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ABSTRACT

The common wisdom is that distributed transactions do not
scale. But what if distributed transactions could be made scal-
able using the next generation of networks and a redesign of
distributed databases? There would no longer be a need for
developers to worry about co-partitioning schemes to achieve
decent performance. Application development would become
easier as data placement would no longer determine how scal-
able an application is. Hardware provisioning would be sim-
plified as the system administrator can expect a linear scale-
out when adding more machines rather than some complex
sub-linear function, which is highly application specific.

In this paper, we present the design of our novel scalable
database system NAM-DB and show that distributed transac-
tions with the very common Snapshot Isolation guarantee can
indeed scale using the next generation of RDMA-enabled net-
work technology without any inherent bottlenecks. Our ex-
periments with the TPC-C benchmark show that our system
scales linearly to over 6.5 million new-order (14.5 million to-
tal) distributed transactions per second on 56 machines.

1 Introduction

The common wisdom is that distributed transactions do not
scale [40, 22, 39, 12, 37]. As a result, many techniques have
been proposed to avoid distributed transactions ranging from
locality-aware partitioning [35, 33, 12, 43] and speculative ex-
ecution [32] to new consistency levels [24] and the relaxation
of durability guarantees [25]. Even worse, most of these tech-
niques are not transparent to the developer. Instead, the devel-
oper not only has to understand all the implications of these
techniques, but also must carefully design the application to
take advantage of them. For example, Oracle requires the
user to carefully specify the co-location of data using special
SQL constructs [15]. A similar feature was also recently intro-
duced in Azure SQL Server [2]. This works well as long as all
queries are able to respect the partitioning scheme. However,
transactions crossing partitions usually observe a much higher
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abort rate and relatively unpredictable performance [9]. For
other applications (e.g., social apps), a developer might not
even be able to design a proper sharding scheme since those
applications are notoriously hard to partition.

But what if distributed transactions could be made scalable
using the next generation of networks and we could rethink
the distributed database design? What if we would treat every
transaction as a distributed transaction? The performance of
the system would become more predictable. The developer
would no longer need to worry about co-partitioning schemes
in order to achieve scalability and decent performance. The
system would scale out linearly when adding more machines
rather than sub-linearly because of partitioning effects, making
it much easier to provision how much hardware is needed.

Would this make co-partitioning obsolete? Probably not,
but its importance would significantly change. Instead of be-
ing a necessity to achieve a scalable system, it becomes a
second-class design consideration in order to improve the per-
formance of a few selected queries, similar to how creating an
index can help a selected class of queries.

In this paper, we will show that distributed transactions with
the common Snapshot Isolation scheme [8] can indeed scale
using the next generation of RDMA-enabled networking tech-
nology without an inherent bottleneck other than the work-
load itself. With Remote-Direct-Memory-Access (RDMA),
it is possible to bypass the CPU when transferring data from
one machine to another. Moreover, as our previous work [10]
showed, the current generation of RDMA-capable networks,
such as InfiniBand FDR 4 X, is already able to provide a band-
width similar to the aggregated memory bandwidth between
a CPU socket and its attached RAM. Both of these aspects
are key requirements to make distributed transactions truly
scalable. However, as we will show, the next generation of
networks does not automatically yield scalability without re-
designing distributed databases. In fact, when keeping the
“old” architecture, the performance can sometimes even de-
crease when simply migrating a traditional database from an
Ethernet network to a high-bandwidth InfiniBand network us-
ing protocols such as IP over InfiniBand [10].

1.1 Why Distributed Transactions are con-

sidered not scalable
To value the contribution of this paper, it is important to un-
derstand why distributed transactions are considered not scal-



able. One of the most cited reasons is the increased contention
likelihood. However, contention is only a side effect. Perhaps
surprisingly, in [10] we showed that the most important factor
is the CPU overhead of the TCP/IP stack. It is not uncom-
mon that the CPU spends most of the time processing network
messages, leaving little room for the actual work.

Additionally, the network bandwidth also significantly lim-
its the transaction throughput. Even if transaction messages
are relatively small, the aggregated bandwidth required to han-
dle thousands to millions of distributed transactions is high
[10], causing the network bandwidth to quickly become a bot-
tleneck, even in small clusters. For example, assume a clus-
ter of three servers connected by a 10Gbps Ethernet network.
With an average record size of 1KB, and transactions reading
and updating three records on all three machines (i.e., one per
machine), 6KB has to be shipped over the network per trans-
action, resulting in a maximal overall throughput of ~ 29k
distributed transactions per second.

Furthermore, because of the high CPU-overhead of the TCP/
IP stack and a limited network bandwidth of typical 1/10Gbps
Ethernet networks, distributed transactions have much higher
latency, significantly higher than even the message delay be-
tween machines. This causes the commonly observed high
abort rates due to time-outs and the increased contention like-
lihood; a side-effect rather than the root cause.

Needless to say, there are workloads for which the con-
tention is the primary cause of why distributed transactions are
inherently not scalable. For example, if every single transac-
tion updates the same item (e.g. incrementing a shared counter),
the workload is not scalable simply because of the existence
of a single serialization point. In this case, avoiding the ad-
ditional network latencies for distributed message processing
would help to achieve a higher throughput but not to make the
system ultimately scalable. Fortunately, in many of these “bot-
tleneck” situations, the application itself can easily be changed
to make it truly scalable [1, 5].

1.2 The Need for a System Redesign

Assuming a scalable workload, the next generation of net-
works remove the two dominant limiting factors for scalable
distributed transaction: the network bandwidth and CPU over-
head. Yet, it is wrong to assume that the hardware alone solves
the problem. In order to avoid the CPU message overhead
with RDMA, many data structures have to change. In fact,
RDMA-enabled networks change the architecture to a hybrid
shared-memory and message-passing architecture: it is neither
a distributed shared-memory system (as several address spaces
exist and there is no cache-coherence protocol), nor is it a pure
message-passing system since memory of a remote machine
can be directly accessed via RDMA reads and writes.

While there has been work on leveraging RDMA for dis-
tributed transactions, most notably FaRM [13, 14], most works
still rely on locality and more traditional message transfers,
whereas we believe locality should be a second-class design
consideration. Even more importantly, the focus of existing
works is not on leveraging fast networks to achieve a truly
scalable design for distributed databases, which is our main
contribution. Furthermore, our proposed system shows how to
leverage RDMA for Snapshot Isolation (SI) guarantees, which
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is the most common transaction guarantee in practice [18] be-
cause it allows for long-running read-only queries without ex-
pensive read-set validations. Other RDMA-based systems fo-
cus instead on serializability [14] or do not have transaction
support at all [20]. At the same time, existing (distributed) SI
schemes typically rely on a single global snapshot counter or
timestamp; a fundamental issue obstructing scalability.

