
Pandia: comprehensive contention-sensitive thread placement

Daniel Goodman
Oracle Labs, Cambridge, UK
daniel.goodman@oracle.com

Georgios Varisteas ∗

SnT, University of Luxembourg
georgios.varisteas@uni.lu

Tim Harris
Oracle Labs, Cambridge, UK
timothy.l.harris@oracle.com

Abstract
Pandia is a system for modeling the performance of in-
memory parallel workloads. It generates a description of
a workload from a series of profiling runs, and combines
this with a description of the machine’s hardware to model
the workload’s performance over different thread counts and
different placements of those threads.

The approach is “comprehensive” in that it accounts for
contention at multiple resources such as processor functional
units and memory channels. The points of contention for a
workload can shift between resources as the degree of par-
allelism and thread placement changes. Pandia accounts for
these changes and provides a close correspondence between
predicted performance and actual performance. Testing a set
of 22 benchmarks on 2 socket Intel machines fitted with
chips ranging from Sandy Bridge to Haswell we see median
differences of 1.05% to 0% between the fastest predicted
placement and the fastest measured placement, and median
errors of 8% to 4% across all placements.

Pandia can be used to optimize the performance of a given
workload—for instance, identifying whether or not multiple
processor sockets should be used, and whether or not the
workload benefits from using multiple threads per core. In
addition, Pandia can be used to identify opportunities for
reducing resource consumption where additional resources
are not matched by additional performance—for instance,
limiting a workload to a small number of cores when its
scaling is poor.

1. Introduction
Pandia is a system for modeling the performance and re-
source demands of parallel in-memory workloads. From a

∗ Work conducted while an intern at Oracle Labs and a PhD candidate at
KTH Royal Institute of Technology.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064177

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d
 S

p
e
e
d
u
p

Placement

Measured
Predicted

Figure 1: Measured performance vs predicted performance
for MD, a molecular dynamics simulation. The x-axis shows
the different thread placements explored, from 1 thread up to
the full 2-socket machine with 72 hardware threads. For each
placement we plot the execution time normalized to the best
performance achieved.

series of six carefully-selected profiling runs, Pandia quan-
titatively predicts a workload’s performance across different
numbers of threads and different placements of those threads
within a machine. Pandia’s results can be used both to pre-
dict the best thread allocation for a given workload, and to
predict the resources needed for a workload to meet a speci-
fied performance target.

Figure 1 shows an example set of results from Pandia col-
lected on a molecular dynamics simulation (MD) running on
a 2-socket Intel Haswell system. The x-axis shows different
thread allocations, exploring different numbers of threads
and different placements of those threads on the hardware
contexts in the machine. The lighter (gray) points show the
measured performance of the workload when testing all of
these allocations. The darker (red) points show the perfor-
mance predicted by Pandia.

Pandia exploits characteristics which are typical of in-
memory parallel analytics workloads: there is a fixed amount
of computation which can be distributed across a config-
urable number of threads. By varying the placement of these
threads, we can control how the workload’s fixed demand for
resources maps onto the underlying machine. Unlike more
general server workloads, there is little OS activity, and there
are simple synchronization patterns across the threads.

Pandia benefits from current trends in systems and pro-
cessors. For instance, the use of fully-connected symmet-
ric interconnects removes some of the complexities seen in
prior work [18]. In addition, the introduction of features such

Workload
Description
Generator
(Section 4)

Performance
Predictor

(Section 5)

Machine
Description

Workload
Description

Machine
Description
Generator
(Section 3)

Performance
Prediction

Thread
Placement

Figure 2: The three main components of Pandia and their
dependencies.

as adaptive caches provide more gradual fall-offs in perfor-
mance if an application’s working set grows to exceed a
given level in the cache hierarchy [27].

In addition to discussing these assumptions and trends in
more detail, Section 2 provides an overview of the compo-
nents that make up Pandia: We generate a machine descrip-
tion (Section 3), generate a description of a workload via a
series of profiling runs (Section 4), and from these we model
the performance of a given thread placement (Section 5).
Figure 2 illustrates these steps.

In outline, we start by running a workload with a single
thread and measuring its use of different resources (e.g.,
memory bandwidth). Additional runs explore the workload’s
behavior when running with larger numbers of threads, and
its sensitivity to different changes in thread placement—for
instance, the impact of co-locating threads onto the same
core, or the impact of using cores on the same socket versus
different sockets. We need six runs in total.

Based on these measurements, Pandia then makes pre-
dictions by naı̈vely assuming that each thread in the parallel
workload will impose the same load on the machine as the
single thread in the initial profiling run. We then iteratively
refine this load by (i) identifying the bottleneck resources
for each thread, and scaling back the thread’s performance
so that the bottleneck is not oversubscribed, and (ii) predict-
ing the overheads incurred by communication and synchro-
nization, and scaling back the thread’s performance further
to account for these costs. There can be complex interac-
tions between the demands for different resources because
slowing some threads may enable threads with different bot-
tleneck resources to run faster. We therefore iterate until a
stable result is achieved.

Section 6 evaluates the performance of Pandia on 22 test
workloads. We split these workloads into a reference set of
4 which we studied in detail while developing Pandia, and a
test set which we added to assess the generality of the tech-
niques developed. While we evaluate Pandia using stand-
alone benchmarks our ultimate aim is to support parallel
workloads within a server applications, for instance, tradi-
tional SQL data analytics, or parallel graph analysis.

Section 7 discusses related work before Section 8 con-
cludes this paper.

Contributions of this work. The goal of this work is to
predict the performance of parallel workloads on shared-

memory multi-core/multi-socket machines. We make the
following contributions:

• We identify a set of hardware and software assumptions
which permit performance predictions to be made with-
out requiring detailed micro-architectural models for the
cache or other resources. In contrast, prior work has gen-
erated miss-rate curves (e.g., that of Chandra et al. [8]), or
needed to place workloads into a taxonomy based on their
interactions in shared caches (e.g., that of Lin et al. [19],
or of Xie and Loh [30]).

• We develop techniques for predicting performance based
on iteratively predicting the slowdowns that a workload
will experience due to contention-based overheads and
synchronization-based overheads.

2. Overview and assumptions
This section takes an initial look at each of the compo-
nents that makes up Pandia (Section 2.1), the assumptions
we make about the target hardware (Section 2.2), and the
software workloads we consider (Section 2.3).

2.1 Components of Pandia
Pandia comprises three components (Figure 2). We summa-
rize them briefly:

Machine description generator (Section 3). This is a col-
lection of “stress applications” designed to saturate different
resources in the machine. We measure the performance of
these applications with hardware counters. From these mea-
surements we can determine the structure of the machine,
and properties such as the maximum bandwidth at different
levels of the memory hierarchy. The results form a machine
description for use by subsequent modeling steps.

Workload description generator (Section 4). Pandia ex-
ecutes a workload in six carefully-selected profiling runs.
We record results including CPU performance counters for
(i) the workload’s solo performance, (ii) the workload’s scal-
ing across resources, and (iii) when co-located with stress
applications, the interference these stressors impose on the
workload.

Performance predictor (Section 5). Finally, Pandia takes a
machine description, a workload description, and a proposed
thread placement. From these it provides a prediction of the
workload’s resource demands and performance.

2.2 Target hardware environment
Pandia is designed for cache-coherent shared-memory multi-
processor machines. Our evaluation uses 2-socket and 4-
socket Intel Xeon systems with multiple threads within each
core, multiple cores within each chip, and multiple chips
within the complete machine. We assume that the hardware
is homogeneous in that each core is identical, each chip is
identical, and the interconnect is fully connected.

Current server hardware has removed many of the dis-
continuities in behavior that occurred in earlier systems. For
instance, recent Intel systems up to 4 sockets and SPARC
systems up to 8 sockets normally have fully-connected inter-
connects with identical amounts of memory on each socket.
Modern systems have caches which monitor cache usage
and modify the insertion and removal strategies accord-
ingly [27]. This removes many pathological effects when
the working set outgrows the cache.

The overall effect of these changes is that we are able
to construct a performance model using simpler techniques
than were required to model previous generations of hard-
ware. In fact, without complex hardware insight, many tech-
niques used on previous generations of hardware no longer
appear to work (for instance, measuring cache sizes using
microbenchmarks to seek “performance cliffs”).

