
Shoal: smart allocation and replication of memory for parallel programs

Stefan Kaestle, Reto Achermann, Timothy Roscoe, Tim Harris∗

Systems Group, Dept. of Computer Science, ETH Zurich ∗Oracle Labs, Cambridge, UK

Abstract
Modern NUMA multi-core machines exhibit complex la-
tency and throughput characteristics, making it hard to
allocate memory optimally for a given program’s access
patterns. However, sub-optimal allocation can signifi-
cantly impact performance of parallel programs.

We present an array abstraction that allows data place-
ment to be automatically inferred from program analysis,
and implement the abstraction in Shoal, a runtime library
for parallel programs on NUMA machines. In Shoal,
arrays can be automatically replicated, distributed, or
partitioned across NUMA domains based on annotating
memory allocation statements to indicate access patterns.
We further show how such annotations can be auto-
matically provided by compilers for high-level domain-
specific languages (for example, the Green-Marl graph
language). Finally, we show how Shoal can exploit ad-
ditional hardware such as programmable DMA copy en-
gines to further improve parallel program performance.

We demonstrate significant performance benefits from
automatically selecting a good array implementation
based on memory access patterns and machine charac-
teristics. We present two case-studies: (i) Green-Marl,
a graph analytics workload using automatically anno-
tated code based on information extracted from the high-
level program and (ii) a manually-annotated version of
the PARSEC Streamcluster benchmark.

1 Introduction
Memory allocation in NUMA multi-core machines is
increasingly complex. Good placement of and access
to program data is crucial for application performance,
and, if not carefully done, can significantly impact scal-
ability [3, 13]. Although there is research (e.g. [7, 3])
in adapting to the concrete characteristics of such ma-
chines, many programmers struggle to develop software
applying these techniques. We show an example in Sec-
tion 5.1.

The problem is that it is unclear which NUMA opti-

mization to apply in which situation and, with rapidly
evolving and diversifying hardware, programmers must
repeatedly make manual changes to their software to
keep up with new hardware performance properties.

One solution to achieve better data placement and
faster data access is to rely on automatic online moni-
toring of program performance to decide how to migrate
data [13]. However, monitoring may be expensive due to
missing hardware support (if pages must be unmapped
to trigger a fault when data is accessed) or insufficiently
precise (if based on sampling using performance coun-
ters). Both approaches are limited to a relatively small
number of optimizations (e.g. it is hard to incrementally
activate large pages or switch to using DMA hardware
for data copies based on monitoring or event counters)

We present Shoal, a system that abstracts memory ac-
cess and provides a rich programming interface that ac-
cepts hints on memory access patterns at the runtime.
These hints can either be manually written or automati-
cally derived from high-level descriptions of parallel pro-
grams such as domain specific languages. Shoal includes
a machine-aware runtime that selects optimal implemen-
tations for this memory abstraction dynamically during
buffer allocation based on the hints and a concrete com-
bination of machine and workload. If available, Shoal
is able to exploit not only NUMA properties but also
hardware features such as large pages and DMA copy
engines. Our contributions are:

• a memory abstraction based on arrays that decou-
ples data access from the rest of the program,

• an interface for programs to specify memory access
patterns when allocating memory,

• a runtime that selects from several highly tuned ar-
ray implementations based on access patterns and
machine characteristics and can exploit machine
specific hardware, features

• modifications to Green-Marl [20], a graph analyt-
ics language, to show how Shoal can extract access
patterns automatically from high-level descriptions.

N
o
d
e
 2

N
o
d
e
 0

DMA

N
o
d
e
 3

N
o
d
e
 1

L3 Cache

GDDR

 Memory

Xeon Phi

GPGPU

Memory ControllersMC

IC

IC

16x PCI Express LinkIC Interconnect Link

RAM

MC

RAM

MC

RAM

DMA

L3 Cache

L3 CacheL3 Cache

RAM

MC DMA

RAM

MCDMA

IC

IC

D
M

A

GDDR

 Memory

GPGPU

D
M

A

Figure 1: Architecture of a modern multi-core machine.

2 Motivation
Modern multi-core machines have complex memory
hierarchies consisting of several memory controllers
placed across the machine – for example, Figure 1 shows
such a machine with four host main memory controllers
(one per processor socket). Memory latency and band-
width depend on which core accesses which memory lo-
cation [8, 10]. The interconnect may suffer congestion
when access to memory controllers is unbalanced [13].

