduce this overhead.

3.1 Renaming equivalent definitions
The first optimization partitions definitions into equiv-
alence classes in a way that allows us to safely assign
the same identifier to all definitions in the same class.
Two definitions are equivalent if they have exactly the
same set of uses. This reduces the number of compar-
isons in CHECKDEFs and the number of bits required to
represent identifiers. For example, both definitions of
_authenticated in Figure 2 have the same set of uses



computed by the static analysis. We assign the same
identifier 1 to both definitions. Therefore, CHECKDEF
authenticated 100 requires only one comparison. It
is compiled to:

lea ecx,[_authenticated]
shr ecx,2
cmp word ptr [ecx*2+40001000h],1
je L
int 3

L:

Our experiments show that this optimization is funda-
mental to obtain low overhead.

3.2 Removing bounds checks on writes
We check the target addresses of writes to prevent the at-
tacker from tampering with the RDT. We can optimize
SETDEFs by removing these checks from all safe writes.
In the current implementation, a write is safe if the tar-
get address is obtained by adding a small constant offset
(possibly zero) to the stack pointer, frame pointer, or to
the address of a global or static variable. We require the
sum of the offset and the size of the data being written
to be less than 4KB (which is the size of the guard page
that we allocate before the RDT).

For example in Figure 3, since _authenticated is
a local variable whose address is obtained by adding a
small constant to the frame pointer, we can remove the
bounds check from SETDEF authenticated 1. The
SETDEF is compiled to:

lea ecx,[_authenticated]
shr ecx,2
mov word ptr [ecx*2+40001000h],1

3.3 Removing SETDEFs and CHECKDEFs
The next optimization runs data-flow analysis to remove
some SETDEFs and CHECKDEFs. We must be careful to
avoid two problems. First, we must not rely on high level
analyses whose inferences are unsound once data-flow
integrity has been lost: the entire purpose of the instru-
mentation is to detect cases where the program’s data-
flow integrity is compromised. Second, we must not re-
move checks too early during compilation because later
code transformations may change the situations in which
data-flow integrity is lost. Therefore, we perform our op-
timizations when SETDEF and CHECKDEF operations are
still present in their HIR form but the remainder of the
program has already been lowered to the native instruc-
tion set and is ready to emit.

For simplicity, we will describe the case of instruction
sequences within the same basic block. Our implementa-
tion deals with the case of propagating flow variables into

a basic block if it has exactly one predecessor. It could
be extended to provide more optimization opportunities
by using the techniques in [8, 20].

Our instrumentation is redundant in the following
cases. Suppose that instructions ��� and ��� are a pair of
SETDEFs or CHECKDEFs relating to the same data that
execute without any intervening write to that data.

1. If ��� and ��� are both SETDEFs with the same identi-
fier then ��� is redundant.

2. If ��� and ��� are both SETDEFs with no intervening
CHECKDEF for that data then ��� is redundant.

3. If ��� is a SETDEF for ����� and ��� a CHECKDEF for
a set containing ����� then ��� is redundant (indeed,
����� must be in ��� ’s set if the data-flow analysis was
performed correctly).

4. If ��� and ��� are both CHECKDEFs against sets �������
and ������� respectively then ������� can be reduced
to contain only elements in ������� (the earlier check
guarantees no other elements are present). Further-
more, if ������� and ������� hold identical elements
then ��� can be removed (it is not possible for the
latter check to fail if the earlier check succeeds).

5. If ��� is a CHECKDEF against set ������� and ��� a
SETDEF for ��� � then ��� is redundant if �������!�� ��� � � .

In practice rules 3 and 4 are the most effective. Rule
3 eliminates many CHECKDEF instructions when uses of
data occur close to their definitions. Rule 4 lets us re-
move CHECKDEF instructions where the same data is
used repeatedly, even if there are aliasing writes between
the data’s definition and the first of those uses.

To identify redundant instrumentation, we use sym-
bolic execution of the native code augmented with
SETDEF and CHECKDEF operations. We update the
symbolic state of the registers after each instruction
and the symbolic state of the RDT after SETDEFs and
CHECKDEFs. The symbolic state of the RDT maps sym-
bolic memory addresses to sets of definition identifiers.