2.3 Software workload and models
We make the following assumptions about the workload:

• A generally-parallel workload with a configurable num-
ber of threads, and plentiful work to share between them.

• Homogeneous behavior between the threads—e.g., if ex-
ecuting loop iterations in parallel, there are similar re-
source demands for each iteration.

• Low algorithmic cost of adding extra threads. For in-
stance, expanding the degree of parallelism should not
significantly extend sequential sections of the code.

• Little system call activity or I/O. This simplifying as-
sumption reduces the kinds of behavior we need to
model, and it appears valid in our in-memory analytics
workloads. We aim to explore broadening our scope in
future work.

These properties cover many analytics workloads where
there is a constant amount of “work” to perform (e.g., a
given graph’s vertices to iterate over, or a given database
column to process). In our evaluation we use a range of
in-memory database join operators, a graph analytics work-
load, and existing parallel computing benchmarks written
using OpenMP [26].

In some of our workloads threads do perform busy-
waiting while delayed at synchronization barriers or for brief
critical sections. Empirically, we are able to ignore the im-
pact of the additional instructions spent spinning: good im-
plementations consume few CPU pipeline resources while
waiting, and waiting terminates quickly when the waited-for
resource becomes available.

Given such a workload, we model its behavior using six
metrics. In summary:

Resource demands. We model the hardware resources
that we expect threads to consume. These resources include
bandwidths at each level of the memory hierarchy, and the
compute resources within a core.

Parallel fraction. We model the fraction of a workload
which runs in parallel (p). From this we can derive a basic
speedup value via Amdahl’s law [1] when executing with n
threads:

Speedup =
1

(1− p) + p
n

Given our assumption of homogeneous behavior across
threads, we assume that the non-parallel work is spread
evenly over the workload—for instance, work executing in
critical sections rather than one long sequential portion in a
“main” thread.

This is of course a crude approximation of the workload’s
actual scaling because it assumes no interference between
the parallel sections of the code—other aspects of Pandia
seek to account for these more complex effects.

Inter-socket communication. The bandwidth consumed
on inter-socket links is recorded as part of the workload’s re-
source demands. In addition, we explicitly model the impact
of the longer latency introduced by crossing sockets.

When threads on different sockets access common mem-
ory locations the performance depends on many factors such
as the relative locations of the threads, the kinds of access
being made, and the presence or absence of false sharing.

The approach we take in Pandia is to measure these ef-
fects in aggregate by determining the workload’s sensitivity
to having its threads placed on different sockets. This cap-
tures the sensitivity of the complete workload to these costs.
For instance, if threads communicate rarely then the costs
may remain low even if the hardware introduces high laten-
cies on each communication between sockets.

Load balancing. Although we assume a workload’s threads
have homogeneous behavior, some of these threads may run
more slowly than others (e.g., some threads may share cores,
while others do not). In these cases we must assess how per-
formance skews between threads affect the overall workload.

For instance, some workloads use static work distribu-
tion, and a slow thread becomes a straggler and delays the
whole workload. In this case each of the threads performs
an equal amount of work, but the time that the threads spend
performing useful work may differ.

Other workloads use dynamic load balancing to redis-
tribute work, allowing any slowness by one thread to be com-
pensated for by other threads picking up its work. In this case
the overall performance of the workload is determined by the
aggregate throughput of all of its threads. Threads will be ac-
tive for the same amount of time, but some threads will be
making progress more quickly than others.

We quantify this by a load balancing factor indicating
where a workload lies between these extremes. In practice,
workloads may be somewhere between these points.

Core burstiness. Core burstiness quantifies the extent to
which the workload’s demands for resources in a core are

DRAM DRAM

50

100 100

10 10

10 10

Figure 3: Machine description for a simple system with two
dual-core processors and no caches. The model indicates the
bandwidth on the memory links and the interconnect, along
with the maximum instruction throughput per core.

spread evenly over time or occur in bursts. Bursts can pro-
duce additional resource contention when threads are col-
located. It can be misleading to rely on simple average de-
mands captured over a time: a low average may be a steady
demand which can be accommodated from multiple threads
without penalty, or it may be peaks and troughs.

Thread utilization. If applications fail to scale perfectly
then each thread is busy for less than 100% of its time.
For example, reduced utilization may be due to sequential
sections of the workload, or to delays waiting on stragglers.
We denote this utilization factor f and Pandia uses it to
adjust the resource demands of each thread: if a thread is
busy 50% of the time then it will demand 50% less resources
than if it is busy 100% of the time.

Unlike other aspects of our models, values of f differ
between threads and depend on the workload, the machine
description, and the thread placement being explored. As we
illustrate in Section 5, we derive f dynamically from these
other sources when making performance predictions.

3. Machine description
This section describes how Pandia collects the informa-
tion required to model the structure and performance of a
machine. The resulting machine descriptions are workload-
independent and are created once for each machine.

The machine description is constructed through a com-
bination of information obtained from the operating system
(OS), and measurements taken from synthetic applications
which stress particular resources. The OS provides:

• The number of processor sockets, cores per socket, and
hardware threads per core.

• The structure of the links between each level in the cache
hierarchy, the topology of the interconnect between the
sockets, and the locations of the links to main memory.

This initial topology is represented as a graph of the hard-
ware components of the machine and the relationships be-
tween them. We combine this with performance measure-
ments describing the bandwidth of the different links in the
memory system and the performance of the cores.

Figure 3 shows an example machine description for a
simple system without caches. Note that for brevity we omit

units: so long as consistent units are used when modeling the
machine and the workload, the exact scale is not significant.

3.1 Measuring link bandwidth
Starting from the machine topology, we run stress appli-
cations to determine the maximum bandwidth achieved on
each link in the memory system (e.g., between each level in
the cache hierarchy, or on the interconnect between sockets).
For all of these measurements we use results obtained from
workloads running on the machine itself rather than num-
bers obtained from data sheets. This empirical approach lets
us use the same measurement techniques for profiling the
machine and for profiling the performance of a workload.

The stress applications allocate an array of parameteriz-
able size which is then accessed linearly with one value read
and/or written per cache line. The accesses are in an opti-
mized loop with constant arguments to allow for effective
prefetching and branch prediction. When multiple threads
are used, each thread has a unique set of cache lines that
it will access. The size of the array is chosen to almost fill
the size of the storage at the far end of the link whose per-
formance we are measuring (without growing so large as to
spill into the next level). In the case of main memory we
make the array at least 100 times the size of the last level
of cache (LLC). This ensures that almost all of the accesses
miss in the cache LLC. When placing data into memory tools
such as Linux numactl are used to control placement.

When measuring the bandwidth of shared caches, it is
important to measure the maximum bandwidth of each link
to the cache and the maximum cumulative bandwidth that
the cache can sustain. For example a L3 cache may not be
able to support sufficient bandwidth for the maximum access
rate from a core to be sustained to all cores simultaneously.
So on an 18-core chip each core may individually achieve
a peak bandwidth of 360, but the L3 cache as a whole may
only provide 5000, not 6480. Both limits form part of the
machine description: 360 per core, and 5000 in aggregate.

3.2 Measuring core performance
The maximum instruction rate of a core is measured from
performance counters while executing a CPU stress applica-
tion. This performs operations on a small dataset such that
it readily fits into the L1 cache. Pipeline stalls are avoided
by providing a large number of independent operations, and
branch stalls are reduced by unwinding the loop and using
constant values on the loop guard to allow good prediction.

The operations are integer based to enable peak perfor-
mance. Performance is measured in instructions executed
per unit time. Although there is variation in peak perfor-
mance based on the type of operation used in the loop, this
measurement appears to be sufficient for our workloads.

We also execute two threads on the core to assess if the
core suffers a loss in peak performance when co-scheduling
threads (e.g., due to contention in the front-end).

Step Property Example
1 Single thread resource demands (d) – The

single-thread execution time t1 and a vector of re-
source demands for that one thread.

[7, 40]

2 Parallel fraction (p) – The fraction of the work-
load which runs in parallel.

0.9

3 Inter-socket overhead (os) – The latency relative
to t1 for inter-socket communication when threads
are placed on different sockets.