1.3 Contribution and Outline

In our vision paper [10], we made the case for a shift in the
way transactional and analytical database systems must be de-
signed and showed the potential of efficiently leveraging high-
speed networks and RDMA. In this paper, we follow up on this
vision and present and evaluate one of the first transactional
systems for high-speed networks and RDMA. In summary, we
make the following main contributions: (1) We present the
full design of a truly scalable system called NAM-DB and
propose scalable algorithms specifically for Snapshot Isolation
(SI) with (mainly one-sided) RDMA operations. In contrast to
our initial prototype [10], the presented design has much less
restriction on workloads, supports index-based range-request,
and efficiently executes long-running read transactions by stor-
ing more than one version per record. (2) We present a novel
RDMA-based and scalable global counter technique which al-
lows for efficiently reading the latest consistent snapshot in
a distributed SI-based protocol. (3) We show that NAM-DB
is truly scalable using a full implementation of TPC-C. Most
notably, for the standard configuration of TPC-C benchmark,
we show that our system scales linearly to over 3.6 million
transactions per second on 56 machines, and 6.5 million trans-
actions with locality optimizations, which is 2 million more
transactions per second than what FARM [14] achieves on 90
machines. Note, that our total transaction throughput is even
higher (14.5 million transactions per second) as TPC-C speci-
fies to only report the new-order transactions.

2 System Overview

InfiniBand offers two network communication stacks: IP
over InfiniBand (IPoIB) and remote direct memory access
(RDMA). IPoIB implements a classic TCP/IP stack over In-
finiBand, allowing existing database systems to run on fast
networks without any modifications. While IPoIB provides an
easy migration path from Ethernet to InfiniBand, IPoIB can-
not fully leverage the network’s capabilities and sometimes
even degrades the system performance [10]. On the other
hand, RDMA provides a verbs API, which enables remote data
transfer using the processing capabilities of an RDMA NIC
(RNIC), but also requires a radical system redesign. When us-
ing RDMA verbs, most of the processing is executed by the
RNIC without OS involvement, which is essential for achiev-
ing low latencies. The verbs API has two operation types: one-
sided verbs (read, write and atomic operations) where only the
CPU of the initiating node is actively involved in the com-
munication, and two-sided verbs (send and receive) where the
CPUs of both nodes are involved (for more details see [10]).
Redesigning distributed databases to efficiently make use of
RDMA is a key challenge that we tackle in this paper.

In the following, we first give a brief overview of the network-
attached-memory (NAM) architecture [10] that was designed
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Figure 1: The NAM Architecture

to efficiently make use of RDMA. We then discuss the core
design principles of NAM-DB, which builds upon NAM, to
enable a scalable transactional system without an inherent bot-
tleneck other than the workload itself.

2.1 The NAM Architecture

The NAM architecture logically decouples compute and stor-
age nodes and uses RDMA for communication between all
nodes as shown in Figure 1. The idea is that memory servers
provide a shared distributed memory pool that holds all the
data, which can be accessed via RDMA from compute servers
that execute transactions. This design already highlights that
locality is a tuning parameter. In contrast to traditional archi-
tectures which physically co-locate the transaction execution
with the storage location from the beginning as much as pos-
sible, the NAM architecture separates them. As a result all
transactions are by default distributed transactions. However,
we allow users to add locality as an optimization like an index,
as we will explain in Section 6.

Memory Servers: In a NAM architecture memory servers
hold all data of a database system such as tables, indexes as
well as all other state for transaction execution (e.g., logs and
metadata). From the transaction execution perspective, mem-
ory servers are “dumb” since they provide only memory ca-
pacity to compute servers. However, memory servers still have
important tasks such as memory management to handle re-
mote memory allocation calls from compute servers, as well
as garbage collection to ensure that enough free space is al-
ways available for compute servers, e.g. to insert new records.
Durability of the data stored by memory servers is achieved
in a similar way as described in [14] by using an uninter-
ruptible power supply (UPS). When a power failure occurs,
memory servers use the UPS to persist a consistent snapshot
to disks. On the other hand, hardware failures are handled
through replication as discussed in Section 6.2.

Compute Servers: The main task of compute servers is to
execute transactions over the data items stored in the memory
servers. This includes finding the storage location of records
on memory servers, inserting/ modifying/ deleting records, as
well as committing or aborting transactions. Moreover, com-
pute servers are in charge of performing other tasks, which are
required to ensure that transaction execution fulfills all ACID
properties such as logging and consistency control. Again, the
strict separation of transaction execution in compute servers
from managing the transaction state stored in memory servers
is what distinguishes our design from traditional distributed
database systems. As a result, the performance of the system
is independent of the location of the data.

687

2.2 Design Principles

We now describe challenges in designing NAM-DB to achieve
a scalable system design using the NAM architecture.

Separation of Compute and Memory: Although the sep-
aration of compute and storage is not new [11, 27, 29, 14], ex-
isting database systems that follow this design typically push
data access operations into the storage layer. When scaling out
the compute servers and pushing data access operations from
multiple compute servers into the same memory server, mem-
ory servers are likely to become a bottleneck. Even worse,
with traditional socket-based network operations, every mes-
sage consumes additional precious CPU cycles.

In a NAM architecture, we therefore follow a different route.
Instead of pushing data access operations into the storage layer,
the memory servers provide a fine-grained byte-level data ac-
cess. In order to avoid any unnecessary CPU cycles for mes-
sage handling, compute servers exploit one-sided RDMA op-
erations as much as possible. This makes the NAM architec-
ture highly scalable since all computation required to execute
transactions can be farmed out to compute servers.

Finally, for the cases where the aggregated main memory
bandwidth is the main bottleneck, this architecture also al-
lows us to increase the bandwidth by scaling out the memory
servers. It is interesting to note that most modern Infiniband
switches, such as Mellanox SX6506 108-Port FDR (56Gb/s)
ports InfiniBand Switch, are provisioned in a way that they
allow the full duplex transfer rate across all machines at the
same time and therefore do not limit the scalability.

Data Location Independence: Another design principle is
that compute servers in a NAM architecture are able to ac-
cess any data item independent of its storage location (i.e., on
which memory server this item is stored). As a result, the
NAM architecture can easily move data items to new storage
locations (as discussed before). Moreover, since every com-
pute server can access any data item, we can also implement
work-stealing techniques for distributed load balancing since
any compute node can execute a transaction independent of
the storage location of the data.

This does not mean that compute servers can not exploit
data locality if the compute server and the memory server run
on the same physical machine. However, exploring locality
becomes just an optimization, not a first-class design decision,
that can be added on top of our scalable system, like an index.

Partitionable Data Structures: As discussed before, in the
NAM architecture every compute server should be able to ex-
ecute any functionality by accessing the externalized state on
the memory servers. However, this does not prevent a sin-
gle memory region (e.g., a global read or commit timestamp)
from becoming a bottleneck.Therefore, it is important that ev-
ery data structure is partitionable. For instance, following this
design principle, we invented a new data structure to imple-
ment a partitionable read/commit timestamp (see Section 4).

3 The Basic SI-Protocol

In this section, we describe first our Snapshot Isolation pro-
tocol for the NAM architecture as already introduced in our
vision paper [10]. Afterwards, we analyze potential scalability
bottlenecks for distributed transactions, which we then address
in Sections 4-6 as the main contributions of this paper.
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‘ Memory Modification

3.1 A Naive RDMA Implementation

With Snapshot Isolation (SI), a transaction reads the most
recent (consistent) snapshot of a database that was committed
before the beginning of the transaction, and it does not see
concurrent updates. Furthermore, transactions only abort if it
would overwrite a concurrent change. For distributed systems,
Generalized SI (GSI) [16] is more common as it allows any
committed snapshot (and not only the most recent one) to be
read. While we also use GSI for NAM-DB, our goal is still to
read a recent committed snapshot to avoid high abort rates.