The current implementation uses a simple test to com-
pare symbolic addresses. Two addresses are equal if they
are syntactically equal. They are different if they are
computed by adding different offsets to the same sym-
bolic register state. Otherwise, they may refer to aliased
memory locations. A write to memory invalidates the
symbolic state of a register if this state refers to the con-
tents of a memory position that may be aliased with the
write’s target. Additionally, it removes mappings for any
memory that may be aliased with the write’s target from
the symbolic RDT state. We apply the rules to elimi-
nate redundant instrumentation after each SETDEF and
CHECKDEF by examining the symbolic RDT state.



3.4 Optimizing membership checks

Another optimization renames definitions to reduce the
cost of membership checks in CHECKDEFs. Membership
checks can be implemented more efficiently when sets
contain ranges of consecutive identifiers: a check against��"$#%#%#'&(�

can be implemented by a single unsigned inte-
ger comparison against

&
, and a check against

��& #%#%#')*�
can be implemented by subtracting

&
and performing an

unsigned comparison against
),+-&

.
We define the cost of a CHECKDEF as the number of

subtractions and comparisons necessary to perform its
membership check. For instance, the cost of checking
membership in

������./�10��
is three, but it is only one for��"/�%���324�

. We say that the total cost of an identifier set
is the cost of a single CHECKDEF against it, multiplied
by the number of CHECKDEFs against it that occur in the
program text.

We use a simple greedy algorithm to attempt to reduce
the sum of the total costs of all sets: we sort the sets in
order of decreasing total cost and proceed to assign the
most costly sets to contiguous identifier ranges. We start
from identifier 0 and so the set with the largest total cost
benefits from the cheapest comparisons. Once we have
started assigning identifiers to the elements of popular
sets, we are constrained in the assignment of identifiers
to elements in less popular sets that intersect them.

3.5 Removing SETDEFs for safe definitions

The last optimization identifies local variables that have
no definitions outside the function and that are written
only by safe writes (according to the definition of safe
in 3.2). It replaces all SETDEFs for such a variable by a
single SETDEF with identifier 0 that is placed on function
entry. It also simplifies CHECKDEFs for such variables to
have a reaching definitions set of

��"��
. This is sufficient

because it detects violations of data-flow integrity that
overwrite these variables and safe writes cannot over-
write other variables.

3.6 Other optimizations

We also tried to reorder comparisons in CHECKDEFs to
take advantage of the fact that different definitions can
reach a use with different frequencies at runtime. How-
ever, this optimization had little impact in our sam-
ple programs after we applied the other optimizations.
Therefore, it is not included in the results that we present.

We have focused on optimizations that can be made
without reference to profiling data. Using feedback,
whether dynamically or from full program runs, is an in-
teresting direction for future work.

4 Evaluation

We ran experiments to evaluate the overhead of our im-
plementation and the effectiveness of data-flow integrity
enforcement at preventing control-data and non-control-
data attacks. This section presents our results.

4.1 Overhead

We used several programs from the SPEC CPU 2000
benchmark suite to measure the overhead added by our
instrumentation. We chose these programs to facilitate
comparison with other techniques that have been evalu-
ated using the same benchmark suite, for example, [5].
We ran six integer benchmarks (gzip, vpr, mcf, crafty,
bzip2, and twolf) and three floating point benchmarks
(art, equake, and ammp).

These benchmarks are CPU-intensive and they spend
most time executing instrumented code at user level. The
overhead of our instrumentation is likely to be higher in
these benchmarks than in other programs where it would
be masked by other overheads. Therefore, we also mea-
sured the overhead in a Web server running the SPEC
WEB 1999 benchmark (see Section 4.1.4).

We compared the running time and peak physical
memory usage of the programs compiled using Phoenix
with and without our instrumentation. The version with-
out instrumentation is compiled with optimization (/Ox)
but the current release of Phoenix does not implement
many optimizations that are available in other compilers.

We ran the experiments on an idle Dell Precision
Workstation 350 with a 3GHz Intel Pentium 4 processor
and 2GB of memory. The operating system was Win-
dows XP professional with service pack 2. We ran each
experiment three times and we present the average result.
The variance in the results was negligible.

4.1.1 Comparison with uninstrumented code

The first set of experiments measured the overhead of
data-flow integrity enforcement with all the optimiza-
tions. We evaluated two variants of data-flow integrity
enforcement: intraproc DFI only instruments uses of
control-data and uses of local variables without defini-
tions outside their function, and interproc DFI is the vari-
ant described earlier in the paper.