0.1

4 Load balancing factor (l) – The extent to which
the workload can re-balanced dynamically be-
tween threads based on their progress.

0.5

5 Core burstiness (b) – The sensitivity to colloca-
tion of threads in a core.

0.5

Figure 4: Steps in creating a workload model, along with
possible values for an example on the machine in Figure 3.

4. Workload model
We now describe how Pandia collects the information re-
quired to model a given workload. The resulting workload
description is specific to a given machine and, ideally, it will
be regenerated when moving to different hardware. How-
ever, as we show in our evaluation, predictions can remain
useful across broadly similar hardware platforms (e.g., a
workload that scales poorly across sockets on one system
may well scale poorly across sockets on another).

We build up the workload model incrementally in 5 steps,
with each step providing a successively more detailed de-
scription of the workload’s behavior. We organize the exper-
imental runs so that the behavior being considered in a given
step depends only on factors already determined in preced-
ing steps. Step 2 is dependent on step 1, and steps 3-5 are
dependent both on step 1 and on step 2. Aside from step 1
these dependencies exist only in the calculation of the model
parameters; the actual experimental runs can proceed con-
currently if multiple machines are available. Figure 4 shows
the steps, the properties collected, and example values.

Thread utilization. As we described in Section 2.3, if a
thread suffers contention its resource requirements will de-
crease. This is modeled by thread utilization. Thread utiliza-
tion does not form an explicit part of the workload descrip-
tion because it is dependent on the thread placement being
explored, but is introduced here because it is necessary to
account for its effect when choosing thread placements. In
step 1 when running with a single thread by definition there
will be no thread contention. In step 2 we choose the thread
placement to avoid thread contention, as such there will also
be no contention in step 4. In steps 3 and 5 however, con-
tention is likely. We briefly describe how thread utilization
is defined and derived when required, before describing the
experiments carried out for the 5 workload modeling steps
in turn (Section 4.1–4.5).

Under our workload assumptions, if a workload does not
scale perfectly, then its execution time will increase while
the total useful instructions it executes will remain broadly

2

2

1

1

Ti
m

e

Resources
0

0

2

2

1

1

Ti
m

e

Resources
0

0

2

2

1

1

Ti
m

e

Resources
0

0

Single thread Two threads ideal Two threads actual

Figure 5: Examples of possible executions of threads run-
ning a given workload. The gray boxes show the resources
used by the workload, spread over different numbers of
threads (x-axis) and durations (y-axis).

constant. This means the rate of resource consumption for
threads will be reduced because the operations performed
by the threads are being stretched over longer time intervals.
Figure 5 illustrates this. The first graph shows an original
single threaded run executing for 2 units of time. The second
graph shows ideal scaling with two threads executing for
1 unit of time: the per-thread consumption of resources is
at the same rate as the original. The third graph shows a
more realistic example with the two threads being held up
by contention: the resource demands are stretched out over
time. The thread utilization factor quantifies this as the ratio
between the resources used by the threads (grey boxes) and
the resources available during this interval (dashed outlines).

In our calculations we denote the thread utilization factors
f . Each thread has its own value, which we re-calculate
whenever the predicted performance of the thread changes.
We write fx for the thread utilization factors calculated at
the start of step x.

4.1 Single thread time and resource demands (Step 1)
First, the workload is run with a single thread to get the
sequential time t1 along with a vector of resource demands
comprising the instruction execution rate and the bandwidth
requirements to each level of the cache hierarchy and to main
memory. These metrics provide the basic sequential resource
demands of the workload. They are measured using the same
performance counters that we used in Sections 3.1 and 3.2.

Figure 6 (Run 1) shows an example of the results that we
collect in the simplified example machine: an instruction rate
of 7, and memory transfer bandwidth of 40 to each socket.

We use the single thread performance and resource de-
mands as a reference point in subsequent steps. We normal-
ize execution times for subsequent experiments tx relative to
this sequential execution time such that rx = tx/t1.

In each of the subsequent runs, we consider these relative
times rx to be the product of two values: the known fac-
tors (kx) already accounted for by previous steps, and the
unknown factors (ux) which are yet to be determined. The
incremental approach we take is to layer steps so that, for
a given step, we can use Pandia based on the partial work-
load model already constructed to determine kx. We then
extend the workload model so that ux = rx/kx is predicted

DRAM DRAM

50

100 100

10 10

10 10

40 40

40 7

DRAM DRAM

50

100 100

10 10

10 10

DRAM DRAM

50

100 100

10 10

10 10

Run 1) t1 = 1000s Run 2) t2 = 550s Run 3) t3 = 800s

DRAM DRAM

50

100 100

10 10

10 10

X X

DRAM DRAM

50

100 100

10 10

10 10

X

DRAM DRAM

50

100 100

10 10

10 10

Run 4) t4 = 1100s Run 5) t5 = 880s Run 6) t6 = 1350s

Figure 6: The six runs used to generate a description of
the example workload. Arrows represent threads and crosses
represent stress applications added to perturb execution.

correctly with the inclusion of the results of the new step.
Thread utilization factors f are recomputed after each step.

4.2 Parallel fraction (Step 2)
The parallel fraction is determined with an extra run (Run 2
in Figure 6). We construct the thread placement carefully to
avoid contention: (i) we run one thread per core, (ii) we keep
the threads within a single socket (to avoid considering inter-
socket communication costs at this point), and (iii) based on
the resource information from Run 1, we set the number
of threads sufficiently low to avoid over-subscribing any
resources (so thread utilization factors f = 1). We use
the largest even number of threads we can while satisfying
these conditions (as we show later, using an even number
of threads lets us re-use this run in subsequent steps). In
practice, we can span most of the cores in one socket on
the machines we use.

This careful thread placement means that there is no
resource contention: the known factors from the existing
model are k2 = 1, and we have u2 = r2. Given u2 from
the timing of the run, we calculate the parallel fraction by
finding p using Amdahl’s law such that:

u2 = 1− p+
p

n

4.3 Inter-socket latency (Step 3)
Following our workload assumptions, we take each thread to
communicate equally with every other thread. In our models,
we define the inter-socket overhead os as the additional time
penalty a thread incurs for each of the threads on a different
socket to itself. To derive this we take an even number
of threads and split them across the two sockets (Run 3
in Figure 6). This ensures that each thread sees the same
number of cross-socket links, avoiding the need to consider
results from subsequent steps in the model.

From the partial workload model of steps 1–2 we calcu-
late k3 (the speedup expected by Amdahl’s law and the slow-
down from resource contention), and we calculate the thread

utilization f3 based on the execution time predicted by these
steps, k3. Given the n/2 inter-socket links per thread, we get:

r3 = u3 × k3 =

(
1 +

n
2 × os

f3

)
× k3

Hence given the existing workload model and r3 from the
timing of the run we can solve for os in:

u3 = 1 +
n
2 × os

f3

4.4 Load balancing factor (Step 4)
The profiling runs for steps 1–3 use symmetric thread place-
ments so all threads proceed at the same rate. We now extend
the workload description to describe cases where threads
are not placed symmetrically. In these cases, it is important
to determine the effect on the overall speed of a workload
if some threads slow down more than others. For instance,
some workloads use static work distribution, and all threads
must wait until the slowest one completes. Other workloads
use work stealing to distribute work dynamically between
threads, allowing any slowness by one thread to be compen-
sated for by other threads picking up its work.

We express this by a load balancing factor l∈[0. . .1]
indicating where a workload lies between these extremes.
If l = 0 then there is no dynamic load balancing, and the
threads proceed in lock-step. If l = 1 then they dynamically
redistribute work. In practice, workloads may be somewhere
between these points.