Listing 1 and the corresponding Figure 2 show a naive SI
protocol using only one-sided RDMA operations that are based
on a global timestamp oracle as implemented in commercial
systems [9]. To better focus on the interaction between com-
pute and memory servers, we made the following simplifying
assumptions: First, we did not consider the durability guaran-
tee and the recovery of transactions. Second, we assume that
there is an up-to-date catalog service, which helps compute
servers to find the remote address of a data item in the pool of
memory servers; the remote address is returned by the &, op-
erator in our pseudocode. Finally, we consider a simple variant
of SI where only one version is kept around for each record.
Note that these assumptions are only made in this section and
we tackle each one later in this paper.

For executing a transaction, the compute server first fetches
the read-timestamp rts using an RDMA read (step (1) in Fig-
ure 2, line 3 in Listing 1). The rts defines a valid snapshot for
the transaction. Afterwards, the compute server executes the
transaction, which means that the required records are read re-
motely from the memory servers using RDMA read operations
(e.g., the record with ckey = 3 in the example) and updates
are applied locally to these records; i.e., the transaction builds
its read- and write-set (step (2) in Figure 2, line 5 in Listing 1).
Once the transaction has built its read- and write-set, the com-
pute server starts the commit phase.

For committing, a compute server fetches a unique commit
timestamp (cts) from the memory server (step (3) in Figure
2, line 7 in Listing 1). In the naive protocol, fetching a unique
cts counter is implemented using an atomic RDMA fetch-and-
add operation that returns the current counter and increments
it in the memory server by 1. Afterwards, the compute server
verifies and locks all records in its write-set on the memory
servers using one RDMA compare-and-swap operation (line

runTransaction(Transaction t) {
// get read timestamp
rts = RDMA_Read (& (rts));
// build write-set
t.execute(rts);
// get commit timestamp
cts = RDMA_FetchAndAdd (& (cts), 1);
// verify write version and lock write-set
commit = true;
parfor i in size(t.writeSet) {
header = t.readSet[i].header;
success[i] = RDMA_CompAndSwap (& (header), header,
success[i];

setLockBit (header));
commit = commit &&

}

// install write-set
if (commit) {
parfor i in size(t.writeSet)
RDMA_Write (& (t.readSet [i]),
}
//reset
else {
parfor i in size(t.writeSet) {
if (success[il])
header = t.readSet[i].header;
RDMA_Write (& (header), header);
}
}
RDMA_Send ([cts, commit]);

t.writeSet[i]);

lock bits

//append cts and result to ctsList
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Listing 1: Transaction Execution in a Compute Server

10-15 in Listing 1). The main idea is that each record stores a
header that contains a version number and a lock bit in an 8-
Byte memory region. For example, in Figure 2, (3,0) stands
for version 3 and lock-bit 0 (0 means not locked). The idea
of the compare-and-swap operation is that the compute server
compares the version in its read-set to the version installed on
the memory-server for equality and checks that the lock-bit is
set to 0. If the compare succeeds, the atomic operation swaps
the lock bit to 1 (step (4) in Figure 2, line 13 in Listing 1).

If compare-and-swap succeeds for all records in the write-
set, the compute server installs its write-set using RDMA writes
(line 19-20 in Listing 1). These RDMA writes update the en-
tire record including updating the header, installing the new
version and setting the lock-bit back to 0. For example, (6, 0)
is remotely written on the header in our example (step (5) in
Figure 2). If the transactions fails, the locks are simply reset
again using RDMA writes (line 24-28 in Listing 1).

Finally, the compute server appends the outcome of the trans-
action (commit or abort) as well as the commit timestamp cts
to a list (ctsList) in the memory server (step (6) in Figure
2, line 32 in Listing 1). Appending this information can be
implemented in different ways. However, for our naive imple-
mentation we simply use an unsignaled RDMA send opera-
tion; i.e., the compute server does not need to wait for the cts
to be actually sent to the server, and gives every timestamp a
fixed position (i.e., timestamp value - offset) to set a single bit
indicating the success of a transaction. This is possible, as the
fetch and add operation creates continuous timestamp values.

Finally, the timestamp oracle is responsible for advancing
the read timestamp by scanning the queue of completed trans-
actions. It therefore scans ctsList and tries to find the high-
est commit timestamp (i.e., highest bit) so that every transac-
tions before that timestamp are also committed (i.e., all bits are
set). Since advancing the read timestamp is not in the critical
path, the oracle uses a single thread that continuously scans
the memory region to find the highest commit timestamp and
also adjusts the offset if the servers run out of space.



3.2 Open Problems and Challenges

While the previously-described protocol achieves some of
our goals (e.g., it heavily uses one-sided RDMA to access the
memory servers), it is still not scalable. The main reason is that
global timestamps have inherit scalability issues [17], which
are emphasized further in a distributed setting.

First, for every transaction, each compute server uses an
RDMA atomic fetch-and-add operation to the same memory
region to get a unique timestamp. Obviously, atomic RDMA
operations to the same memory location scale poorly with the
number of concurrent operations since the network card uses
internal latches for the accessed memory locations. In addi-
tion, the oracle is involved in message passing and executes a
timestamp management thread that needs to handle the result
of each transaction and advance the read timestamp. Although
this overhead is negligible for a few thousands transactions,
it shows its negative impact when millions of transactions are
running per second.

The second problem with the naive protocol is that it likely
results in high abort rates. A transaction’s snapshot can be
“stale” if the timestamp management thread can not keep up
to advance the read timestamp. Thus, there could be many
committed snapshots which are not included in the snapshot
read by a transaction. The problem is even worse for hot spots,
i.e. records which are accessed and modified frequently.

A third problem is that slow workers also contribute to high
abort rate by holding back the most recent snapshot from get-
ting updated. In fact, the oracle only moves forward the read
timestamp rts as fast as the slowest worker. Note that long
transactions have the same effect as slow workers.

Finally, the last problem is that the naive implementation
does not have any support for fault-tolerance. In general, fault-
tolerance in a NAM architecture is quite different (and ar-
guably less straight-forward) than in the traditional architec-
ture. The reason is that the transactions’ read- and write-sets
(including the requested locks) are managed directly by the
compute servers. Therefore, a failure of compute servers could
potentially result in undetermined transactions and thus aban-
doned locks. Even worse, in our naive implementation, a com-
pute server that fails can lead to “holes” in the ctsList that
cause the read timestamp to not advance anymore.

4 Timestamp Oracle

In this section, we first describe how to tackle the issues out-
lined in Section 3.2 that hinder the scalability of the timestamp
oracle as described in our naive SI-protocol implementation.
Afterwards, we discuss some optimizations.

