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ABSTRACT
Computers used for data analytics are often NUMA systems
with multiple sockets per machine, multiple cores per socket,
and multiple thread contexts per core. To get the peak per-
formance out of these machines requires the correct number
of threads to be placed in the correct positions on the ma-
chine. One particularly interesting element of the placement
of memory and threads is the way it effects the movement of
data around the machine, and the increased latency this can
introduce to reads and writes. In this paper we describe work
on modeling the bandwidth requirements of an application
on a NUMA compute node based on the placement of threads.
The model is parameterized by sampling performance coun-
ters during 2 application runs with carefully chosen thread
placements. Evaluating the model with thousands of mea-
surements shows a median difference from predictions of
2.34% of the bandwidth. The results of this modeling can be
used in a number of ways varying from: Performance de-
bugging during development where the programmer can be
alerted to potentially problematic memory access patterns;
To systems such as Pandia which take an application and pre-
dict the performance and system load of a proposed thread
count and placement; To libraries of data structures such as
Parallel Collections and Smart Arrays that can abstract from
the user memory placement and thread placement issues
when parallelizing code.

1 INTRODUCTION
Modern NUMA computers with multiple sockets per ma-
chine, multiple cores per socket, andmultiple thread contexts
per core are often used for data analytics type workloads. To
get the peak performance out of these machines requires the
correct number of threads to be placed in the correct posi-
tions on the machine. One particularly interesting element
of the placement of memory and threads is the way it effects
the movement of data around the machine. This effects the
latency of reads and writes both through the inherent dif-
ferent latencies of different connections, but also through
the different bandwidths of the connections and the effect
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Figure 1: Graph showing the performance of a mem-
ory intensive application on different dual socket In-
tel Xeon machines with different thread and memory
placements. Speedup is relative to the slowest config-
uration for each machine. Results are labeled by the
memory placement, 1st socket, interleaved, or local,
and then by the thread placement, 1 socket, or both
sockets.

if these become saturated. This paper describes work on
modeling the bandwidth requirements of an application on
a NUMA compute node based on the placement of threads.
The model is parameterized by sampling performance coun-
ters during 2 application runs with carefully chosen thread
placements. Previous work using performance counters has
tended to focus on the IPC and LLC miss counters, but as
the number of performance counters available on modern
processors increases [26] the opportunity to construct more
intricate models also increases. Evaluating the model over
many thousands of measurements has shown a median dif-
ference between the predicted and the measured bandwidth
of 2.34% of the bandwidth, with larger errors primarily re-
stricted to applications that transfer little data. The results of
the modeling can be used in a number of ways varying from:
Performance debugging during development where the pro-
grammer can be alerted to potentially problematic memory
access patterns; To systems such as Pandia [10] which take
an application and predict the performance and system load
of a proposed thread count and placement; To libraries of
data structures such as Parallel Collections [21] and Smart
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Figure 2: Graph of the different memory bandwidths
available on the test systems.

Arrays [22] that can abstract from the user memory place-
ment and thread placement issues when parallelizing code.

As motivation for this work consider the graph in Figure 1.
This shows the performance of different thread and memory
placements on 2 different 2 socket Intel Haswell machines.
Each run is normalized relative to the slowest run on a given
machine. The same memory intensive synthetic benchmark
is used for all runs and was run with enough threads to
place a single thread on each core of a single socket, 8 and
18 threads respectively. When running with 2 sockets these
threads are split evenly with each thread still placed in its
own core. The memory placements are: 1) all memory on
the first socket; 2) Memory interleaved between sockets at
the granularity of a page giving 50% remote accesses; 3) All
of a threads memory located locally to the thread giving 0%
remote accesses. From this we can see that when using a
single socket for the 18 core system there is little difference
between accessing data remotely and accessing it locally
with the CPU acting as the limiting factor, while for the 8
core system there is a 3x slowdown relative to the quickest
placement. We can also observe that when running an ap-
plication with shared memory, the fastest placement for the
18 core machine is to spread the threads and the data evenly
across the machine interleaving the memory to spread the
bandwidth load evenly. For the 8 core machine peak perfor-
mance is achieved by keeping all the data and threads on
a single socket avoiding remote communication. It is clear
from this that the 18 core machine is far more forgiving of
thread and memory placement, however as shown in Fig-
ure 2 the 8 core machine has a higher bandwidth to the local
memory, and is a substantially cheaper machine with a sug-
gested retail price per CPU of $667 vs $4115. This means that
if the placement of memory and threads can be correctly
organized there is the potential to save both time and money
on memory limited applications. Figure 2 also demonstrates
the dramatic difference in bandwidth for 2 apparently similar
machines.

Having demonstrated the effects that different memory
placements can have on a system we will now consider how
this model could be used in the use cases mentioned earlier.
Performance prediction Systems that seek to model the

performance of a workload in a given configuration need
to be able to predict the resource demands. Currently in
systems such as Pandia they either use a static placement for
all applications, or measure the distribution of bandwidth
during one of the measurement runs and assume that it will
stay the same throughout all further thread placements. The
use of this model would allow for more detailed bandwidth
requirements to be added so allowing for a more accurate
prediction of the performance with each possible thread
count and placement.

