
Brief Announcement: Implementing Multi-Word Atomic
Snapshots on Current Hardware

Chris Purcell
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge, UK, CB3 0FD

Chris.Purcell@cl.cam.ac.uk

Tim Harris
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge, UK, CB3 0FD

Tim.Harris@cl.cam.ac.uk

Categories & Subject Descriptors: D.1.3
[Programming Techniques]: Concurrent Programming
General Terms: algorithms, design, performance
Keywords: non-blocking, lock-free, atomic snapshots

We present an algorithm that takes an atomic snapshot of
a section of memory, without support from other code, us-
ing only read accesses to memory. Our goal is to ensure
simultaneous read operations do not conflict at any point
in the memory hierarchy, without inflating memory usage.
Mutual-exclusion, even “multiple-reader single-writer” vari-
ants, and reference counting demand exclusive access to
shared reader counts of some form. Systems using only local
memory require frequent use of expensive read-after-write
memory barriers, constraining their optimisation both in the
CPU and the memory hierarchy. Other algorithms rely on
an external garbage collector, delaying memory reuse and
increasing their footprint in memory.

Our algorithm relies on the following observation: if a se-
ries of read instructions complete without needing to load
memory into the cache, and without an intervening local
write operation, then the reads can be viewed as occurring
atomically at the start of the series. It is thus trivial to
see that such a series of read instructions forms a multi-
word snapshot. The snapshot algorithm simply loops un-
til all reads hit in the cache. This is verified using values
from the processor’s internal cache-miss counter. To pre-
vent an intervening local write by a pre-empting thread, we
also count user/supervisor mode switches, which must occur
during pre-emption.

do
do

// Start snapshot
(m, s) := (#Cache-Misses, #Mode-Switches)

Reads for snapshot
Optional load-linked

until (m, s) == (#C-Misses, #M-Switches)
until (optional store-conditional succeeds)

Furthermore, the snapshot algorithm is lock-free provided
the cache can store all the data at the same time. While not
unreasonable, this may be a problem in situations where sev-
eral memory locations in a pointer chain map to the same set

Copyright is held by the author/owner.
PODC’04, July 25–28, 2004, St. Johns, Newfoundland, Canada.
ACM 1-58113-802-4/04/0007.

in the cache, causing overflow even though there is enough
capacity. This issue also applies to other proposals to sup-
port multi-word atomic operations in cache hardware.

On hardware that provides it, a load-linked can form part
of the snapshot. We used this to implement an existing
linked list [1] with a non-conflicting read operation. Each
read is done in a single snapshot. We compared this al-
gorithm to one relying on a large-footprint epoch garbage-
collector (EGC), one using reference counting (REF), an
adaptation by Maged Michael [2] (SMR), and a hybrid sys-
tem using snapshots for reads and reference counting for
memory management. Both of our snapshot-based algo-
rithms performed within 5% of the fastest, EGC, and with-
out its vastly inflated memory footprint.

We ran the tests on a dual-processor PowerPC machine
(Apple’s 2x1.25GHz G4). Currently, the only processor lines
providing sufficient access to L2-miss counters are PowerPC
and Itanium architectures.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 1 10 100 1000 10000

U
pd

at
es

 p
er

 m
ic

ro
se

co
nd

Number of objects

EGC

REF

SMR

Snapshot-based

 10

 100

 1000

 10000

 0 8 16 24 32 40 48 56 64

of

 b
lo

ck
s

al
lo

ca
te

d

Number of threads

EGC (linear best fit)

SMR

Snapshot-based and REF

REFERENCES
[1] Harris, T. A Pragmatic Implementation of Non-Blocking

Linked Lists. In Proceedings of the 15th International
Conference on Distributed Computing.

[2] Michael, M. High Performance Dynamic Lock-Free Hash
Tables and List-Based Sets. In Proceedings of the 14th Annual
ACM Symposium on Parallel Algorithms and Architectures.