4.1 Scalable Timestamp Generation

The main issues with the current implementation of the times-
tamp oracle are: (1) The timestamp management thread that
runs on a memory server does not scale well with the num-
ber of transactions in the system. (2) Long running transac-
tions/slow compute servers prevent the oracle from advanc-
ing the read timestamp, further contributing to the problem of
too many aborts. (3) High synchronization costs of RDMA
atomic operations when accessing the commit timestamp cts
are stored in one common memory region.

In the following, we explain how we tackle these issues to
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build a scalable timestamp oracle. The main idea is using a

data structure called the timestamp vector, similar to a vector

clock, which represents the read timestamp as the following:
Tr = (t1,t2,t3, ..., tn)

Here, each component ¢; in T’z is a unique counter that is
assigned to one transaction execution thread ¢ in a compute
server, where ¢ is a globally unique identifier. This vector can
either be stored on one of the memory servers or also be par-
titioned across several servers as explained later. However, in
contrast to vector clocks, we do not store the full vector with
every record, but instead store only the timestamp of the com-
pute server that did the latest update:

Te = (i,t;)

Here, 7 is the global transaction execution thread identifier
and ¢; the corresponding commit timestamp. This helps to mit-
igate one of the most fundamental drawbacks of vector clocks,
the high storage overhead per record.

Commit Timestamps: Each component ¢; = Tr[i] repre-
sents the latest commit timestamp that was used by an execu-
tion thread ¢. Creating a new commit timestamp can be done
without communication since one thread 7 executes transac-
tions in a closed loop. The reason is that each thread already
knows its latest commit timestamp and just needs to increase
it by one to create the next commit timestamp. It then uses the
previously-described protocol to verify if it is safe to install the
new versions in the system with timestamp Tc = (i,¢ + 1)
where t + 1 is the new timestamp.

At the end of the transaction, the compute server makes the
updates visible by increasing the commit timestamp in the vec-
tor Tr. That is, instead of adding the commit timestamp to a
queue (line 32 of Listing 1), it uses an RDMA write to increase
its latest timestamp in the vector T'r. No atomic operations are
necessary since each transaction thread 7 only executes one
transaction at a time.

Read Timestamps: Each transaction thread 7 reads the com-
plete timestamp vector Tr and uses it as read timestamp 7ts.
Using T'r, a transaction can read a record, including its header
from a memory server, and check if the most recent version
is visible to the transaction. The check is simple: as long as
the version of the record (i, ¢) is smaller or equal to ¢; of the
vector T'r, the update is visible. If not, an older version has to
be used to meet the condition. We will discuss details of the
memory layout of our multi-versioning scheme in Section 5.

It is important to note that this simple timestamp technique
has several important characteristics. First, long running trans-
actions, stragglers, or crashed machines do not prevent the
read timestamp to advance. The transaction threads are in-
dependent of each other. Second, if the timestamp is stored
on a single memory server, it is guaranteed to increase mono-
tonically. The reason is that all RDMA writes are always ma-
terialized in the remote memory of the oracle and not cached
on its NIC. Therefore, it is impossible for one transaction ex-
ecution thread in a compute server to see a timestamp vec-
tor like (.., tn, .., tm + 1,..) while another observes (.., t, +
1,..,tm,..). As aresult the timestamps are still progressing
monotonically, similar to a single global timestamp counter.
However, in the case where the timestamp vector is partitioned,
this property might no longer hold true as explained later.
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4.2 Further Optimizations

In the following, we explain further optimizations to make
the timestamp oracle even more scalable:

Dedicated Fetch Thread: Fetching the most recent T at
the beginning of each transaction can cause a high network
load for large transaction execution thread pools on large clus-
ters. In order to reduce the network load, we can have one ded-
icated thread per compute server that continuously fetches T'r,
and allow all transaction threads to simply use the pre-fetched
Tr. At a first view, this seems to increase the abort rate since
pre-fetching increases the staleness of T'r. However, due to
the reduced network load, the runtime of each transaction is
heavily reduced, leading instead to a lower abort rate.

Compression of T'rz: The size of T'r depends on the num-
ber of transaction execution threads, which could rise up to
hundreds or even thousands entries when scaling out. Thus,
instead of having one slot per thread, we can compress Tr by
having only one slot ¢; per compute server; i.e., all transaction
execution threads on one machine share one timestamp slot ¢;.
One alternative is that the threads of a compute server use an
atomic RDMA fetch-and-add operation to increase the counter
value. Since the number of transaction execution threads per
compute server is bounded (if we use one dedicated thread per
core) the contention will not be too high. As another alter-
native, we can cache t. in a compute server’s memory. In-
creasing t. is then implemented by a local compare-and-swap
followed by a subsequent RDMA write.

Partitioning of T'z: In our evaluation, we found that with
those two optimizations, a single timestamp server is already
able to sustain over 140 million trxs/sec using a single dual-
port FDR 4x NIC. In other words, we could scale our cluster
to ~ 500 machines for TPC-C with two FDR 4x ports before
the network bandwidth of the server becomes a bottleneck.
In case a single server becomes the bottleneck, it is easy to
partition T'r across several memory nodes, since a transaction
execution thread needs to update only a single slot ¢;. This
will improve the bandwidth per server as every machine now
only stores a fraction of the vector. Unfortunately, partitioning
Tr no longer guarantees strict monotonicity. As a result, ev-
ery transaction execution thread still observes a monotonically
increasing order of updates, but the order of transactions be-
tween transaction execution threads might be different. While
we believe that this does not impose a big problem in real sys-
tems, we are currently investigating if we can solve this by
leveraging the message ordering guarantees provided by In-
finiBand for certain broadcast operations. This direction rep-
resents an interesting avenue of future work.
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S Memory Servers

In this section, we first discuss the details of the multi-
versioning scheme implemented in the memory serves of NAM-
DB, which allows compute servers to install and find a version
of a record. Afterwards, we present further details about the
design of table and index structures in NAM-DB— as well as
memory management including garbage collection. Note that
our design decisions are made to make distributed transactions
scalable rather than optimize for locality.

5.1 Multi-Versioning Scheme

The scheme to store multiple versions of a database record
in a memory server is shown in Figure 3. The main idea is that
the most recent version of a record, called the current version,
is stored in a dedicated memory region. Whenever a record is
updated by a transaction (i.e., a new version needs to be in-
stalled), the current version is moved to an old-version buffer
and the new current version is installed in-place. As a result,
the most recent version can always be read with a single
RDMA request. Furthermore, as we use continuous memory
regions for the most recent versions, transferring the most re-
cent versions of several records is also only a single RDMA re-
quest, which dramatically helps scans. The old-version buffer
has a fixed size to be efficiently accessible with one RDMA
read. Moreover, the oldest versions in the buffers are contin-
uously copied to an overflow region. That way, slots in the
old-version buffer can be re-used for new versions while keep-
ing old versions available for long running transactions.

In the following, we first explain the memory layout in more
detail and then discuss the version management.

Record Layout: For each record, we store a header sec-
tion that contains additional metadata and a data section that
contains the payload. The data section is a full copy of the
record which represents a particular version. Currently, we
only support fixed-length payloads. Variable-length payloads
could be supported by storing an additional pointer in the data
section of a record that refers to the variable-length part, which
is stored in a separate memory region. However, when using
RDMA, the latency for messages of up to 2KB remains con-
stant, as shown in our vision paper [10]. Therefore, for many
workloads where the record size does not exceed this limit, it
makes sense to store the data in a fixed-length field that has the
maximal required length inside a record.