Libraries of data structures. When libraries such as Smart
Arrays abstract the memory placement from the user, the
library needs to make decisions about how best to layout
the memory. Currently they make the assumption that when
the collection requires bandwidth for data processing the
application will not be using bandwidth for anything else.
However the assumption that all the data used by the ap-
plication at the time will be in collections belonging to the
library is a restrictive one. The use of a bandwidth model
would provide the opportunity to model the bandwidth re-
quirements and make allowances for this at run time when
placing the data stored by the library into memory.

Debugging and development. Applications will typically
run in many environments and performance critical applica-
tions have to be tested in each environment that they wish
to run in. By modeling the bandwidth requirements of the
application with different thread placements and against dif-
ferent hardware descriptions, it would be possible to flag up
potential problems to the programmer before the application
reaches the testing stage, so allowing an earlier fix.

Our contributions are the bandwidth model, the tech-
niques for parameterizing it to fit real programs, and the
evaluation of the model.
The rest of this paper is structured as follows: We will

first introduce an outline of the system that we are model-
ing; Then we will look at the way we model the bandwidth;
Having introduced the model we will look at how it can
be used to predict the bandwidth requirements of a thread
placement; Before we consider how we measure the values
for the model for a given application; We then look at the
stability and accuracy of this modeling across different hard-
ware with a range of synthetic and real benchmarks; Before
concluding with thoughts on future work and looking at
related work.
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2 TARGET HARDWARE
This work is aimed at multi-socket NUMA machines with
performance counters to record their activity. It was car-
ried out on Intel Xeon machines. An idealized example of
a 2 socket machine can be seen in Figure 3 with a memory
bank attached to each socket via memory channels, and the
sockets connected via an interconnect. Information about
the performance of applications is captured via performance
counters the processors provide through tools such as Per-
formance Counter Monitor (PCM). While some variation
appears between manufactures, the counters offered by man-
ufactures are sufficiently similar that we believe that the
techniques described here can be applied to other hardware
with minimal modifications.

2.1 Performance counters
The counters of interest in this work cover the time elapsed,
the number of instructions executed, and the volume of data
read or written to each memory bank separated out into
data to and from the local socket and data to and from re-
mote sockets. While the performance counters recording the
volume of data to and from the memory banks are almost
certainly located on the memory controller contained within
the CPU, in Figure 3 we have drawn them on the memory
banks to emphasize that on the Intel processors used for this
work the counters report from the perspective of the memory
bank, not the processor regarding local and remote accesses.
So for example if we have 2 threads on CPU1 and 1 thread
on CPU 2 all running at the same speed, and all sending 1

2
of their accesses to each of the memory banks, then from
the point of view of the CPUs 1

2 of memory accesses are
to remote locations, and 1

2 are to local locations. However
from the point of view of memory banks 1 and 2, 2

3 and 1
3 of

the accesses are local respectively with the remainder being
remote accesses, and it is this view that is reported by the
program counters.

2.1.1 lessons learned. When selecting the performance coun-
ters we noted two sets of counters that we initially thought
would be useful but it turned out were insufficient for our
use case:

Quick Path Interconnect (QPI). The first of these was the
QPI counters. We had hoped that these would allow us to
observe directly how much of our data was moving along
which interconnects. However, there is a substantial amount
of additional traffic that makes use of the QPI, much of which
appears to die away when the QPI is required for moving
application data. So this traffic is not a limiting factor on
the performance of an application, but does make for a very
noisy signal when trying to model the bandwidth. For this

Memory Bank 2Memory Bank 1

Read/Write performance countersRead/Write performance counters

Socket 1 Socket2

CPU 1 CPU 2
Core

Core

Core Core Core Core

CoreCore Core Core

Core

Core

Figure 3: Example of a 2 socket NUMA machine with
banks of memory attached to each socket, and each
socket containing a CPU with 6 cores. We will use
the same machine in all our examples, but for visual
clarity we will dispense with drawing the cores. Each
memory bank is connected to its respective socket by
amemory channel, and an interconnect joins the sock-
ets. While the performance counters recording the
data transfer are almost certainly located on themem-
ory controller contained within the CPU, we have
drawn them on the memory banks here to emphasize
that on the Intel processors used for this work the
counters report from the perspective of the memory
bank, not the processor regarding local and remote ac-
cesses.

reason we instead chose to look at the traffic to the memory
banks which is considerably less noisy as a metric.

Instructions Per Cycle (IPC). Many performance counter
libraries still include IPC as one of the performance counters
that users can request, and while the value returned is the
IPC, as the frequency of the chips can change at a very fine
granularity this information is extremely misleading without
a corresponding record of the chip frequency. To over come
this we instead opt to record the number of instructions
executed and the time in which they were executed.