We determine l by running experiments to show how the
performance of one thread impacts the performance of the
complete workload. To do this we observe how the work-
load’s performance changes when we co-schedule stress ap-
plications alongside some of its threads. In a given run, we
write si as the slowdown added to thread i. If there are n
threads, and a parallel fraction p, then the relative execution
rate in the two extreme cases is:

Lock-step: slock =

(
(1− p) + p× i=n

max
i=1

si

)
Load-balanced: sbal =

(
(1− p) + np

/ n∑
i=1

1

si

)
For a run between these extremes we have:

sl = (1− l)× slock + l × sbal

We calculate l from Runs 2, 4, and 5 in Figure 6. In Run
2 the threads execute as normal, so for all i, si = 1. In
Run 4 all threads compete against a simple CPU-bound
loop which will delay their execution. We determine the
slowdown introduced by this delay as u4/u2. This indicates
the penalty of slowing down all threads without causing load
imbalance. Using this measured slowdown we calculate the
extreme points slock and sbal for the case where n−1 threads
have si = 1 and 1 thread has si = u4/u2.

Finally, in Run 5, we measure the performance of the
workload in practice with one thread slowed. This provides
sl = u5/u2, letting us solve for l by interpolating between
slock and sbal.

4.5 Core burstiness (Step 5)
Finally, to account for bursty resource demands, we compare
the performance of two runs which differ only in the collo-
cation of threads on cores (Runs 2 and 6 in Figure 6). Run 2
uses one thread per core across a single socket, while Run 6
uses the same number of threads packed into half the cores.

We calculate the thread utilization factor f6 for run 6
based on the value k6 which Pandia generates from the par-
tial workload model from steps 1–4. Because of Run 2’s con-
straints f2 = 1. We then take the remaining unknown factors
in these two runs and define burstiness as the percentage ex-
tra time required due to collocation:

Burstiness: b =
1

f6
×
(
u6

u2
− 1

)
5. Performance prediction
Given a machine description and a workload description
we now show how Pandia predicts the performance for a
proposed thread placement. We demonstrate this using the
worked example in Figure 7 placing the workload profiled
in Section 4. The performance is constructed from two el-
ements: (i) an anticipated speed-up based on Amdahl’s law
assuming perfect scaling of the parallel section of the work-
load, and (ii) a slowdown reflecting the impact of resource
contention, communication, and synchronization.

Speedup. As discussed earlier, the speedup via Amdahl’s
law is calculated in the usual way based on the parallel
fraction of the workload (p) and the number of threads in
use (n). For the workload in Section 4, p = 0.9, and in the
example in Figure 7, n = 3, giving a speedup of 2.5.

Slowdown. The slowdown is then predicted by consider-
ing the resource-contention, communication, and synchro-
nization introduced by the threads. These factors are inter-
dependent: if a thread is slowed by synchronization then this
will reduce the pressure it places on the memory system.
That reduction may in turn enable another thread to run more
quickly, which may change the synchronization behavior of
the workload, and so on. We handle these different factors by
proceeding iteratively until a stable prediction is reached (in
practice only a few iteration steps are needed for the work-
loads we have studied).

Figure 8 illustrates the overall approach: Pandia calcu-
lates a predicted slowdown for each thread from resource
contention, along with predicted penalties from cross-socket
communication and from poor load balancing. In addition,
it maintains a thread utilization factor to scale the resource
demands according to the fraction of the time the thread is

Thread U V W
Resource slowdown 1.00 1.00 1.00

+ communication penalty 0.00 0.00 0.00
+ load balance penalty 0.00 0.00 0.00

Overall slowdown 1.00 1.00 1.00
New thread utilization 0.83 0.83 0.83

(a) State at the start of the first iteration.

DRAM DRAM

50

100 100

10 10

10 10

100 100

100

U V W

11.7 5.8

(b) Naı̈ve resource demands for three threads U , V , W at
the start of the first iteration.

Thread U V W
Resource slowdown 2.83 2.83 2.00

+ communication penalty 0.00 0.00 0.00
+ load balance penalty 0.00 0.00 0.00

Overall slowdown 2.83 2.83 2.00
New thread utilization 0.29 0.29 0.42

(c) Slowdowns updated based on the most over-subscribed
resource used by each thread, and also to reflect the fact that

U and V share a core.

Thread U V W
Resource slowdown 2.83 2.83 2.00

+ communication penalty 0.03 0.03 0.08
+ load balance penalty 0.00 0.00 0.00

Overall slowdown 2.87 2.87 2.08
New thread utilization 0.29 0.29 0.40

(d) Slowdowns updated to include predicted cross-socket
communication. U and V will communicate with lower

overhead in this case than U and W .

Thread U V W
Resource slowdown 2.83 2.83 2.00

+ communication penalty 0.03 0.03 0.08
+ load balance penalty 0.00 0.00 0.40

Overall slowdown 2.87 2.87 2.48
Utilization 0.29 0.29 0.34

(e) After the first iteration, slowdowns updated to include
the effect of dynamic load balancing between threads.

Figure 7: Example steps for three threads (U , V , W) running
the workload from Section 4.

working. Figure 7(a) illustrates this for a running example
with three threads running the workload from Section 4.

We initialize the thread utilization factors as the Amdahl’s
law speedup divided by the number of threads. This reflects
the fraction of the time that a thread would be busy if the
Amdahl’s law speedup is achieved—in our example, if n =
3, and the Amdahl’s law speedup is 2.5, then the threads will

Proposed thread
placement

Calculate penalty for inter-
socket communication

Calculate slowdown from
resource contention

Final prediction

Calculate penalty for poor
load balancing

Figure 8: Overall technique, iteratively estimating the slow-
down from resource contention, and the penalties incurred
by inter-socket communication and poor load balancing.

be busy in parallel work for 83% of their time. We call this
first estimate finitial. Note that we use the same value across
all threads rather than distinguishing a “main” thread which
executes sequential sections: this reflects our assumption of
a generally-parallel workloads in which sequential work is
scattered across all of the threads in critical sections.

We describe the three steps within each iteration in Sec-
tions 5.1–5.3, then we describe how execution proceeds from
one iteration to the next (Section 5.4), and the calculation of
the final prediction (Section 5.5).

5.1 Slowdown from resource contention
To model contention for hardware resources, we start from
a naı̈ve set of resource demands based on the vector d in the
workload description (Figure 4). The values in the vector
represent rates, and so we add them at each of the locations
running a thread from the workload. We scale the values
by the respective thread utilization factors. So, for example,
while the aggregate required bandwidth to DRAM is 3 ×
40 = 120, it is scaled so 0.83× 120 = 100 (Figure 7b).

Based on the resource demands, Pandia computes the ini-
tial predicted slowdown for each thread. The slowdown is
the maximum factor by which any resource used by the
thread is over-subscribed. In the example, this is the in-
terconnect link between the two sockets which is oversub-
scribed by a factor of 100

50 = 2.00. In complex examples
different threads may see different bottlenecks.

In addition, we incorporate the workload model’s core
burstiness factor (b) whenever threads share a core. As we
described in Section 2.3, this reflects the fact that some
workloads show significant interference between threads on
the same core even though the average resource demands
for functional units are well within the limits supported by
the hardware. In the example, threads U and V are slowed
because they share a core, whereas W does not. As with the
basic resource contention, the impact of b is scaled by the

current thread utilization factors—hence U and V incur an
additional slowdown of 2.00 ∗ 0.5 ∗ 0.83 = 0.83, for a total
2.83 (Figure 7c). We recompute the thread utilization factors
reflecting these new slowdowns.

5.2 Penalties for off-socket communication
We now account for the impact of communication between
sockets by calculating communication slowdown, the slow-
down due to communication relative to unrestricted running.
Quantitatively, the overhead value os represents the addi-
tional latency seen by a thread for each other thread placed
on a different socket. As with the other times we use, the
value of os is relative to the single-thread execution time
t1. To predict the performance impact of communication we
consider (i) the locations of the threads being modeled, and
hence the number of pairs which span sockets, and (ii) the
amount of work that will be performed by each thread, and
hence how significant or not a given link will be (note that
the profiling runs used to derive os were constructed so that
all threads do identical amounts of work).

We define oi,j to be the latency incurred by thread i
for communication with thread j—this is equal to os if the
threads are on different sockets and 0 otherwise.