The header section describes the metadata of a record. In
our current implementation, we use an 8-byte value that can
be atomically updated by a remote compare-and-swap opera-
tion from compute servers. The header encodes different vari-
ables: The first 29 bits are used to store the thread identifier
i of the transaction execution thread that installed the version
(as described in the section before). The next 32 bits are used
for the commit timestamp. Both these variables represent the
version information of a record and are set during the commit
phase. Moreover, we also store other data in the header sec-
tion that is used for version management, each represented by
a 1-bit value: a moved-bit, a deleted-bit, and a locked-bit. The
moved-bit indicates if a version was already moved from the
old-version buffer to the overflow region, and thus its slot can
be safely reused. The deleted-bit indicates if the version of a
record is marked for deletion and can be safely garbage col-



lected. Finally, the locked-bit is used during the commit phase
to avoid concurrent updates after the version check.

Version Management: The old-version buffer consists of
two circular buffers of a fixed size as shown in Figure 3; one
that holds only headers (excluding the current version) and an-
other one that holds data sections. The reason for splitting
the header and the data section into two circular old-version
buffers is that the size of the header section is typically much
smaller than the data section. That way, a transaction that
needs to find a particular version of a record only needs to fetch
all headers without reading the payload. Once the correct ver-
sion is found, the payload can be fetched with a separate read
operation using the offset information. This effectively mini-
mizes the latency when searching a version of a record.

For installing a new version, we first validate if the current
version has not changed since reading it and set the lock-bit
using one atomic RDMA compare-and-swap operation (i.e.,
we combine validation and locking). If locking and valida-
tion fails, we abort. Otherwise, the header and the data of the
current version is copied to the old version buffer. In order to
copy the current version to the buffers, a transaction first needs
to determine the slot which stores the oldest version in the cir-
cular buffer and find out if that slot can be overwritten (i.e., the
moved-bit is set to 1). In order to identify the slot with the old-
est version, the circular buffers provide a next-write counter.

Another issue is that the circular buffers have only a fixed
capacity, the reason that we want to efficiently access them
with one-sided RDMA operations and avoid pointer-chasing
operations. However, in order to support long-running trans-
actions a version-mover thread that runs in a memory server
which continuously moves the header and data section to an
overflow region and sets the moved-bit in the header-buffer to
1. This does not actually mean that the tuples are removed
from the old-versions buffers. It only means that it can be
safely re-used by a transaction to install a new version. Keep-
ing the moved versions in the buffer maximizes the number of
versions that can be retrieved from the old-version buffers.

5.2 Table and Index Structures

In the following, we discuss how table and index structures
are implemented in memory servers.

Table Structures: In NAM-DB, we only support one type
of table structure that implements a hash table design similar to
the one in [30]. In this design, compute servers can execute all
operations on the hash table (e.g., put or a get) by using one-
sided RDMA operations. In addition to the normal put and get
operations to insert and lookup records of a table, we addition-
ally provide an update to install a new record version, as well
as a delete operation. The hash tables in NAM-DB stores key-
value pairs where the keys represent the primary keys of the
table. Moreover, the values store all information required by
our multi-versioning scheme: the current record version and
three pointers (two pointers to the old-version buffers as well
as one pointer to the overflow region).

In contrast to [30], hash tables in NAM-DB are partitioned
to multiple memory servers. In order to partition the hash ta-
ble, we split the bucket array into equally-sized ranges and
each memory server stores only one of the resulting sub-ranges
as well as the corresponding keys and values. In order to find
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a memory server which stores the entries for a given key, the
compute server only needs to apply the hash function which
determines the bucket index (and thus the memory server which
holds the bucket and its key-value pairs). Once the memory
server is identified, the hash table operation can be executed
on the corresponding memory server.

Index Structures: In addition to the table structure de-
scribed before, NAM-DB supports two types of secondary in-
dexes: a hash-index for single-key lookups and a B -tree for
range lookups. Both types of secondary indexes map a value
of the secondary attribute to a primary key that can then be
used to lookup the record using the table structure dicussed
before (e.g., a customer name to the customer key). Moreover,
secondary indexes do not store any version information. Thus,
retrieving the correct version of a record requires a subsequent
lookup on the table structure using the primary key.

For NAM-DB’s secondary hash indexes, we use the same
hash table design that we have described before for the ta-
ble design. The main difference is that for values in a sec-
ondary hash index, we store only primary keys and no point-
ers (e.g., to old-version buffers etc.) as discussed before. For
the B -tree index, we follow a different route. Instead of de-
signing a tree structure that can be accessed purely by one-
sided RDMA operations, we use two-sided RDMA operations
to implement the communication between compute and mem-
ory servers. The reason is that operations in BT -trees need
to chase multiple pointers from the root to the leaf level, and
we do not want to pay the network overhead for pointer chas-
ing. While pointer chasing is also an issue for hash-tables,
which use linked lists, [30] shows that clustering keys in a
linked list into one memory region largely mitigates this prob-
lem (i.e., one RDMA operation can read the entire linked list).
Moreover, for scaling-out and preventing individual memory
servers from becoming a bottleneck, we range partition B -
trees to different memory servers. In the future, we plan to
investigate alternative indexing designs for B trees.

5.3 Memory Management

Memory servers store tables as well as index structures in
their memory as described before. In order to allow compute
servers to access tables and indexes via RDMA, memory ser-
vers must pin and register memory regions at the RDMA net-
work interface card (NIC). However, pinning and registering
memory at the NIC are both costly operations which should
not be executed in a critical path (e.g., whenever a transaction
created a new table or an index). Therefore, memory servers
allocate a large chunk of memory during initialization and reg-
ister it to the NIC. After initialization, memory servers handle
both allocate and free calls from compute servers.

Allocate and Free Calls: Allocate and free calls from com-
pute servers to memory servers are implemented using two-
sided RDMA operations. In order to avoid many small mem-
ory allocation calls, compute servers request memory regions
from memory servers in extends. The size of an extend can
be defined by a compute server as a parameter and depends
on different factors (e.g., expected size and update rate). For
example, when creating a new table in NAM-DB, a compute
server that executed the transaction allocates an extend that al-
lows the storage of an expected number of records and their



different versions. The number of expected records per table
can be defined by applications as a hint.

Garbage Collection: To prevent old versions from tak-
ing up all the space, the job of the garbage collection is to
determine old version records which can be safely evicted.
In NAM-DB, garbage collection is implemented by having a
timeout on the maximal transaction execution time E that can
be defined as a parameter by the application. Transactions that
run longer than the maximal execution time might abort since
the version they require might already be garbage collected.
For garbage collecting these versions, each memory server has
a garbage collection thread which continuously scans the over-
flow regions and sets the deleted-bit of the selected versions of
arecord 1. These versions are then truncated lazily from the
overflow regions once contiguous regions can be freed.

6 Compute Servers
In this section, we discuss how compute servers execute

transactions and present techniques for recovery/fault-tolerance.