Figure 5 shows the execution time of the two variants
of data-flow integrity enforcement normalized by the ex-
ecution time without instrumentation (which is labeled
base in the figure). The average overhead is 43% for
intraproc DFI and 104% for interproc DFI. We believe
that the overhead of either variant is sufficiently low to
enable the use of data-flow integrity enforcement in ap-
plications that are not CPU intensive or that spend more
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Figure 5: Execution time with data-flow integrity en-
forcement (normalized by the execution time without in-
strumentation).

time executing in the kernel. For example, it could be ap-
plied to Internet browsers or Web servers, which are the
target of frequent attacks. In Section 4.1.4, we show that
the overhead is significantly lower when using data-flow
integrity enforcement to protect a Web server.

It is hard to perform a detailed quantitative comparison
with previous techniques due to differences in hardware,
operating system, and compiler. But we can use pub-
lished results obtained using the same benchmarks to put
our overhead in perspective. Program Shepherding [27]
and CFI [5] have lower overhead but these techniques
cannot detect non-control-data attacks. The overhead of
either variant of DFI is significantly lower than the over-
head incurred by a state-of-the-art C bounds checker:
CRED [34] incurs an overhead of nearly 300% in bzip2
and 100% in gzip [34]. The overhead of software im-
plementations of taint checking [31, 16] is also signif-
icantly higher, for example, TaintCheck [31] ran bzip2
37.2 times slower than without instrumentation.

We also compared the space overhead introduced by
interproc DFI relative to base during the execution of
each program. We compare the peak physical memory
usage during execution, as reported by the operating sys-
tem. The results are shown in Figure 6. As expected
the overhead is approximately 50% because we allocate
a 2-byte entry in the RDT for each 4-byte word in the
instrumented program.

4.1.2 Overhead breakdown

To better understand the sources of overhead, we ran ex-
periments to breakdown the overhead of interproc DFI
into several components. The experiments removed
components from the instrumentation one at a time. Fig-
ure 7 shows the breakdown normalized by the total over-
head for each program.

The overhead of SETDEFs is the sum of the overhead
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Figure 6: Space overhead of data-flow integrity enforce-
ment relative to the execution without instrumentation.
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Figure 7: Breakdown of the instrumentation overhead.

of the first two components: storing the identifier into
the RDT and performing a bounds check to protect the
RDT from tampering. The remaining overhead is due
to CHECKDEFs: loading the identifier from the RDT and
checking if it is in the set of reaching definitions. A
SETDEF is on average 3.6 times more expensive than a
CHECKDEF but the programs execute between 4 times and
25 times more CHECKDEFs than SETDEFs. Therefore, the
total overhead of CHECKDEFs is significantly higher than
that of SETDEFs.

The bulk of the overhead is due to memory accesses to
the RDT and the cache pollution they introduce, which is
not surprising given the gap between processor speed and
memory latency. The overhead of the bounds check on
writes is negligible because our optimization can remove
many bounds checks. Membership checks are more ex-
pensive because we always perform at least one compar-
ison and sometimes more: the average number of com-
parisons is 1.5. These membership checks account for
most of the overhead in crafty because its small working
set makes accesses to the RDT relatively less expensive.
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malized by the execution time without instrumentation).

4.1.3 Impact of optimizations

We also measured the overhead reduction afforded by the
different optimizations.

The optimization with the most significant impact is
the renaming optimization, which assigns the same iden-
tifier to all definitions that have the same set of uses. We
compared the running time of interproc DFI with and
without this optimization. The version without the op-
timization assigns a unique identifier to each instruction
that defines a value. Figure 8 shows the execution times
without optimizations, with the renaming optimization,
and with all the optimizations. The execution times are
normalized by the execution time without instrumenta-
tion and the y-axis has a logarithmic scale.

The results show that the renaming optimization is
fundamental for data-flow integrity enforcement to be
practical: some benchmarks are more than an order of
magnitude slower without it. The performance differ-
ence is due to a large reduction in the size of reaching
definition sets. We measured the size of reaching defini-
tion sets computed by the interprocedural analysis with
and without the optimization. Figure 9 shows the median
and 90-th percentile set sizes without the optimization di-
vided by the corresponding values with the optimization.
The ratios are very large: they vary between 3 and 264.
The renaming optimization brings the median definition
set size to 3 or less for 6 of the benchmarks.