To model the amount of work performed by each thread
we must consider the load balancing factor: if the threads
proceed in lockstep then the amount of work they perform
will be equal, whereas if they use dynamic load balancing
then faster threads will perform more of the work. We con-
sider the communication in these two extreme cases and then
interpolate linearly between them based on the load balanc-
ing factor l:

Completely lock-step execution. When execution pro-
ceeds without load balancing, each of the threads performs
an equal amount of work so the cost for thread i is:

lockstep(i) =
j=n∑
j=1

oi,j

In the example:

lockstep(U) = lockstep(V) = 0.0 + 0.0 + 0.1 = 0.1

lockstep(W) = 0.1 + 0.1 + 0.0 = 0.2

Completely independent execution. When execution is
completely independent, the amount of work performed by
the threads may differ. The busier threads will communicate
more, and their links with other threads are more signifi-
cant. Given the current predicted slowdowns for each thread
s1. . .sn, we define the weight wi of a thread as the fraction
of the total work that thread i will perform:

worki =
1

si
wi =

worki∑j=n
j=1 workj

In the example, given slowdowns of 2.83, 2.83, and 2.00
for the three threads, we have weights of 0.29, 0.29, and

0.41 respectively. The fastest thread will perform more of
the work than the slower threads, and the communication it
performs is likely to be more significant.

Given these weights the communication cost is then:

independent(i) = n

j=n∑
j=1

wjoi,j

In the example:

independent(U) = independent(V)

= 3×(0.29×0.0 + 0.29×0.0 + 0.41×0.1)
= 0.124

independent(W) = 3×(0.29×0.1 + 0.29×0.1 + 0.41×0.0)
= 0.176

Combining the results. Given the extremes, we interpolate
linearly between them based on the load balancing factor l:

comm. slowdown(i) = l independent(i)+(1−l) lockstep(i)

In the example with l = 0.5:

comm. slowdown(U) = comm.slowdown(V)

= 0.5× 0.1 + 0.5× 0.124

= 0.112

comm. slowdown(W) = 0.5× 0.2 + 0.5× 0.176

= 0.188

Each of these is then scaled by the respective thread utiliza-
tion factors (0.29, 0.29, 0.42), and then added to the penalties
considered so far. This leads from Figure 7c to Figure 7d,
with the overall slowdowns now (2.87, 2.87, 2.08).

5.3 Penalties for poor load balancing
In the last step of each iteration, Pandia accounts for whether
the workload can dynamically rebalance work between the
threads (Section 4.4). In the extreme case, if work is dis-
tributed statically between threads, then they must wait for
one another to complete work; the overall performance is
governed by the slowest thread. In the example, thread W
would be slowed down to match U and V if they operated
completely in lock-step, and all three threads would have
slowdown 2.87.

We use the workload’s load balancing factor l to inter-
polate between this extreme case and the workload’s cur-
rent predicted slowdown. In the example, where l = 0.5
this leads from Figure 7d to Figure 7e with W being slowed
down to 2.48 (i.e., the point 50% between 2.08 and 2.87).

5.4 Iterating
We need to execute multiple rounds of prediction because
the penalties incurred due to communication or poor load
balancing may reduce the thread’s load on the system (al-
lowing other threads to run more quickly, adding load else-
where). In practice only a few iterations are needed for the

Thread U V W
Resource slowdown 1.00 1.00 1.00

+ communication penalty 0.00 0.00 0.00
+ load balance penalty 0.00 0.00 0.00

Overall slowdown 1.00 1.00 1.00
New thread utilization 0.82 0.82 0.67

(a) State at the start of the second iteration.

DRAM DRAM

50

100 100

10 10

10 10

92.8 92.8

92.8

U V W

11.5 4.7

(b) Naı̈ve resource demands computed at the start of the
second iteration.

Figure 9: Initial state for the second iteration.

thread utilization factors to converge in the workloads we
have studied. All the values we calculate are bounded be-
tween no slowdown and the maximal slowdown experienced
on the first iteration. To prevent oscillation a dampening
function engages after a 100 iterations. So far we have not
come across a workload that terminates as a result of this.

Information is fed from iteration i to i+1 by updating the
thread utilization factors used at the start of i + 1: For each
thread we determine how much of the overall slowdown in
iteration i was due to the penalties incurred. This is the ratio
of the thread’s slowdown due to resource contention to its
overall slowdown—in our example, threads U and V have
2.83/2.87 = 0.99, and thread W has 2.00/2.48 = 0.81.
This difference reflects the fact that thread W is harmed
by poor load balancing. We start the new iteration i + 1 by
resetting the thread utilization factors to finitial scaled by the
penalties: in effect this transfers the lessons learned about
synchronization behavior in iterations 1. . .i into the starting
point for iteration i+ 1.

Figure 9 shows this for our example. The thread utiliza-
tions for threads U and V are updated to finitial×0.99 =
0.83×0.99 = 0.82, and W is updated to 0.83×0.81 =
0.67 (Figure 9a). We reset the other parts of the prediction,
and then continue by computing the new resource demands
based on the new thread utilization factors (Figure 9b). Com-
paring the resource demands with Figure 7b, the load im-
posed by thread W is reduced significantly, but the intercon-
nect remains the bottleneck.

5.5 Final predictions
Once the per-thread predictions have converged, we cal-
culate the final predicted performance by combining the
speedup from Amdahl’s law with the predicted slowdowns:

speedup = Amdahl’s law speedup×
∑n

i=1
1
si

n

In the example this gives a predicted speedup of 1.005 after 4
iterations. This extremely poor performance is primarily due
to the inter-socket link being almost completely saturated by
a single thread.

6. Evaluation
We prototyped Pandia using a Python test harness to run
benchmark workloads, and a Java library to perform the per-
formance predictions. We use unmodified benchmark bina-
ries running as stand-alone applications (although, longer-
term, we envisage Pandia being used within a multi-user
server application to control the management of different
parallel activities within the server). Thread placement is
controlled explicitly via pinning. We use Oracle Linux 6.5
with kernel version 2.6.32.

We evaluate Pandia with a set of 22 workloads. We stud-
ied 4 of these during the development of our work; the re-
maining 18 were used purely for evaluation. The workloads
come from the NAS parallel benchmark suite (NPB) [2],
the SPEC OpenMP workloads (OMP) [24], plus in-memory
graph analytics workloads from our previous work [14], and
database join operators from Balkesen et al. [3].

Some benchmarks were excluded from the NPB and
OMP suites due to their execution times being either in-
sufficient or excessive. We also exclude equake as it has a
computationally intensive reduction step that significantly
increases the work required every time a thread is added.
This invalidates our workload assumptions from Section 2.2.
We return to equake later in this section.

6.1 Two-socket machines
Our principal evaluation was carried out using a selection
of two-socket Intel-based Oracle machines. The largest are
Haswell systems with 18 cores per socket and 72 hardware
threads in total (model X5-2). The others are Ivy Bridge
systems (X4-2), and Sandy Bridge systems (X3-2), all with
8 cores per socket and 32 hardware threads in total.

To evaluate the accuracy of the predictions we ran a large
number of timed runs. For the X5-2 we made 72 448 timed
runs covering approximately 20% of each workload’s possi-
ble placements. For each of the smaller machines we exhaus-
tively tested the possible placements with 41 868 runs. This
took 153, 82, and 107 machine-days for the X5-2, X4-2, and
X3-2 machines respectively. Making predictions using Pan-
dia takes a fraction of a second per placement.

Figures 1 & 10 show how the predictions compare with
the measured performance on the X5-2 machine. The differ-
ent thread placements are indicated on the x-axis, with the
placements sorted first by the total number of threads, then
by the number of threads on core 0, then core 1 and so on up
to core 35. The y-axis is the performance of that placement
normalized to the best performance seen for that workload.

For most workloads, the measured and predicted results
are visually close. Comparing the performance difference

between the fastest predicted placement and the fastest
tested placement we find that the mean differences are 2.8%,
0.29%, and 0.77% for the X5-2, X4-2, and X3-2 machines
respectively, and the median differences are 1.05%, 0.00%,
and 0.00%.

We quantify the error across all the runs in these predic-
tions using two metrics (Figure 11a–b):

• Error: The absolute difference between the predicted and
measured performance as a percentage of the measured
value.

• Offset error: The mean difference between the two sets
of values is added to the predicted line before measuring
the absolute difference. This technique removes errors
that are introduced when the two lines are some constant
distance apart, so providing a measure of how accurate
the output is at predicting performance trends (if not
exact values).