3 BANDWIDTH MODEL
Our model of the bandwidth utilization across a machine is
constructed by splitting the usage into 4 classes of memory
access pattern that can be combined to describe the memory
access pattern of the application threads. The fraction of each
threads memory accesses that can be attributed to each of
these patterns is measured through 2 profiling runs and we
will call this a bandwidth signature. The resulting signature
can then be used to apply bandwidth requirements to any
thread placement. Separate signatures are constructed for
reads and writes, but the measurements required for these
two signatures are taken during a single set of runs. The
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access types are described here on a system with 𝑠 sockets
and executing a workload using 𝑛 threads:

Static Access to memory that is allocated on the RAM
attached to a single socket but used by all threads. For
example if the master thread loads the input data or
the output array is allocated on a single socket.

Local Access to memory that is only accessed by the
threads on the same socket as thememory. For example
a replicated data structures, or thread local data.

Interleaved Access to memory that is allocated evenly
across the used sockets such that each socket has 1

𝑠
of

the data. For example if the interleave flag has been
used in numactl.

Per-thread Access to memory where each thread allo-
cates 1

𝑛
of the memory locally, but the memory is used

by all threads. For example if each thread loads 1
𝑛
of

the data, or the threads are are constructing and using
a shared data structure such as a tree.

Examples of these patterns can be seen in Figure 4.
We view that the read bandwidth and the write bandwidth

requirements for each workloads is made up of a mix of these
4 classes of access pattern. To encode this for both reads and
writes we use 3 properties in the range [0 . . . 1] describing
the fraction of the accesses that is Per thread, Local, and
Static. We call these the Per thread fraction, Local fraction,
and Static fraction. Any remaining bandwidth is deemed to
be Interleaved. The sum of the three fractions must be ≤ 1.
This gives 6 properties in total, 3 for reads and 3 for writes.
These 6 are augmented by a property for read bandwidth and
a property for write bandwidth that records which socket the
static bandwidth is associated with. We call this the Static
socket. Together these properties make up the bandwidth
signature of the application.

Before considering how to calculated the 4 properties that
make up the model for reads and the 4 properties for writes
we now consider how to apply them to construct the band-
width requirements for different thread placements.

4 APPLYING BANDWIDTH SIGNATURE
TO A THREAD PLACEMENT

As discussed the model describes how the bandwidth from
a thread on a given socket should be distributed across the
system, the total volume of data for each thread will need to
be calculated independently. For example in Pandia this is
achieved by taking the bandwidth requirement of a single
thread, applying this to every thread and then scaling the
bandwidths on a thread by thread basis to allow for changes
in thread performance due to issues such as resource satura-
tion.

Memory Bank 2Memory Bank 1

Memory Allocation

Socket 1 Socket2

CPU 1 CPU 2

Thread Thread Thread

a) Static
Memory Bank 2Memory Bank 1

Socket 1 Socket2

CPU 1 CPU 2

Memory 
Allocation

Memory 
Allocation

Memory 
Allocation

ThreadThreadThread

b) Local
Memory Bank 2Memory Bank 1

Memory Allocation Memory Allocation

Socket 1 Socket2

CPU 1 CPU 2

Thread ThreadThread

c) Interleaved

Socket 1 Socket2

CPU 1 CPU 2

Thread

Memory Bank 2Memory Bank 1
Memory 

Allocation
Memory 

Allocation
Memory 

Allocation

Thread Thread

d) Per thread

Figure 4: Examples of the 4 different types of mem-
ory placement types that we model. In this case they
are an application with 3 threads placed on a machine
with 2 sockets.
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To demonstrate the applying the signature we will use an
examplewhich has the properties Static socket = 2, Static frac-
tion = 0.2, Local fraction = 0.35, and Per thread fraction = 0.3
with 1 − (0.2 + 0.35 + 0.3) giving 0.15 as the value of the
fraction of the bandwidth that is due to interleaved place-
ments. We will consider a placement of 4 threads on a two
socket machine with 3 threads placed on the first socket and
1 thread on the second socket.

One way to think about this is as a matrix computation
where we have a matrix for each type of memory traffic.
Within these matrices each row represents data traveling to
or from a CPU, and each column represents data traveling
to or from a memory bank. Each cell represent the fraction
of the data traveling to or from a given CPU and a given
memory bank. As a result the sum of each row will be 1. The
four matrices that are then constructed as follows:

Static The matrix for static memory accesses represents
all traffic going to a single memory bank and so con-
sists of the column identified by the static socket prop-
erty containing 1’s and all other columns containing
zeros.

Local The matrix for local memory accesses models all
data accesses from a socket going to their correspond-
ing memory bank. This is represented by an identity
matrix.

Per Thread The matrix for per thread data consists of
a series of columns weighted by the fraction of the
threads that are on each socket, so the weights for
column 𝑖 can be calculated by 𝑛𝑖∑𝑠

𝑗=1 𝑛 𝑗
where 𝑛𝑖 is the

number of threads on socket 𝑖 .
Interleaved The matrix for interleaved data models all

accesses being spread evenly across the system. There
for cells where both the memory bank and the CPU
are from used sockets contain 1

𝑠
and the other cells

contain 0 where 𝑠 is the number of sockets in use in
the placement.

These matrices can the be scaled by their respective frac-
tions, and summed. This results in a single matrix mapping a
threads socket to the fraction of its bandwidth it is predicted
place on each link to the memory banks. Figure 5 shows this
process for the worked example.