We also ran experiments to measure the impact of the
other optimizations discussed in Section 3. The experi-
ments added one optimization at a time starting from the
version with the renaming optimization. Figure 10 shows
the contribution of each optimization to the difference in
execution time between the version with the renaming
optimization and the version with all optimizations.

The results show that all the optimizations play an im-
portant role in at least one benchmark program.
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Figure 9: Median and 90-th percentile definition set sizes
without the renaming optimization divided by the corre-
sponding values with the optimization.
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Figure 10: Contribution of each optimization (other than
renaming) to the reduction in execution time.

4.1.4 Web server overhead

We also ran the SPEC Web 1999 benchmark to mea-
sure the overhead added by our instrumentation to the
NullHttpd Web server. The server ran on a Dell Pre-
cision workstation 350 with a 3GHz Intel Pentium 4 pro-
cessor and 2GB of RAM. The clients ran on a Dell Lat-
itude D600 laptop with a 2GHz Intel Pentium processor
and 1GB of RAM. Both machines ran Windows XP pro-
fessional with service pack 2 and they were connected by
a 100Mbps D-Link Ethernet switch. We configured the
clients to request only static content. Since we do not in-
strument the Perl scripts that handle requests for dynamic
content, our overhead is higher with static content. We
present the average of three runs.

We measured the average response time and through-
put for a base version of the server without instrumen-
tation and for a version of the server instrumented to en-
force data-flow integrity. For both versions, we increased
the number of clients while the results complied with
the benchmark rules. The results stopped complying at
60 clients for the version with instrumentation and at 80
clients for the version without instrumentation. Figure 11
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Figure 11: Spec Web throughput with instrumentation
normalized by the throughput without instrumentation.

shows the throughput in operations per second for the
version with instrumentation normalized by the through-
put without instrumentation.

When server load is low, the overhead of our instru-
mentation is also low because it is masked by other over-
heads (for example, the time to send requests and replies
across the network). The results show that the through-
put of both versions of the server is almost identical with
up to 40 clients. Additionally, the average operation re-
sponse time in an unloaded server (10 clients) is only
0.1% longer with instrumentation than without.

When server load is high, the overhead of data-flow in-
tegrity enforcement increases because the server is CPU-
bound in this benchmark. The overhead of enforcing
data-flow integrity increases up to a maximum of 23%.

4.2 Effectiveness against attacks

We used several exploits to evaluate the effectiveness of
data-flow integrity enforcement at stopping both control-
data and non-control-data attacks. We used a bench-
mark with synthetic exploits [40] and several exploits
of real vulnerabilities in existing programs. This section
describes the programs, the vulnerabilities, and the ex-
ploits.

4.2.1 Synthetic exploits

We ran the benchmark program that was described
in [40]. This benchmark has 18 control-data attacks that
exploit buffer overflow vulnerabilities. The attacks are
classified according to the technique they use to over-
write control-data, the location of the buffer they over-
flow, and the control-data they target. There are two
techniques to overwrite control-data. The first overflows
a buffer until the control-data is overwritten. The sec-
ond overflows a buffer until a pointer is overwritten, and

uses an assignment through the pointer to overwrite the
control-data. The attacks can overflow buffers located in
the stack or in the data segment, and they can target four
types of control-data: the return address on the stack, the
old base pointer on the stack, and function pointers and
longjmp buffers in the stack or in the data segment.

Table 1 shows that data-flow integrity enforcement
can prevent all the attacks in the benchmark. The best
techniques evaluated in [40] failed to prevent 50% of
the attacks. Some recent techniques can also prevent
all attacks in this benchmark, for example, CFI [5] and
CRED [34].

4.2.2 Real exploits

The first experiment ran the NullHttpd HTTP server.
This server has a heap overflow vulnerability that an at-
tacker can exploit by sending HTTP POST requests with
a negative content length field [2]. These POST requests
cause the server to allocate a heap buffer that is too small
to hold the data in the request. While copying the data to
the buffer, the server overwrites some data structures that
are used by the C library to manage the heap. This vul-
nerability can be exploited to overwrite arbitrary words
in memory.