Under these metrics, the median error across the runs is 8.5%
and the median offset error is 3.6% for the X5-2, 3.8% and
1.4% for the X4-2, and 3.8% and 1.5% for the X3-2.

To test the portability of the workload descriptions be-
tween different machines we used the X3-2 workload de-
scriptions with the X5-2 machine description and vice-versa.
The resulting errors for these machines can be seen in Fig-
ure 11c & 11d respectively. These show while the relative
error increases, the results still appear useful.

These are parallel benchmarks and so they tend to scale
well. However, as the machines get larger, the point of peak
performance become less likely to be the maximum thread
count. 9% of the applications on the X4-2 do not use the
maximum number of threads rising to 81% of the applica-
tions on the X5-2. The database operation Sort Join has peak
performance with just 32 threads on the X5-2.

6.2 Four-socket machine
To explore the effect of systems with larger numbers of
sockets we ran a series of experiments using a 4 socket
Westmere machine (model X2-4). This machine has 10 cores
per socket, and 80 hardware threads in total. We omit the
sort-join test here because it uses AVX instructions which
are not present in these older processors.

We split the different placements into three classes: those
in which at most two sockets are active (providing 20 cores
in total), those in which at most 20 cores are active (poten-
tially placed over all sockets), and finally the complete set
of placements over the machine. Including the 20-core runs
helps us separate the move to larger numbers of sockets from
the fact that runs over the complete machine will generally
use more cores in total, and may show differences in behav-
ior as a consequence

The resultant error from these runs can be seen in Fig-
ure 12. This is an older machine without adaptive caches,
and we do see larger errors in the 2-socket cases when com-

Development workloads

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000 1200 1400 1600

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

BT: Block tri-diagonal solver (NPB)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

CG: Conjugate gradient (NPB)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

IS: Integer sort (NPB)

Evaluation workloads

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

Applu: Parabolic / Elliptic PDE solver (OMP)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

Apsi: Meteorology: pollutant distribution (OMP)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

Art: Neural network simulation (OMP)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

Bwaves: Blast wave simulation (OMP)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

EP: Embarrassingly parallel (NPB)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

FMA-3D: Finite-element crash simulation (OMP)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

FT: Discrete 3D fast Fourier transform (NPB)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

LU: Lower-upper Gauss-Seidel solver (NPB)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000
N

o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

MG: Multi-grid on a sequence of meshes (NPB)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

NPO: No partitioning, optimized hash join ([3])

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

PRHO: Parallel radix histogram
optimized hash join ([3])

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

PRH: Parallel radix histogram hash join([3])

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

PRO: Parallel radix optimized hash join ([3])

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

PageRank: In-memory parallel PageRank ([14])

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700 800

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

Sort-Join: In-memory sort-join ([3])

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

SP: Scalar Penta-diagonal solver (NPB)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

Swim: Shallow water modeling (OMP)

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

Wupwise: Wuppertal Wilson
fermion solver (OMP)

Figure 10: Predicted versus measured performance for the benchmarks. The results for MD are shown separately in Figure 1.

0

10

20

30

40

50

A
p

p
lu

A

p
si

A

rt

B
T

B
w

av
es

C

G

EP

FM
A

-3
D

FT

IS

LU

M

D

M
G

N

P
O

P

R
H

P

R
H

O

P
R

O

Pa
ge

R
an

k
So

rt
-J

o
in

SP

Sw

im

W
u

p
w

is
e

P
e

rc
e

n
ta

ge
 D

if
fe

re
n

ce
 Mean Median Offset Mean Offset Median

0

10

20

30

40

50

A
p

p
lu

A

p
si

A

rt

B
T

B
w

av
es

C

G

EP

FM
A

-3
D

FT

IS

LU

M

D

M
G

N

P
O

P

R
H

P

R
H

O

P
R

O

Pa
ge

R
an

k
So

rt
-J

o
in

SP

Sw

im

W
u

p
w

is
e

P
e

rc
e

n
ta

ge
 D

if
fe

re
n

ce
 Mean Median Offset Mean Offset Median

79.5% 72%

a) X5-2 (Haswell). b) X3-2 (Sandy Bridge).

0

10

20

30

40

50

A
p

p
lu

A

p
si

A

rt

B
T

B
w

av
es

C

G

EP

FM
A

-3
D

FT

IS

LU

M

D

M
G

N

P
O

P

R
H

P

R
H

O

P
R

O

Pa
ge

R
an

k
So

rt
-J

o
in

SP

Sw

im

W
u

p
w

is
e

P
e

rc
e

n
ta

ge
 D

if
fe

re
n

ce
 Mean Median Offset Mean Offset Median

86.7% 109.9%

0

10

20

30

40

50

A
p

p
lu

A

p
si

A

rt

B
T

B
w

av
es

C

G

EP

FM
A

-3
D

FT

IS

LU

M

D

M
G

N

P
O

P

R
H

P

R
H

O

P
R

O

Pa
ge

R
an

k
So

rt
-J

o
in

SP

Sw

im

W
u

p
w

is
e

P
e

rc
e

n
ta

ge
 D

if
fe

re
n

ce
 Mean Median Offset Mean Offset Median

c) X5-2 using X3-2 workload descriptions. d) X3-2 using X5-2 workload descriptions.
Figure 11: Mean and median errors when predicting performance. Graph a (X5-2) corresponds to the results in Figures 1
and 10. Graph b is the errors when running on the smaller X3-2. Graphs c and d explore the portability of workload descriptions
reporting the error when using the X3-2 workload descriptions on the X5-2, and the X5-2 workload descriptions on the X3-2.

0

10

20

30

40

50

A
p

p
lu

A

p
si

A

rt

B
T

B
w

av
es

C

G

EP

FM
A

-3
D

FT

IS

LU

M

D

M
G

N

P
O

P

R
H

P

R
H

O

P
R

O

Pa
ge

R
an

k
So

rt
-J

o
in

SP

Sw

im

M
ea

n

P
e

rc
e

n
ta

ge
 D

if
fe

re
n

ce
 2 Socket 20 Core Whole machine

62.2%, 61.2%, 100.4%

Figure 12: Mean errors on a 4 socket Westmere machine.
The values here correspond to the white bars in Figure 11

paring with the newer 2-socket machines. However, we gen-
erally do not see additional errors when spreading work over
the increased number of sockets.

6.3 Additional experiments
Workloads with poor scaling. To test how Pandia behaves
for applications that do not scale well we ran a single-
threaded version of the NPO database join (one thread is
active, the others remain idle after initialization). The re-
sults can be seen in Figure 13(a). Pandia is able to detect the
absence of scaling, and the impact of changes in memory
placement when multi-socket placements spread the appli-
cation’s data over the machine.

Workloads which do not follow our assumptions. Equake
has a reduction step which causes the total computational
demand to rise with the thread count. This violates our as-

sumption that the total work is constant. For the 16 core X3-
2 machine the predictions are good as the thread count re-
mains relatively small (Figure 13b). For the larger 36 core
X5-2 machine the impact of this broken assumption is clear
(Figure 13c).

Simple pattern exploration. As an alternative to Pandia’s
6 profiling runs, we considered the possibility of making a
broader set of profiling runs, and simply selecting the best
result from among them. Concretely, we consider a simple
“sweep” of placements with 1. . .n threads placed as close
together as possible on a machine, or spread as far apart.

For the X5-2 machines it took on average 8.0 times longer
to explore the sweep of placements than to construct a work-
load description using Pandia. On the smaller X4-2 and X3-
2 machines it took an average of 4.2 and 4.0 times longer to
explore the placements respectively. The best placement was
found by the sweep on 21 of the 22 applications for the X3-2
machines, and 20 of 22 for the X4-2 machines. On the larger
X5-2 machines, the sweep found the best placement in only
8 of the 22 applications.

Although the simple sweep is effective on small ma-
chines, its effectiveness appears to diminish on larger sys-
tems. In addition, Pandia provides predictions of resource
consumption as well as predictions of performance; we be-
lieve this will help make predictions when co-scheduling
workloads.