5 MEASURING AN APPLICATIONS
BANDWIDTH SIGNATURE

Having looked at how the model can be used we will now
consider how to measure the parameters required for the
model. As our aim is to model the bandwidth utilization of
the various elements of the machine it is not sufficient to
just observe where the memory is allocated as a relatively
small piece of memory may be accessed frequently while a
larger piece of memory may be seldom accessed. It is also
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Figure 5: Diagramdemonstrating for our example how
calculation of the fractions of bandwidth to different
memory banks can be treated as amatrix computation.
This example is for a 2 socket machine with 3 threads
on the first socket and 1 thread on the second. Note
that every row sums to 1, but not every column.

Execute symmetric run (5.1) Execute asymmetric run (5.1)

Normalize data (5.2) Normalize data (5.2)

Calculate Static socket and 
Static fraction (5.3)

Remove static bandwidth (5.4)

Calculate Local fraction (5.4)

Remove static bandwidth (5.5)

Remove local bandwidth (5.5)

Calculate Per thread fraction (5.5)

Figure 6: Flow diagram of the steps involved in con-
structing a bandwidth signature.

not sufficient to just measure the bandwidth requirements
of a single thread in a single location and assume that the
pattern of accesses it displays will not change as the threads
position changes.
The techniques to calculate bandwidth signature can be

applied to differing numbers of sockets, but for clarity here
we will describe how to calculate the properties using just 2
sockets. A flow diagram of the steps involved in calculating
the signature can be seen in Figure 6.

5.1 Profiling runs
To calculate the signature we take advantage of program
counters that for the memory attached to each socket report
the volume of data sent to and from the local CPU and the
volume of data sent to and from the remote CPUs. Using
these program counters we collect data from 2 runs of the
workload.

The first of benchmarking runs, is a job with an even num-
ber of threads where every thread has its own core, and both
sockets have the same thread count. In this placement some
cores are left unused to leave space to allow the asymmetric
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Memory Bank 2Memory Bank 1

Socket 1 Socket2

CPU 1 CPU 2

Thread ThreadThread
Thread

Thread

ThreadThread Thread

a) Symmetric

Memory Bank 2Memory Bank 1

Socket 1 Socket2

CPU 1 CPU 2

Thread

Thread
Thread

Thread

Thread

ThreadThread

Thread

b) Asymmetric

Figure 7: Examples of the two placements we use to
determine the types of memory access of an applica-
tion. These are on a 2 socket machine with 6 cores per
socket.

placement to use the same number of threads while main-
taining the 1 thread per core policy. The second run uses the
same thread count, but has a different number of threads on
each socket. An example of these placements can be seen in
Figure 7. With our current choice of performance counters,
2 runs is the minimum number from which sufficient data
points can be measured to calculate all 8 properties of the
signature. While the values for the profiling could be cal-
culated with many different placements the choice to use a
symmetric placement for the first run greatly simplifies the
process. For example the interleaved and per thread access
patterns become identical when the number of threads on
each socket is equal, and the thread local accesses place an
equal load on each memory bank. Symmetric runs where the
symmetry in the loads is not present can be used to detect
applications that don’t fit the model well. This is discussed
in more depth in the evaluation.
To keep profiling times to a minimum it is interesting to

note that it is only necessary to execute the workload until
a stable state is achieved and the program counters can be
read, not until completion. In addition if adding this work
into existing performance prediction tools such as Pandia
the symmetric run already appears in the existing runs used
by the tool, so the asymmetric run is the only additional run.
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Figure 8: Graphs showing an example of the data
recorded by the performance counters and the change
to this data after normalization. Execution is mea-
sured from the perspective of the CPU while memory
accesses are from the perspective of thememory bank.

5.2 Data normalization
The first step is to normalize the data rate per socket relative
to the rate of instructions being executed on the socket. This
is required because even on relatively simple workloads there
can be a significant variation in execution rate of threads on
different sockets. This can be caused by a number of issues
including, different latency times on memory accesses, and
different available bandwidths to memory banks. By way of
example on some lower spec processors the QPI interlink
between sockets can be saturated by a single thread, yet to
run both the symmetric and asymmetric placements using
the same thread count we need at least 2 threads per socket
for the symmetric placement.

These differing rates of execution canmake the raw counter
output unrepresentative of the per thread memory access
patterns. For example if we are running the symmetric place-
ment and the threads are performing 3

4 their accesses locally
and 1

4 their accesses remotely. If all the threads are running
at the same speed then both memory banks will report that 3

4
their accesses are local and 1

4 are remote, and they each have
returned the same amount of data. However, if the threads
on the second socket are running at half the speed of the
threads on the first socket then the ratios change so that 6

7
of the accesses to bank 1 and 6

10 of the accesses to bank 2 are
local. Whats more bank 1 only gets 7

8 and bank 2 gets 5
8 of

the traffic they would receive if the threads ran at full speed.
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Figure 9: Total bandwidth per socket, with the data
associated with accesses to static allocations high-
lighted.