6.1 Transaction Execution

Compute servers use multiple so called transaction execu-
tion threads to execute transactions over the data stored in the
memory servers. Each transaction execution thread ¢ executes
transactions sequentially using the complete timestamp vector
T as the read timestamp, as well as (¢, T'[¢]) as the commit
timestamp, to tag new versions of records as discussed in Sec-
tion 4. The general flow of executing a single transaction in a
transaction execution thread is the same workflow as outlined
already in Section 3.1. Indexes are updated within the bound-
aries of the transaction that also updates the corresponding ta-
ble using RDMA operations (i.e., we pay additional network
roundtrips to update the indexes).

One import aspect that we have not discussed so far is how
the database catalog is implemented such that transactions can
find the storage location of tables and indexes. The catalog
data is hash-partitioned and stored in memory servers. All ac-
cesses from compute servers are implemented using two-sided
RDMA operations since query compilation does not result in
a high load on memory servers when compared to the actual
transaction execution. Since the catalog does not change too
often, the catalog data is cached by compute servers and re-
freshed in two cases. In the first case, a requested database ob-
ject is not found in the cached catalog, and the compute server
requests the required meta data from the memory server. The
second case is if a database object is altered. We detect this
case by storing a catalog version counter within each mem-
ory server that is incremented whenever an object is altered
on that server. Since transaction execution threads run trans-
actions in a closed loop, this counter is read from the memory
server that stores the metadata for the database objects of a
given transaction before compiling the queries of that transac-
tion. If the version counter has changed when compared to the
cached counter, the catalog entries are refreshed.

6.2 Failures and Recovery

NAM-DB provides a fault-tolerance scheme that handles
failures of both compute and memory servers. In the follow-
ing, we discuss both cases. At the moment, we do not handle
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failures resulting from network partitioning since the events
are extremely rare in InifiniBand networks. These types of
failures could be handled using a more complex commit pro-
tocol than 2PC (e.g., a version of Paxos based on RDMA),
which is an interesting avenue of future work. Moreover, it is
also important to note that high-availability is not the design
goal of NAM-DB, which could be achieved in NAM-DB by
replicating the write-set during the commit phase.

Memory Server Failures: In order to tolerate memory ser-
ver failures, each transaction execution thread of a compute
server writes a private log journal to a memory server using
RDMA writes. In order to avoid the loss of a log, each transac-
tion execution thread writes its journal to more than one mem-
ory server. The entries of such a log journal are < 7,5 >
where T is the read snapshot used by thread ¢ and S is the
executed statement with all its parameters. Commit times-
tamps that have been used by a transaction execution thread
are stored as parameters together with the commit statement
and are used during replay. The log entries for all transaction
statements are written to the database log before installing the
write-set on the memory servers.

Once a memory server fails, we halt the complete system
and recover all memory servers to a consistent state from the
last persisted checkpoint (discussed below). For replaying the
distributed log journal, the private logs of all transaction ex-
ecution threads need to be partially ordered by their logged
read timestamps 7. Therefore, the current recovery procedure
in NAM-DB is executed by one dedicated compute server that
replays the merged log for all memory servers.

In order to avoid long restart phases, an asynchronous thread
additionally writes checkpoints to the disks of memory servers
using a dedicated read-timestamp. This is possible in snapshot
isolation without blocking other transactions. The checkpoints
can be used to truncate the log.

Compute Server Failures: Compute servers are stateless
and thus do not need any special handling for recovery. How-
ever, a failed compute server might result in abandoned locks.
Therefore, each compute server is monitored by another com-
pute server called a monitoring compute server. If a monitor-
ing compute server detects that a compute server is down, it
unlocks the abandoned locks using the log journals written by
the transaction execution threads of this compute server.

7 Evaluation

The goal of our experiments is to show that distributed trans-
actions can indeed scale and locality is just an optimization.

Benchmark: We used TPC-C [41] as our main benchmark
without any modifications unless otherwise stated for specific
experiments. We generated 50 warehouses per memory server
and created all required secondary indexes. All these indexes
were implemented using our hash- and B -tree index as dis-
cussed in Section 5. Moreover, to show the effect of locality,
we added a parameter to TPC-C that allows us to change the
degree of distribution for new-order transactions from 0% to
100% ( 10% is the TPC-C specified configuration). As defined
by the benchmark we only report the throughput of new-order
transactions, which roughly make up 45% of all queries.

Setup: For executing the experiments, we used two differ-
ent clusters, both with an InfiniBand network:



Cluster A has 57 machines, each with Mellanox Connect-IB
card, and all connected through a single InfiniBand FDR 4X
switch. The cluster contains two types of machines: the first
28 machines (type 1) have two Intel Xeon E7-4820 processors
(each with 8 cores) and 128 GB RAM, the other 29 machines
(type 2) have two Intel Xeon E5-2660 processors (each with
8 cores) and 256 GB RAM. All machines in this cluster run
Oracle Linux Server 6.5 (kernel 2.6.32) and use the Mellanox
OFED 2.3.1 driver for the network.

Cluster B has 8 machines connected to a single InfiniBand
FDR 4X switch using a Mellanox Connect-IB card. Each ma-
chine has two Intel Xeon E5-2660 v2 processors (each with 10
cores) and 256GB RAM. The machines run Ubuntu 14.01 Ser-
ver Edition (kernel 3.13.0-35-generic) as their operating sys-
tem and use the Mellanox OFED 2.3.1 driver for the network.

7.1 Exp.1: System Scalability

To show that NAM-DB scales linearly, the number of ser-
vers were increased from 2 to 56 on Cluster A. We used two
configurations of NAM-DB, with and without locality. For the
setup without locality optimization, we deployed 28 memory
servers on type-2 machines and 28 compute servers on type-
1 machines, the latter using 60 transaction execution threads
per machine. For the setup with the locality optimization, we
deployed 56 compute and 56 memory servers (one pair per
physical machine). In this deployment, each compute server
was running only 30 transaction execution threads to have the
same total number in both deployments. Finally, in both de-
ployments we used one additional dedicated memory server
on a type-2 machine to store the timestamp vector.

Figure 4 shows the throughput of NAM-DB on an increas-
ing cluster size both without exploring locality (blue) and with
adding locality (purple) and compares them against a more tra-
ditional implementation of Snapshot Isolation (red) with two-
sided message-based communication. The results show that
NAM-DB scales nearly linearly with the number of servers to
3.64 million distributed transactions over 56 machines. How-
ever, if we allow the system to take advantage of locality, we
achieve 6.5 million TPC-C new-order transactions. This is
2 million more transactions than the current scale-out record
by Microsoft FaRM [14], which achieves 4.5 million TPC-
C transactions over 90 machines with comparable hardware
and using as much locality as possible. It should be noted
though that FaRM was deployed on a cluster with ConnectX-3
NICs, not ConnectIB, which can have an performance impact
if the number of queue pairs is large [21]. However, as Sec-
tion 7.5 will show, for TPC-C this should make almost no dif-
ference. Furthermore, FaRM implements serializability guar-
antees, whereas NAM-DB supports snapshot isolation. While
for this benchmark it makes no difference (there is no write-
skew), it might be important for other workloads. At the same
time, though, FaRM never tested their system for larger read
queries, for which it should perform particularly worse as it
requires a full read-set validation.