Power management. Modern processors use sophisticated
dynamic power management techniques. These techniques

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

a) Single threaded version of NPO.

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

b) Equake on the X3-2.

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

N
o
rm

a
liz

e
d

 S
p

e
e
d

u
p

Placement

Measured
Predicted

c) Equake on the X5-2.

Figure 13: Exploring Pandia in cases where a workload does not scale (a), and for the equake workload which does not follow
our assumption that the total amount of work performed is constant as the thread count varies (b–c).

0

1

2

3

4

5

6

0 8 16 24 32 40 48 56 64 72

In
st

ru
ct

io
n

s
p

er
 u

n
it

 t
im

e

Threads (1-36 one thread per core, 37+ two threads per core)

Turbo Boost enabled, no background load
Turbo Boost enabled, background load present
Turbo Boost disabled, no background load

Figure 14: The effect of Turbo Boost on the rate of exe-
cuting instructions in a simple CPU-bound loop on a dual-
socket machine with Intel Xeon E5-2699-v3 processors. The
dashed line shows the effect of enabling Turbo Boost, but
running a CPU-bound workload on otherwise-idle cores.

include features such as the Turbo Boost technology in Intel
processors which allows cores to run faster when only a
small number of them are active.

It is common for researchers to disable these features.
However, doing so is unrealistic for several reasons. First,
they are generally used in production settings. Second, the
performance with Turbo Boost disabled is worse than with it
enabled—that is, there is a penalty for disabling this features
even when all threads are active and no boost is naı̈vely
expected. This occurs because, with Turbo Boost disabled,
the chip will operate at its nominal frequency. For the X5-
2, this is 2.3GHz whereas, with Turbo Boost, frequencies of
2.8GHz–3.6GHz are possible depending on the number of
occupied cores [15]. Figure 14 illustrates these effects.

Our approach is to leave all hardware power management
features enabled, but to remove these effects from our mea-
surements by filling any otherwise-idle cores during profil-
ing with a core-local background workload.

6.4 Limitations
Pandia currently has two principal limitations: workloads us-
ing multiple kinds of threads, and workloads with discontin-
uous scaling.

Multiple thread types. Many applications consist of mul-
tiple thread types, such as a master thread and n − 1 slave
threads. Currently, Pandia assumes that all threads have sim-
ilar behavior. We suspect that more heterogeneous work-
loads could be considered by identifying groups of threads

through profiling. In practice, when considering the use of
our techniques in a multi-threaded server application, it may
be more productive to expose thread groupings explicitly in
software.

Discontinuous scaling. Pandia works on the principle that
adding additional threads generally gives additional perfor-
mance. However if the performance gain is discontinuous
the models become less effective. An example of where this
occurs is the benchmark BT with the smallest dataset size:
in that case the main parallel loop has only 64 iterations fol-
lowed by a barrier. By the time 32 threads are reached there
will be no further performance increase until 64 threads are
available. The problems inherent in such a workload are re-
flected in our assumption that there is sufficient fine-grained
parallelism to distribute evenly.

7. Related Work
We now consider alternative approaches to predicting per-
formance. The reasons for predicting performance vary
from scheduling workloads in a machine [35], anticipat-
ing the performance of supercomputer workload before it is
built [16], or extrapolating the performance of a workload
being developed on smaller systems [32].

Techniques for predicting a single workload include
hand built models [16], using simulators [7], rerunning
traces [32], and fitting timings for runs with small numbers
of threads to regression models [5]. Compared with Pandia,
these techniques require more manual construction, more
time to run, or are only able to handle predictions of thread
count (not thread placement).

Memory and cache. Lepers et al. [18] describe techniques
for dynamically selecting thread and memory placement
to take account of asymmetries in the memory systems of
NUMA machines, such as half-bandwidth or asymmetric
interconnect links.

Predicting based just on cache interference can be done
with mathematical models on data gathered from instru-
mented workloads [8, 21, 29]. McGregor et al. [22], Knauer-
hase et al. [17], Fedorova et al. [13], Zhuravlev et al. [34],
Collins et al. [10] and Dhiman et al. [12] select threads or
workloads to collocate based on bus transactions per thread,
stall cycles per thread, and LLC miss rate per thread. Xie

and Loh classify applications [30] based on LLC usage and
Lin et al. [19] on L2 usage. Their work uses a fixed number
of threads, and either responds dynamically (i.e., reacting
to bad situations, not predicting good allocations), or it pre-
dates adaptive caches [27] which can adapt to workload re-
quirements (making cache size less significant in application
performance, but also making measurements and predictions
more difficult). ReSense [11] dynamically controls the num-
ber of threads, but does not identify the relationships be-
tween performance and thread placements that Pandia does.

CPU. Banikazemi et al. [4], and Zhang et al. [33] use CPU
performance to identify combinations of applications that
produce poor behavior. In Zhang et al.’s case, hundreds of
application instances run across a cluster, allowing statistical
approaches to identify poor performance.

ESTIMA [9] extrapolates performance predictions from
counts of different types of stall in runs with low thread
counts. From these it builds a per-application model by fit-
ting equations to each type of stall and then fitting the resul-
tant multi-dimensional space to previously measured times.
They do not model different thread placements or resource
demands.

Whole system. Q-Clouds [25] identifies interference with
application level indications requiring modification to the
workload. Merkel et al. [23] introduce “task activity vectors”
to characterize current resource demands for a fixed number
of threads based on performance counters.

Bhadauria and McKee [6] used performance counters
to identify when programs fail to scale, and search using
heuristics to choose which programs to run together, and
to set thread counts. Yasin [31] describes a combination of
existing and proposed hardware counters to identify the re-
sources that constrain an application. Scal-Tool [28], uses
performance counters to empirically model cache space,
load imbalance, and synchronization. Scal-Tool helps ex-
plain the performance characteristics seen in a workload,
rather than predicting performance. It is similar to Pandia,
but predates multi-core processors, multi-threaded proces-
sors, and adaptive caches.

Mainstream operating systems use heuristics to select
thread placements (for instance, always packing threads to-
gether, or always distributing threads onto different sockets).
They do not set the number of software threads used by ap-
plications. Lozi et al. illustrate unexpected interactions can
result in poor performance [20].

8. Conclusion
We have presented Pandia, a system for predicting the per-
formance of in-memory parallel workloads from just six pro-
filing runs. Testing on a set of 22 workloads has shown re-
sults with a median difference of 1.04% between the fastest
predicted placement and the fastest measured placement, an
median error of 8%. This suggests that the results can be

used to make real decisions about the placements of work-
loads.

The model is built around measuring the CPU and band-
width resource demands, coupled with measurements of the
interactions between threads. We believe this resource-based
approach will let Pandia handle mixes of workloads running
together by looking at their total demands.

Perhaps surprisingly, the simple level of detail in our ma-
chine models is effective for our workloads. The trend ap-
pears to be that while individual cache architectures are be-
coming more complex, the necessity to model them in detail
is being diminished. One reason for this difference is that
hardware is now more effective in avoiding pathologically
bad behavior. This makes workloads less susceptible to “per-
formance cliffs”. This change makes relatively simple mod-
els possible, but also renders many traditional models infea-
sible as collocated stress workloads for example to detect the
required cache size of an application will no longer function
without detailed knowledge of the cache implementation.

Future work. While we saw some degree of portability
of workload descriptions between machines, this performs
less well when going from a lower-specification machine to
a higher-specification machine. This is because the initial
single-thread resource demands will reflect the maximum
performance of resources in the lower-specification ma-
chine, and we cannot identify how the demands will change
as limits are removed. The ESTIMA techniques of Chat-
zopoulos may help here [9].

Pandia could also be integrated into runtime systems to
choose the placement of threads in parallel loops. In this
scenario the workload description could be generated during
the execution of early iterations of the loop.

Finally, we aim to extend Pandia from scheduling a sin-
gle workload on a single machine to the scheduling of mul-
tiple workloads on a rack-scale system. We believe Pan-
dia’s prediction of resource consumption as well as overall
workload performance will let us handle cases with multiple
workloads sharing a machine. As we start to consider more
complex workloads, we aim to relax our assumption that
workloads do not perform significant I/O—it may be that
off-machine communication links can be accommodated di-
rectly in our machine models in terms of available bandwidth
or I/O operation rates.