We attacked NullHttpd using the technique de-
scribed in [14]. The attack works by corrupting the
CGI-BIN configuration string. This string identifies a
directory holding programs that may be executed while
processing HTTP requests. Therefore, by corrupting it,
the attacker can force NullHttpd to run arbitrary pro-
grams. This is a non-control-data attack because the at-
tacker does not subvert the intended control-flow in the
server.

Data-flow integrity enforcement detects the attack on
the first use of the CGI-BIN configuration string after it
has been overwritten. It can do this because the library
instructions that manipulate the internal heap data struc-
tures store invalid identifiers in the RDT entries for the
words they write (as described in Section 2.4). This in-
valid identifier is, of course, not in the reaching definition
set for the uses of the CGI-BIN configuration string.

In addition to preventing the attack, data-flow integrity
enforcement found the following bug during the process-
ing of NullHttpd’s default configuration file:

while ((line[strlen(line)-1]==’\n’)
||(line[strlen(line)-1]==’\r’)) {

line[strlen(line)-1]=’\0’;
}

If line contains the string "\n", the second pass
through the loop accesses line[-1]. This could lead
to memory corruption if line[-1] contained the char-
acter ’\n’ or ’\r’.



Attack Target data structure Detected?

direct overwrite on stack

parameter function pointer yes
parameter longjmp buffer yes
return address yes
old base pointer yes
function pointer yes
longjmp buffer yes

direct overwrite on data segment
function pointer yes
longjmp buffer yes

overwrite through stack pointer

parameter function pointer yes
parameter longjmp buffer yes
return address yes
old base pointer yes
function pointer yes
longjmp buffer yes

overwrite through data segment pointer

return address yes
old base pointer yes
function pointer yes
longjmp buffer yes

Table 1: Synthetic attacks detected by data-flow integrity enforcement.

The second experiment ran SSH, which is a secure
shell implementation from OpenSSH.org that contains
an integer overflow vulnerability [3]. The problem is
caused by an assignment of a 32-bit integer to a 16-bit
integer. If the lower word of the 32-bit integer is 0, the
16-bit integer is assigned 0. This integer is then passed
as an argument to malloc, which results in the alloca-
tion of a buffer that is too small. This vulnerability can
be exploited to write any memory position in the server.

We ported the vulnerableSSH implementation to Win-
dows and attacked it using the exploit in [14]. This ex-
ploit is similar to the example described in Section 2. It
overwrites a variable, which is stored in the stack frame
of another function, that records whether the user has
been authenticated. The attacker can use the server with-
out being authenticated by setting the variable to 1.

Data-flow integrity enforcement catches the attack on
the first use of the authenticated variable after it has been
overwritten, because the reaching definitions set for the
use of the variable does not contain the identifiers of
any definition outside the function where the variable
is declared. This attack is detected even when data-
flow integrity enforcement instruments only local vari-
ables without external definitions (like the version that
we called intraproc DFI in the previous section).

The third experiment ran the GHTTP HTTP server,
which has a number of vulnerabilities [1]. We ported
GHTTP to Windows and exploited a buffer overflow vul-
nerability in a stack-based buffer to corrupt the return ad-
dress. Data-flow integrity enforcement catches this com-
mon control-data attack because of the instrumentation
that we add to check the integrity of return addresses (as
described Section 2). The identifier stored by the buffer

write to the RDT entry of the return address is guaranteed
to be different from the expected value of zero.

The final experiment ran Stunnel, which is a generic
tunnel for security protocols. It is vulnerable to a format
string attack [4] because it passes a string received from
the network as a format string to the vsprintf func-
tion. To attack Stunnel, we supplied a format string
that causes the return address of the function to be over-
written. This is typical of format string attacks and it is
another control-data attack. As in the previous experi-
ment, data-flow integrity enforcement detects the attack
when the overwritten return address is about to be used
by the return instruction.

5 Related work

Many mechanisms have been proposed to protect pro-
grams from attacks. CCured [30] and Cyclone [24] pro-
posed safe dialects of C. They can prevent more attacks
than data-flow integrity enforcement because they ensure
memory safety for programs written in these dialects.
However, they require a significant effort to port C ap-
plications to the safe dialects, and they require major
changes to the runtime. For example, they replace mal-
loc and free by a garbage collector. A garbage collector
makes performance hard to predict and it can introduce
a significant overhead, for example, the results presented
in [30] show that CCured slows down the bc utility by
almost a factor of 10.