The traditional SI protocol in Figure 4 follows a partitioned
shared-nothing design similar to [26] but using 2-sided RDMA
for the communication. As the figure shows, this design does
not scale with the number of servers. Even worse, the through-
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Figure 4: Scalability of NAM-DB

put even degrades when using more than 10 machines. The de-
grade results from the high CPU costs of handling messages.

Figure 5(a) shows that the latency of new-order transactions.
While NAM-DB almost stays constant regardless of the num-
ber of machines, the latency of the classic SI implementation
increases. This is not surprising; in the NAM-DB design the
work per machine is constant and is not related to the number
of machines in the cluster, whereas the classical implementa-
tion requires more and more message handling.

When looking more carefully into the latency of NAM-DB
w/o locality and its break-down (Figure 5(b)), it reveals that
the latency increases slightly mainly because of the overhead
to install new versions. In fact, we know from profiling that
NAM-DB for TPC-C is network bandwidth bound. That is
also the main reason why locality improves the overall perfor-
mance, and we speculate that a system with the next generation
of network hardware, such as EDR, would be able to achieve
even higher throughputs. Finally, Figure 5(b) shows, that the
latency for the timestamp oracle does not increase, indicating
the efficiency of our new technique (note that we currently do
not partition the timestamp vector).

7.2 Exp.2: Scalability of the Oracle

To test the scalability of our novel timestamp oracle, we var-
ied the number of compute servers that concurrently update
the oracle. As opposed to the previous experiment, however,
compute servers do not execute any real transaction logic. In-
stead, each compute server thread executes the following three
actions in a closed loop: (1) reads the current timestamp, (2)
generates a new commit timestamp, and (3) makes the new
commit timestamp visible. We call this sequence of operations
a timestamp transaction, or simply #-trx. For this experiment,
we used cluster B with eight nodes. The compute servers were
deployed on seven machines, where we scaled the number of
threads per machine. The remaining one node runs a memory
server that stores the timestamp vector.

As a baseline, we analyze the original timestamp oracle
of our vision paper [10] (red line in Figure 7), which only
achieved up to 2 million t-trxs/sec. As shown in the graph,
our old oracle did not scale. In fact, when scaling to more
than 20 clients, the throughput starts to degrade due to high
contention.However, it should be noted that for smaller clus-
ters, the threshold of 2 million t-trxs/sec might be enough. For
example, in our vision paper [10], we executed a variant of
TPC-W on a smaller cluster and achieved up to 1.1 million
transactions per second; a load that the original oracle could
sustain. However, it becomes a bottleneck for larger deploy-
ments. As shown before, our system can execute up to 14
million transactions on 56 nodes (6.5 million new-order trans-
actions). This load could not be handled by the classic oracle.
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As shown in Figure 6, the new oracle (blue line) can easily
sustain the above mentioned load. For example, the basic ver-
sion with no optimization achieves 20 million t-trxs/sec. How-
ever, the basic version still does not scale linearly because the
size of the timestamp vector grows with the number of trans-
action execution threads (i.e., clients) and makes the network
bandwidth of the timestamp server the main bottleneck.

While 20 million t-trxs/sec is already sufficient that the ba-
sic new oracle (blue line) does not become a bottleneck in our
experiments, we can push the limit even further by applying
the optimizations discussed in Section 4.2. One of the op-
timizations is using a dedicated background fetch thread per
compute server (instead of per transaction execution thread)
to read the timestamp vector periodically. This reduces the
load on the network. When applying this optimization (black
line, denoted by “bg ts reader”), the oracle scales up to 36
million t-trxs/sec. Furthermore, when applying compression
(green line), where there is one entry in the timestamp vec-
tor per machine (instead of per transaction thread), the oracle
scales even further to 80 million t-trxs/sec. Finally, when en-
abling both optimizations (yellow line), the oracle scales up to
135 million t-trxs/sec on only 8 nodes.

It is worth noting that even the optimized oracle reaches its
capacity at some point when deployed on clusters with hun-
dreds or thousands of machines (we speculate that with these
two optimizations and the given hardware we could support a
cluster size of 500 machines for TPC-C). At that point, the idea
of partitioning the timestamp vector (see Section 4.2) could be
applied to remove the bottleneck. Therefore, we believe that
our proposed design for the timestamp oracle is truly scalable.

7.3 Exp.3: Effect of Locality

As described earlier, we consider locality an optimization
technique, like adding an index, rather than a key requirement
to achieve good scale-out properties. This is feasible with
high-speed networks since the impact of locality is no longer
as severe as it is on slow networks. To test this assumption,
we varied the degree of distribution for new-order transactions
from 0% up to 100%. The degree of distribution represents the
likelihood that a transaction needs to read/write data from/to a
warehouse that is stored on a remote server When exploiting
locality, transactions are executed at those servers that store
the so-called home warehouse. In this experiment, we only
executed the new-order transaction and not the complete mix
in order to show the direct effect of locality.

For the setup, we again use cluster B with one server act-
ing as the timestamp oracle and the remaining seven machines
physically co-locating one memory and one computer server
each. The TPC-C database contained 200 warehouses parti-
tioned to all memory servers. When running w/o locality, we
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executed all memory accesses using RDMA. When running
w/ locality, we directly accessed the local memory if possible.
Since our HCA’s atomic operations are not atomic with respect
to the attached processor, all the atomic operations were issued
as RDMA atomics, even in locality mode.

Figure 6 shows that the performance benefit of locality is
roughly 30% in regard to throughput and latency. While 30%
is not negligible, it still demonstrates that there are no longer
orders-of-magnitude differences between them if the system is
designed to achieve high distributed transaction throughput.

We also executed the same experiment on a modern in-
memory database (H-Store [22]) that implements a classical
shared-nothing architecture which is optimized for data-locality.
We choose H-Store as it is one of the few freely available trans-
actional in-memory databases. We used the distributed version
of H-Store without any modifications using IP over InfiniBand
as communication stack. Overall, we observed that H-Store
only achieves 11K transactions per second (not shown in Fig-
ure 6) on a perfectly partitionable workload. These numbers
are in line with the ones reported in [33]. However, at 100%
distributed transactions the throughput of H-Store drops to 900
transactions per second (which is approx. a 90% drop), while
our system still achieves more than 1.5M transactions under
the same workload. This clearly shows the sensitivity of the
shared-nothing design to data locality.

7.4 Exp.4: Effect of Contention

As mentioned earlier, the scalability is influenced by the in-
trinsic scalability of the workload. In order to analyze the ef-
fect of contention on the scalability, we increased the number
of machines with different levels of contention. That is, we
varied the likelihood that a given product item is selected by
a transaction by using a uniform distribution as well as differ-
ent zipf distributions with low skew (o = 0.8), medium skew
(o = 0.9), high skew (o = 1.0) and very-high skew (o = 2.0).