To overcome this we first normalize the data transfer coun-
ters to the rate that the threads are executing at a per socket
granularity. The resulting output is the data sent or received
per average instruction execution rate per memory bank
from each socket . An example can be seen in Figure 8. To do
this for each memory bank we record the remote reads, the
remote writes, the local reads, and the local writes. Each of
these is then divided by the average rate instructions were
executed by the threads on the socket that that traffic was
to or from.

5.3 Static fraction
After normalizing the data transfers the first properties cal-
culated for the job description are the static socket, and the
static fraction. To calculate these we use the normalized re-
sults of the symmetric profiling run. For each memory bank
we sum the local and remote reads (l_reads and r_reads) or
writes to generate the total normalized reads or writes to the
memory bank. For example:

readsbank 1 = l_readsbank 1 + r_readsbank 1

From these we first calculate the socket that the static frac-
tion is associated with by observing which memory bank
transfered the largest volume of data, in the case of the ex-
ample in Figure 8 this is socket 2 as shown in Figure 9.

Having determined the static socket we next calculate the
static fraction. To do this we calculate the additional data
transfer on the static socket relative to the other sockets and
divide this additional transfer by the total transfer used by
the workload. This gives us the fraction of the transfer that
was for data statically allocated to a single socket, and there
in the fraction of the bandwidth that will be to the static
socket for each thread.

static fraction =
readsbank 2 − readsbank 1

readsbank 1 + readsbank 2

In this example this works out as 0.2 or 20%.

0

5

10

15

20

25

30

35

Local accesses Remote accesses Local accesses Remote accesses

Memory bank 1 Memory bank 2

Da
ta

 tr
an

sf
er

ed
pe

r i
ns

tr
uc

tio
n 

Shared Local Static

Figure 10: Remote and local accesses tomemory banks
on each socket. The accesses already classed as static
and removed from our calculations are highlighted
along with the accesses that will be classes as thread
local.

5.4 Local fraction
To calculate the fraction of data transfers due to accesses to
thread local data we first remove the data transfer due to
the static fraction. In the working example this is just a case
of deducting half the bandwidth associated with the static
fraction from bank 2’s remote accesses and half from its local
accesses.
This leaves us with the accesses to data shared between

sockets which is made up of per thread data and interleaved
data, and the accesses to data that is only used by threads on
a given socket, local data. For each socket we then calculate
the fraction of accesses that are remote.

𝑟𝑖 =
remote accessesbank𝑖

remote accessesbank𝑖 + local accessesbank𝑖
For the symmetric pattern Interleaved and Per thread ac-
cesses are indistinguishable meaning we can deduce that if
there were no accesses to local memory allocations, for 𝑠
sockets we would expect the fraction of remote accesses to
be 𝑟 = 𝑠−1

𝑠
. Adding back in the possibility of a non zero local

fraction including scaling to allow for the static fraction that
we have already removed from the bandwidths gives:

𝑟 =
𝑠 − 1
𝑠

(
1 − local fraction

(1 − static fraction)

)
This can be rearranged to get the local fraction. In our exam-
ple the measured value of 𝑟 is 0.28125, with no bandwidth cat-
egorized as local memory accesses we would expect 𝑟 = 0.5
in this example as 𝑠 = 2. From this we calculate that the local
fraction is 0.35. This split along with the static accesses can
be seen in Figure 10.

5.5 Per thread fraction
As discussed on a symmetric placement per thread and in-
terleaved accesses are indistinguishable. To overcome this
we use a run with an asymmetric placement to calculate this
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Figure 11: The normalized results for the asymmetric
case with the static and local components calculated
and removed from the computation of the per thread
fraction.

value. For our worked example we will use the placement in
Figure 7. Taking the results for this new placement we sum
the bandwidth for each CPU, for example for reads:

readsCPU 1 = l_readsbank 1 + r_readsbank 2

Next we remove from the static socket the static fraction
of the bandwidth. In our example this is done for reads as
follows:

r_reads’bank 2 = r_readsbank 2 − static fraction × readsCPU 1

l_reads’bank 2 = l_readsbank 2 − static fraction × readsCPU 2

We then remove the fraction of the local bandwidth associ-
ated with each memory bank. This is done as follows:

l_reads’bank 1 = l_readsbank 1 − local fraction × readsCPU 1

l_reads”bank 2 = l_reads’bank 2 − local fraction × readsCPU 2

The result of this for our worked example can be seen in
Figure 11.
Having removed the already accounted for elements of

the bandwidth we calculate for each CPU the fraction of
its bandwidth that is used for transfers to its local memory
bank (𝑙 ).