Acknowledgments
We would like to thank Cagri Balkesen, Felix Kaser, and
Martin Maas for their help with benchmarks and experi-
ments, and Alex Kogan, Dave Dice, David Vengerov, Davide
Bartolini, Evgenij Belikov, Felix Kaser, Iraklis Psaroudakis,
Matthew Pugh, Stefan Kaestle, and Stuart Wray, for their
help and feedback in the construction of this paper. We
would also like to thank the anonymous reviewers for their
comments on the paper, and our shepherd Dejan Kostić for
his help in preparing the camera-ready version.

References
[1] G. M. Amdahl. Validity of the single processor approach to

achieving large scale computing capabilities. In Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), pages 483–485. ACM, 1967.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS parallel benchmarks; sum-
mary and preliminary results. In Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, Supercomputing
’91, pages 158–165. ACM, 1991.

[3] C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. Main-
memory hash joins on multi-core CPUs: Tuning to the under-
lying hardware. In 29th IEEE International Conference on
Data Engineering, ICDE 2013, Brisbane, Australia, April 8-
12, 2013, pages 362–373, 2013.

[4] M. Banikazemi, D. Poff, and B. Abali. PAM: a novel perfor-
mance/power aware meta-scheduler for multi-core systems. In
Proceedings of the International Conference on Supercomput-
ing, pages 39:1–39:12, 2008.

[5] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves,
B. de Supinski, and M. Schulz. A regression-based approach
to scalability prediction. In Proceedings of the 22nd Annual
International Conference on Supercomputing, ICS ’08, pages
368–377. ACM, 2008.

[6] M. Bhadauria and S. A. McKee. An approach to resource-
aware co-scheduling for CMPs. In Proceedings of the 24th
International Conference on Supercomputing, pages 189–199.
ACM, 2010.

[7] L. Carrington, A. Snavely, and N. Wolter. A performance pre-
diction framework for scientific applications. Future Genera-
tion Computer Systems, 22(3):336–346, Feb. 2006.

[8] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-
thread cache contention on a chip multi-processor architec-
ture. In Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, 2005.

[9] G. Chatzopoulos, A. Dragojević, and R. Guerraoui. ESTIMA:
Extrapolating scalability of in-memory applications. In Pro-
ceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP ’16, 2016.

[10] A. Collins, T. Harris, M. Cole, and C. Fensch. LIRA: Adap-
tive contention-aware thread placement for parallel runtime
systems. In Proceedings of the 5th International Workshop on
Runtime and Operating Systems for Supercomputers, ROSS
’15, pages 2:1–2:8. ACM, 2015.

[11] T. Dey, W. Wang, J. W. Davidson, and M. L. Soffa. ReSense:
Mapping dynamic workloads of colocated multithreaded ap-
plications using resource sensitivity. ACM Transactions on
Architecture and Code Optimization, 10(4):41:1–41:25, Dec
2013.

[12] G. Dhiman, G. Marchetti, and T. Rosing. vGreen: A system
for energy efficient computing in virtualized environments.
In Proceedings of the 14th International Symposium on Low
Power Electronics and Design, pages 243–248. ACM, 2009.

[13] A. Fedorova, M. Seltzer, and M. D. Smith. Improving per-
formance isolation on chip multiprocessors via an operating
system scheduler. In Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Tech-
niques, pages 25–38. IEEE, 2007.

[14] T. Harris and S. Kaestle. Callisto-RTS: Fine-grain paral-
lel loops. In 2015 USENIX Annual Technical Conference,
USENIX ATC ’15, pages 45–56, July 2015.

[15] Intel Corp. Intel Xeon Processor E5 v3 Prod-
uct Family—Processor Specification Update. 2016.
http://www.intel.com/content/dam/www/public/

us/en/documents/specification-updates/

xeon-e5-v3-spec-update.pdf.

[16] D. J. Kerbyson, H. J. Alme, A. Hoisie, F. Petrini, H. J. Wasser-
man, and M. Gittings. Predictive performance and scalabil-
ity modeling of a large-scale application. In Proceedings of
the 2001 ACM/IEEE Conference on Supercomputing, SC ’01,
pages 37–37. ACM, 2001.

[17] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Us-
ing OS observations to improve performance in multicore sys-
tems. IEEE Micro, 28(3):54–66, May 2008.

[18] B. Lepers, V. Quema, and A. Fedorova. Thread and memory
placement on NUMA systems: Asymmetry matters. In 2015
USENIX Annual Technical Conference, USENIX ATC ’15,
pages 277–289, July 2015.

[19] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sa-
dayappan. Gaining insights into multicore cache partitioning:
Bridging the gap between simulation and real systems. In 14th
International Conference on High-Performance Computer Ar-
chitecture, HPCA-14 ’08, pages 367–378, 2008.

[20] J.-P. Lozi, B. Lepers, J. Funston, F. Gaud, V. Quéma, and
A. Fedorova. The Linux scheduler: A decade of wasted
cores. In Proceedings of the Eleventh European Conference
on Computer Systems, EuroSys ’16. ACM, 2016.

[21] G. Marin and J. Mellor-Crummey. Cross-architecture perfor-
mance predictions for scientific applications using parameter-
ized models. SIGMETRICS Performance Evaluation Review,
32(1):2–13, June 2004.

[22] R. L. McGregor, C. D. Antonopoulos, and D. S. Nikolopoulos.
Scheduling algorithms for effective thread pairing on hybrid
multiprocessors. In Proceedings of the 19th IEEE Interna-
tional Parallel and Distributed Processing Symposium. IEEE
Computer Society, 2005.

[23] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious
scheduling for energy efficiency on multicore processors. In
Proceedings of the 5th European Conference on Computer
Systems, pages 153–166. ACM, 2010.

[24] M. S. Müller, J. Baron, W. C. Brantley, H. Feng, D. Hacken-
berg, R. Henschel, G. Jost, D. Molka, C. Parrott, J. Robichaux,
P. Shelepugin, M. van Waveren, B. Whitney, and K. Kumaran.
SPEC OMP2012 — An Application Benchmark Suite for Par-
allel Systems Using OpenMP, pages 223–236. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[25] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Man-
aging performance interference effects for QoS-aware clouds.

In Proceedings of the 5th European Conference on Computer
Systems, pages 237–250. ACM, 2010.

[26] OpenMP Architecture Review Board. OpenMP Application
Program Interface, Version 3.0. May 2008. http://www.

openmp.org/mp-documents/spec30.pdf.

[27] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer.
Adaptive insertion policies for high performance caching.
SIGARCH Comput. Archit. News, 35(2):381–391, June 2007.

[28] Y. Solihin, V. Lam, and J. Torrellas. Scal-Tool: Pinpointing
and quantifying scalability bottlenecks in DSM multiproces-
sors. In Proceedings of the 1999 ACM/IEEE Conference on
Supercomputing, SC ’99. ACM, 1999.

[29] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang. On-
line cache modeling for commodity multicore processors.
SIGOPS Operating Systems Review, 44(4):19–29, Dec. 2010.

[30] Y. Xie and G. H. Loh. Dynamic classification of program
memory behaviors in CMPs. In Proceedings 2nd Workshop on
CMP Memory Systems and Interconnects (CMP-MSI), June
2008.

[31] A. Yasin. A top-down method for performance analysis and
counters architecture. 2014 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS),
0:35–44, 2014.

[32] J. Zhai, W. Chen, and W. Zheng. PHANTOM: Predicting
performance of parallel applications on large-scale parallel
machines using a single node. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’10, pages 305–314. ACM, 2010.

[33] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and
J. Wilkes. CPI2: CPU performance isolation for shared com-
pute clusters. In Proceedings of the 8th ACM European Con-
ference on Computer Systems, pages 379–391. ACM, 2013.

[34] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Address-
ing shared resource contention in multicore processors via
scheduling. In Proceedings of the 15th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 129–142. ACM, 2010.

[35] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and
M. Prieto. Survey of scheduling techniques for addressing
shared resources in multicore processors. ACM Computing
Surveys, 45(1):4, 2012.