Other mechanisms can only defend from attacks that
overwrite specific targets, such as return addresses, func-
tion pointers or other control data (e.g., [18, 17, 35]).
While effective against some attacks, these approaches



Application Vulnerability Exploit Detected?
NullHttpd heap-based buffer overflow overwrite cgi-bin configuration data yes
SSH integer overflow and heap-based buffer overflow overwrite authenticated variable yes
STunnel format string overwrite return address yes
Ghttpd stack-based buffer overflow overwrite return address yes

Table 2: Real attacks detected by data-flow integrity enforcement.

can miss many control-data attacks [40] and they cannot
defend against non-control data attacks.

Program Shepherding [27] and Control-Flow In-
tegrity [5] are general mechanisms to ensure that a pro-
gram does not deviate from its control-flow graph. They
analyze the source code to compute a control-flow graph
and use binary rewriting to enforce integrity of control-
flow at runtime. Control-Flow Integrity provides lower
overhead than Program Shepherding and it has been
shown formally to catch any deviation from the control-
flow graph [6]. However, as pointed out by [14], attacks
can succeed without changing the control-flow of the tar-
get programs. Neither Control-Flow Integrity nor Pro-
gram Shepherding can detect non-control-data attacks.

Several systems have proposed broad coverage attack
detectors based on dynamic taint analysis [37, 15, 19,
31, 13, 16, 22, 33]. These mechanisms can detect both
control-data and non-control-data attacks. They have the
advantage of not requiring source code; they work on bi-
naries and do not even require symbol information. How-
ever, they can have false positives and proposed imple-
mentations have high overhead or require hardware sup-
port.

There are several bounds checkers for C (e.g., [26, 36,
25, 34]). The Jones and Kelly [25] bounds checker does
not require changes to the pointer format. It instruments
pointer arithmetic to ensure that the result and original
pointers point to the same object. To find the target ob-
ject of a pointer, it uses a splay tree that keeps track of
the base address and size of heap, stack, and global ob-
jects. A pointer can be dereferenced provided it points
to a valid object in the splay tree. CRED [34] is similar
but provides support for some common uses of out-of-
bounds pointers in existing C programs. These bounds
checkers can detect both control-data and non-control
data attacks but they do not prevent all bounds violations.
For example, they cannot prevent attacks that exploit for-
mat string vulnerabilities or that overwrite data using a
pointer to a dead object whose memory was reused. Ad-
ditionally, they have high overhead because of accesses
to the splay tree. Data-flow integrity enforcement can
prevent these types of attack and it has lower overhead.

Several systems use static analysis to detect software
vulnerabilities in C and C++ programs (e.g., [38, 11,
12]). These systems have been very successful at finding
vulnerabilities in existing software and they have the ad-

vantage of detecting problems at compilation time. Like
data-flow integrity enforcement, they can miss attacks
due to analysis imprecision but, unlike it, they can gener-
ate a large number of false positives. Other systems have
proposed static techniques to enforce user-specified data
confidentiality and integrity policies (e.g., [41]). Our
goal is different: we want to enforce a low level safety
property that is automatically derived from the source
code of programs written in an unsafe language.

Debugging tools like Purify [23] can detect many
memory errors in programs. They could be used to detect
attacks but they have high overhead.

6 Conclusions

We introduced a simple safety property called data-flow
integrity and presented an implementation that instru-
ments programs automatically to enforce this property.
Since most attacks must violate data-flow integrity to
be successful, data-flow integrity enforcement can pro-
tect software from most attacks: it can prevent both
control-data and non-control-data attacks. Previously,
there was no good defense against non-control-data at-
tacks and they will become common once we deploy de-
fenses against control-data attacks.

Our implementation can be used in practice because
it can be applied automatically to C and C++ programs
without modifications and it does not have false posi-
tives. We described several optimizations that reduce
the overhead of the instrumentation. These optimizations
make it practical to run data-flow integrity enforcement
in many applications.

We believe that it is possible to improve the cover-
age and performance of data-flow integrity enforcement.
There has been recent work on more precise points-to
analysis that can scale to large programs [12]. We could
leverage this work to improve the precision of our inter-
procedural analysis.
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