𝑙 =
local accessesbank𝑖

local accessesbank𝑖 +
∑𝑠 𝑗≠𝑖

𝑗=1 remote accessesbank𝑗

In our worked example these are 2
3 and

1
3 for sockets 1 and 2

respectively.
We also calculated the expected value of 𝑙 if all the data is

accessed on a per thread basis. This value is given by:

Per thread data𝑖 =
𝑛𝑖∑𝑠
𝑗=1 𝑛 𝑗

where 𝑛𝑖 is the number of threads on socket 𝑖 and 𝑠 is the
number of sockets. Next we calculate the expected local
fraction if all the data is interleaved:

Interleaved𝑖 =
1
𝑠

In our example this provides fractions of 3
4 and 1

4 if all
bandwidth is to Per thread data and 1

2 and
1
2 if all bandwidth

is to Interleaved data. As the combination for a given appli-
cation will be somewhere between these two points we can
interpolate between them:

𝑙𝑖 =
Per thread

data𝑖
× 𝑝 + Interleaved

data𝑖
× (1 − 𝑝)

This equation can then be rearranged to get the value of 𝑝 ,
in out example 2

3 . 𝑝 can then be scaled to get the Per thread
fraction as follows:

per thread fraction = 𝑝× (1− local fraction−static fraction)

In the worked example this is 0.3. The Per thread fraction
is bounded between [0 . . . 1] to ensure that unusual data
patterns cannot cause unexpected effects. We will discuss
this further in Sections 6 and 7.

6 EVALUATION
We describe the evaluation in 3 sections. First we exam-
ine synthetic applications where we have control over the
memory placement and compare the measured placement
with the known values to confirm the model is successfully
identifying the access patterns. Second we look at the signa-
tures generated for a set of benchmarks designed to mimic
real world applications. We compare these on the different
hardware to examine the stability of the model with more
complex workloads. Finally we compare the prediction of
the model using these signatures with measured results to
gauge the accuracy of the model.

Two experimental systemswere used to evaluate this work.
These systems are dual socket machines populated with
Xeon E5-2630 v3, and Xeon E5-2699 v3 processors which are
8 core, and 18 core Haswell processors respectively. While
the processor architectures are similar, the communications
profile of the system as a whole is very different as shown
in the Figure 2. From this we can see that both systems
have similar read and write bandwidths to local memory,
but drastically different performance when accessing remote
memory where the 8 core processors only have 0.16 of the
bandwidth for remote reads and 0.23 of the bandwidth for re-
moter writes relative to local reads and writes. On the 18 core
processors are the bandwidths are much more comparable
to local bandwidths with 0.59 of the bandwidth for remote
reads and 0.83 of the bandwidth for remote writes.
As Linux may try to adjust the placement of memory

during the execution of the benchmark we disable autonuma
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Figure 12: Graphs of the memory signature measured
for each of the synthetic benchmarks on 8 and 18 core
Haswell processors.

in all our tests. This ensures we measure the benchmarks in
a stable state.

6.1 Synthetic benchmarks
The synthetic benchmarks perform index chasing through
an array. Arrays of integers are constructed such that each
element in the array is an index to the next element that
should be read i.e. at each step i = A[i]. For these tests
the indexes access elements sequentially with a stride size
of a cache line and the final element indexing the first. The
arrays are typically in the order of gigabytes in size. This
means they fit in memory, but not in the cache. This results
in a regular access pattern that hardware prefetchers can
use to improve performance, minimal use of the cache so we
have the strongest signal to noise ratio possible, and code
that cannot be analyzed and optimized away at compile time
as the content of the array is unknown to the compiler. For
Static, Local, and Interleaved each thread constructs its own
loop in an array and iterates round it. In the cases of Static
and Interleaved we used numactl to enforce the placement
of the memory, while local relies on a first touch memory
policy to ensure the required pages are placed local to the
requesting thread. For Per thread each thread constructs an
array, and each thread will then iterate through each array
in turn.
The results from profiling these benchmarks can be seen

in Figure 12. For all the benchmarks the results are as ex-
pected with the largest volume of miscategorized bandwidth
measuring less than 0.9% which is spread evenly across the
remaining 3 categories and can easily be accounted for by
background noise.

6.2 Real benchmarks
The workloads for these tests are drawn from a range of
sources: The NAS parallel benchmark suite (NPB) [1]; The
SPEC OpenMP workloads (OMP) [20]; In-memory graph

Benchmark Description
Applu Parabolic / Elliptic PDE solver (OMP)
Apsi Meteorology pollutant distribution (OMP)
Art Neural network simulation (OMP)
BT Block tri-diagonal solver (NPB)
Bwaves Blast wave simulation (OMP)
CG Conjugate gradient (NPB)
EP Embarrassingly parallel (NPB)
Equake Earthquake simulation (OMP)
FMA-3D Finite-element crash simulation (OMP)
FT Discrete 3D fast Fourier transform (NPB)
IS Integer sort (NPB)
LU Lower-upper Gauss-Seidel solver (NPB)
MD Molecular dynamics simulation (NPB)
MG Multi-grid on a sequence of meshes (NPB)
NPO No partitioning, optimized hash join (DBJ)
PRHO Parallel radix histogram optimized hash

join (DBJ)
PRH Parallel radix histogram hash join (DBJ)
PRO Parallel radix optimized hash join (DBJ)
Page rank In-memory parallel Page rank (GA)
Sort join In-memory sort-join (DBJ)
SP Scalar Penta-diagonal solver (NPB)
Swim Shallow water modeling (OMP)
Wupwise Wuppertal Wilson fermion solver (OMP)

Table 1: Description of benchmarks.

analytics workloads (GA) from Harris et al [11]; And data-
base join operators (DBJ) from Balkesen et al [2]. They are
designed to mimic real world applications and we describe
them in Table 1.