Figure 8 shows the results in regard to throughput and abort
rate. For the uniform and zipf distribution with low skew, we
can see that the throughput per machine is stable (i.e., almost
linearly as before). However, for an increasing skewness factor
the abort rate also increases due to the contention on a single
machine. This supports our initial claim that while RDMA can
help to achieve a scalable distributed database system, we can
not do something against an inherently non-scalable workload
that has individual contention points. The high abort rate can
be explained by the fact that we immediately abort transac-
tions instead of waiting for a lock once a transaction does not
acquire a lock. It is important to note that this does not have a
huge impact on the throughput, since in our case the compute
server directly triggers a retry after an abort.
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Figure 7: Scalability of Oracle
7.5 Exp.5: Scalability of RDMA QPs

Recent work [21] pointed out that a high number of queue
pairs (QPs) per NIC limit the scalability. The reason is that
the NIC cache is limited. Thus, a high number of QPs may
overflow the cache, potentially causing the performance to de-
grade. To investigate the impact of the number of QPs on our
design, we dedicated one machine as server and seven ma-
chines as clients on Cluster B and varied the number of queue
pairs per client thread while running 20 threads per client.
That way, we scaled the number of total queue pairs to ap-
proximately 4000. Moreover, at every round, a client thread
chooses one of its queue pairs randomly, and issues a fixed-
size READ to the server.

Figure 9 shows the total number of performed operations
for three different sizes of one-sided RDMA READs. The
results show that queue pairs indeed have an impact on the
overall performance, but mainly for small messages. For ex-
ample, we observed a 40% (25%) drop in the throughput of
8-byte (64-byte) READs. However, with 256-byte READs,
the number of queue pairs has almost no impact. In this case,
the network bandwidth limits the maximum throughput, not
the queue pairs. Thus, we argue that for many workloads (as
well as benchmarks such as TPC-C) the number of queue pairs
does not play an important role.

Also note that queue pairs are not needed to be established
between all cores. For example, in the NAM architecture only
queue pairs between servers and client-threads are required.
This can be further reduced by not using a queue pair for ev-
ery client-thread (as currently done in NAM-DB) but rather a
few dedicated “communicator” threads at the potential cost of
additional coordination overhead.

Finally, while in its simplest case, a queue pair is needed per
core to enable RDMA and thus the increasing number of cores
per CPU might again become a bottleneck, we observe that
— at least currently — the cache sizes of NICs increase much
faster than the number of cores per CPU. If this trend contin-
ues, this might further mitigate the problem in the future.

8 Related Work

Most related to our work is FaRM [14, 13]. However, FaRM
uses a more traditional message-based approach and focuses
on serializability, whereas we implemented snapshot isolation,
which is more common in practice because of its low-overhead
consistent reads. More importantly, in this work we made
the case that distributed transactions can now scale, whereas
FaRMs design is centered around locality.

FaSST [21] is another related project which was published
while this paper was under review. Like NAM-DB, FaSST
also focuses on scalability but the authors took a different ap-
proach by building an efficient RPC abstraction on top of 1-to-

Figure 8: Effect of Contention
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many unreliable datagrams using two-sided SEND/RECEIVE
verbs. This design minimizes the size of queue pair state stored
on NIC cache with the goal of better scalability with the size
of cluster. However, as Section 7.5 showed, for many realistic
workloads and cluster sizes, the number of queue pairs may
not be that influential on performance. Due to their decision
of abandoning one-sided RDMA verbs in favor of unreliable
datagrams, their system is not able to take full advantage of
leveraging the NIC as co-processors to access remote mem-
ory, and the design is likely more sensitive to data locality. Fi-
nally, and most importantly, FaSST implements serializability
guarantees, whereas we show how to scale snapshot isolation,
which provides better performance for read-heavy workloads
and is more common in practice than serializability (e.g., Ora-
cle does not even support it).

Another recent work [29] is similar to our design since it
also separates storage from compute nodes. However, instead
of treating RDMA as a first-class citizen, they treat RDMA
as an afterthought. Moreover, they use a centralized commit
manager to coordinate distributed transactions, which is likely
to become a bottleneck when scaling out to larger clusters.
Conversely, our NAM-DB architecture is designed to lever-
age one-sided RDMA primitives to build a scalable shared
distributed architecture without a central coordinator to avoid
bottlenecks in the design.

Industrial-strength products have also adopted RDMA in
existing DBMSs [6, 36, 28]. For example, Oracle RAC [36]
has RDMA support, including the use of RDMA atomic prim-
itives. However, RAC does not directly take advantage of the
network for transaction processing and is essentially a work-
around for a legacy system. Furthermore, IBM pureScale [6]
uses RDMA to provide high availability for DB2 but also re-
lies on a centralized manager to coordinate distributed trans-
actions. Finally, SQLServer [28] uses RDMA to extend the
buffer pool of a single node instance but does not discuss the
effect on distributed databases at all.

Other projects in academia have also targeted RDMA for
data management, such as distributed join processing [7, 38,
19]. However, they focus mainly only on leveraging RDMA
in a traditional shared-nothing architecture and do not discuss
the redesign of the full database stack. SpinningJoins [19] sug-
gest a new architecture for RDMA. Different from our work,
this work assumes severely limited network bandwidth (only
1.25GB/s) and therefore streams one relation across all the
nodes (similar to a block-nested loop join). Another line of
work is on RDMA-enabled key value stores RDMA-enabled
key/value stores [31, 30, 20]. We leverage some of these re-
sults to build our distributed indexes in NAM-DB, but transac-
tions and query processing are not discussed in these papers.



Furthermore, there is a huge body of work on distributed
transaction processing over slow networks. In order to reduce
the network overhead, many techniques have been proposed
ranging from locality-aware partitioning schemes [35, 33, 12,
43] and speculative execution [32] to new consistency levels
[24, 4, 3] and the relaxation of durability guarantees [25].

Finally, there is also recent work on high-performance OLTP
systems for many-core machines [23, 42, 34]. This line of
work is largely orthogonal to ours as it focuses on scale-up
rather than scale-out. However, our timestamp oracle could
be used in a scale-up solution to achieve better scalability. In
addition, it should be noted that our current system is able to
achieve a quarter of the performance of the current scale-up
record [42]: = 59Ktps/core vs = 16.8Ktps/core (only
counting new-order transactions). This is an impressive re-
sult as it is generally easier and more cost-efficient to incre-
mentally scale-out than scale-up a system. Furthermore, fu-
ture increases in the available network bandwidth is likely to
close the gap (recall that the bandwidth of dual-port FDR 4x
is roughly a quarter of the memory bandwidth and our system
is bandwidth bound).

9 Conclusions

We presented NAM-DB, a novel scalable distributed data-
base system which uses distributed transactions by default and
considers locality as an optimization. We further presented
techniques to achieve scalable timestamps for snapshot iso-
lation, as well as showed how to implement Snapshot Isola-
tion using one-sided RDMA operations. Our evaluation shows
nearly perfect linear scale-out to up to 56 machines and a to-
tal TPC-C throughput of 6.5 million transactions per second,
significantly more than the state-of-the-art. In the future, we
plan to investigate more into avenues such as distributed index
design for RDMA and to study the design of other isolation
levels in more detail. This work ends the myth that distributed
transactions do not scale and shows that NAM-DB is at most
limited by the workload itself.
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