6.2.1 Model stability. Calculating the bandwidth descrip-
tion on bothmachines for each benchmark for both reads and
writes we get the signatures in Figure 13. Figure 14 compares
the percentage of the bandwidth that is reallocated between
the two different signatures. At first glance some of these
results appear to be very bad with a change in excess of 80%
for equake writes. This is due to this benchmark perform-
ing almost exclusively reads with the very small number of
writes resulting in a very low signal to noise ratio. So while
the signature does change for these examples the bandwidth
associated with this is negligible. To illustrate this we also
plot the difference in signature value if instead of construct-
ing a separate signature for reads and writes, we combine the
bandwidths and construct the signatures using these com-
bined bandwidth figures. The combined figures for equake
change by 5.4%. The mean change for all the benchmarks
6.8% and the median is 4.2%.
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Figure 13: Graph of the bandwidth signatures gener-
ated by the benchmarks for reading andwriting on the
different systems

The difference between the mean and median highlights
that while for most of the benchmarks the signature is stable
and usable for a small number there are significant errors.
This can be seen inf Figure 15 where we show a cumula-
tive frequency graph of the benchmarks and the change
between signatures. From this we can see that over 50% of
applications have a change of less than 5% and over 75% of
applications have a change of less than 10%. However, there
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Figure 14: Graph of the percentage change in the band-
width placement between systems.
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Figure 15: Cumulative frequency graph of the change
in the benchmarks signatures relative to the percent-
age of the benchmarks.

is a set of benchmarks for which the model does not provide
a very good fit to the access patterns. These occur when
the bandwidth requirements varies between threads and is
especially problematic when it changes with the number
and position of the threads. For example in the Page rank
benchmark the nodes in the graphs are listed in the order
they were visited when the dataset was collected. As a result
of being collect through walking the graph well connected
nodes are more likely to be met first and so appearing earlier
in the dataset. This happens because after a short period of
exploring the graph the walker may reach a well connected
segment. From here it will probably mostly reach other well
connected nodes. The later nodes to be reached will more
likely be weakly connected hence taking longer to be dis-
covered by the walker. As a result the part of the graph that
appears earlier in the dataset is better connected on aver-
age than the rest of the graph. This results in higher local
bandwidth requirements on the first socket which will erro-
neously be marked as static bandwidth. This then confuses
the calculation of both local and per thread fractions. When
the threads are moved around, the bandwidth requirements
fail to change in the way described. An example of this can
be seen in Figure 16.
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Figure 16: Graph of the measured and predicted re-
sults for the combination of reads and writes with
Page rank.

Fortunately it is possible to detect when situations like
this occur as there is redundant information in the program
counters that highlights the inconsistency. For example once
we remove the static fraction with the symmetric placement
we expect the placement to be symmetric. If when we exam-
ine the local remote ration for each socket we find that it is
not symmetric this is a sign that the application does not fit
the model. The bigger the difference the worse the fit.

6.2.2 Model accuracy. To test the accuracy of the model
with the different benchmarks we executed each benchmark
with the largest thread count that it could support on a single
socket with at most one thread per core. For each benchmark
configuration we then varied the distribution of the threads
between the two sockets maintaining a single thread per
core. Measuring the local and remote reads and writes for
each socket and comparing against the read, write, and com-
bined model predictions gives a large number of comparison
points with the 18 core machine providing 2322 data points
to compare the predicted results against. The results of this
for the Page rank benchmark when comparing the combined
reads and writes bandwidth prediction can be seen in Fig-
ure 16. This shows the discussed poor fitting of the model
to threads working on the first section of the graph, and the
more effective modeling of the bandwidth requirements for
processing the rest of the graph.

For each data point we record the difference between the
measured value and the predicted value. Looking at these
across all our experiments we can generate the cumulative
frequency graph in Figure 17. This shows that for over 50% of
the measurements the difference is less than 2.5% of the total
bandwidth, and for 75% of measurements the difference is
less than 10% of the total bandwidth. Looking at where these
differences occur in Figure 18 we plot the average difference
for each benchmark relative to the average bandwidth used
by the benchmark. This shows that the substantial errors
only occur in the benchmarks with low bandwidth require-
ments. Such benchmarks both have a low signal to noise
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Figure 17: Cumulative frequency graph of the percent-
age of the benchmarkmeasurements vs the size of the
error.
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Figure 18: Graph of the average size of the error vs the
average amount of bandwidth required by the bench-
mark.

ratio, but also do not require high accuracy as by definition
they are not moving large quantities of data so will be less
affected, and less likely to interfere with the data transfers
of other workloads.

7 FUTUREWORK
As mentioned in the evaluation the current model has one
key limitation. It assumes that each thread accesses data
with the same frequency relative to its rate of execution.
However as described there is information that allows for
these situations to be detected. It would be preferable to
instead of just detecting these situations to model them as
well, extending the applicability of this model. This is a focus
for future work.

8 RELATEDWORK
Asymmetry and variance of bandwidth performance onNUMA
nodes leading to contention on resources has long been iden-
tified as a problem [3, 19, 27]. This has resulted in the de-
velopment of many techniques to improve the placement of
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threads and memory. These pieces of work measure the per-
formance of the NUMA machine or the loads being executed
through a range of techniques including:

• Monitoring performance counters while executing ei-
ther known benchmarks, or arbitrary workloads [3, 16,
19]. The performance counters monitored are typically
LLC misses and instructions executed, but can be far
more extensive [10, 22], and extend to applying ML
techniques to every counter on the machine [26].

• Sampling instructions as they are executed [6] to iden-
tify memory loads and stores along with information
about where they are located on the system. This can
provide very fine grained information about locations
of memory accesses.

• Monitoring page faults to identify suboptimal page
placements and configurations [13].

• Running benchmarks with known loads and timing
their execution to determine latency and or bandwidth
properties [14, 23].

These techniques are applied to many different locations
including, improvements to the OS task scheduler, improve-
ments to theOSmemorymanagement, and tools and libraries
to assist the programmer both by providing information
about the expected behavior of the system, and to automate
memory placement.

Approaches to scheduling and memory management gen-
erally fall into two categories, real time approaches that
detect when something is suboptimal, and ahead of time
approaches that measure the applications and or system
beforehand to provide guidance to the OS.
Real time approaches such as DINO [3] migrate threads

and their associated memory pages based on the LLC miss
rate, while Merkel et al. [19] leave memory where it is allo-
cated and just move threads around. Carrefour [6] addresses
congestion on memory controllers by sampling the executed
instructions observe the loads and stores of different threads.
From this it determines if the load on the memory controllers
is too high and follows a decision tree to determine if pages
should be migrated, interleaved, or replicated to reduce load.
Lankes et al. [13] produced suggestions for extending the
OS memory management with a page table per NUMA node,
allowing pages to be replicated on demand if the load on the
interconnect is too high.
Ahead of time tool such as Pandia [10] and libraries like

Smart Arrays [22] perform sample runs and provide sug-
gested thread or memory placements, these lack detailed
bandwidth models so cannot apply these runs to different
thread counts and placementsas effectively.
Many of the approaches require detailed specifications

of the system. This is typically generated ahead of the time

through the use of benchmarks and either performance coun-
ters or wall clock time. Mc Cormick et al. [23] measuring
the NUMA properties based on 2 benchmarks, measuring
latency, and bandwidth to help the scheduler calculate costs
and change tasks node/core based on the location of the ap-
plication memory. Majo et al. [16] took a similar approach
using a single memory intensive benchmark. Pandia uses
an extensive set of synthetic benchmarks to measure the
memory architecture, as well as the processors compute per-
formance. Li et al. [14] take a similar extensive approach
considering data transfer to disks, networks and GPU’s. To
calculate the data transfer rates they copy large amounts
of data with memcpy and time the transfer. From this they
build an NxN matrix. This is expensive to maintain so they
categories the machine into groups and provide timings for
each group.

So Many Performance Events, So Little Time [26] does not
model the memory traffic directly, but uses a set of bench-
marks which cause specific problems and ML approaches
which look at all performance counters. From these they
construct a model with a small number of features that can
be driven from the counters available to a single run. The in-
tention of this work is to act as a debugging tool for program-
mers, with the memory bandwidth and latency issues being
detected. As with all ML approaches it requires a sizable
training set, and exploring all of the performance counters
takes time.
Looking away from the memory interconnects there has

been extensive work focusing on the expected behavior of
caches and the performance of applications both alone and
when sharing a cache. Much of this builds on ideas on mea-
suring the performance of the cache and the applications
that are using it, but normally this work constrains itself
to just the cache excluding the wider memory system. Pre-
dicting based just on cache interference can be done with
mathematical models on data gathered from instrumented
workloads [4, 17, 24]. McGregor et al. [18], Knauerhase et
al. [12], Fedorova et al. [9], Zhuravlev et al. [27], Collins et
al. [5] and Dhiman et al. [8] select threads or workloads to
collocate based on performance counters giving measure-
ments such as bus transactions per thread, stall cycles per
thread, and LLC miss rate per thread. Xie and Loh classify
applications [25] based on LLC usage and Lin et al. [15]
on L2 usage. These all work to a fixed number of threads,
ReSense [7] can dynamically controls threads numbers.



Modeling memory bandwidth patterns with performance counters Published to Arxiv, Copyright Oracle, 2021

9 CONCLUSION
In this paper we have presented and evaluated a model for
estimating the bandwidth distribution of analytics applica-
tions on NUMA machines. The model is fitted to applica-
tions through the use of two instrumented runs with spe-
cific thread placements. Testing the results across 1000’s of
measurements shows a high degree of accuracy for many
applications with moderate to high bandwidth requirements,
and techniques to detect when the model fails to fit effec-
tively. The ideas presented here have uses ranging from
performance debugging tools, to scheduling tools such as
Pandia [10], to libraries that can control memory place-
ments [22].
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