Future machines will be more complex: they may not
provide global cache coherence [21, 25], or even shared
global physical addresses [1]. Even today, accelerators
like Intel’s Xeon Phi, GPGPUs, and FPGAs have higher
memory access costs for parts of the physical memory
space [1]. Such hardware demands even more care in
application data placement.

This poses challenges to programmers when allocat-
ing and accessing memory. First, detailed knowledge
of hardware characteristics and a good understanding of
their implications for algorithm performance is needed
for efficient scalable programs. Care must be taken when
choosing a memory controller to allocate memory from,
and how to subsequently access that memory.

Second, hardware changes quickly meaning that de-
sign choices must be constantly re-evaluated to ensure
good performance on current hardware. This imposes
high engineering and maintenance costs. This is worth-
while in high-performance computing or niche markets,
but general purpose machines have too broad a hardware
range for this to be practical for many domains. The re-
sult is poor performance on most platforms.

These problems can be seen in much code today. Pro-
grammers take little care of where memory is allocated
and how it is accessed. In cases like the popular Stream-
cluster benchmark (evaluated in Section 5.1) and appli-
cations from the NAS benchmark suite [13], memory is
allocated using a low-level malloc call which provides
no guarantees about where memory is allocated or other
details such as the page size to use.

For example, Linux currently employs a first-touch

memory allocation strategy. Memory is not allocated di-
rectly when calling malloc, but mapped only when the
corresponding memory is first accessed by a thread. This
resulting page fault will cause Linux to back the faulting
page from the NUMA node of the faulting core.

A surprising consequence of this choice is that on
Linux the implementation of the initialization phase of
a program is often critical to its memory performance,
even through programmers rarely consider initialization
as a candidate for heavy optimization, since it almost
never dominates the total execution time of the program.
To see why, consider that memset is the most widely
used approach for initializing the elements of an array.
Most programmers will spend little time evaluating al-
ternatives, since the time spent in the initialization phase
is usually negligible. An example is as follows:

// ---- Initialization (sequential) -----------
void *ptr = malloc(ARRSIZE);
memset(ptr, 0, ARRSIZE);
// ---- Work (parallel, highly optimized) -----
execute_work_in_parallel();

The scalability of a program written this way can be
limited. memset executes on a single core and so all
memory is allocated on the NUMA node of that core.
For memory-bound parallel programs, one memory con-
troller will be saturated quickly while others remain idle
since all threads (up to 64 on the machines we evaluate)
request memory from the same controller. Furthermore,
the interconnect close to this memory controller will be
more susceptible to congestion.

There are two problems here: (i) memory is not allo-
cated (or mapped) when the interface suggests (memory
is not allocated inside malloc itself but later in the exe-
cution) and (ii) the choice of where to allocate memory is
made in a subsystem (the OS kernel) that has no knowl-
edge of the intended access patterns of this memory.

This can be addressed by tuning algorithms to spe-
cific operating systems. For example, we could initialize
memory using a parallel for loop:

// ---- Initialization (parallel) -------------
void *ptr = malloc(ARRSIZE);
#pragma omp parallel for
for (int i=0; i<ARRSIZE; i++)

init(i);
// ---- Work (parallel, highly optimized) -----
execute_work_in_parallel();

This will be faster and retain scalability in current
versions of Linux. The first-touch strategy will equally
spread out memory across all memory controllers, which
balances the load on them and reduces contention on in-
dividual interconnect links.

One drawback of this strategy is the loss of portabil-
ity and scalability when the OS kernel’s internal memory

2

allocation policies change. Furthermore, it also requires
correct setup of OpenMP’s CPU affinity to ensure that all
cores participate in this parallel initialization phase in or-
der to spread memory equally on all memory controllers.
Finally, we might do better: allocate memory close to the
cores that access it the most.

Beyond simple placement of data, ideas and tech-
niques from traditional distributed systems like replica-
tion and partitioning can help to improve memory man-
agement [31]. Replication localizes data access by stor-
ing several copies of the same data, distributing load and
reducing communication costs. Replication carries the
cost of maintaining consistency when updating data, as
well as increasing the program’s memory footprint. Par-
titioning chunks data and places these blocks onto differ-
ent nodes. This balances load, and, if work is scheduled
close to data it is accessing, also localizes array accesses.
The key challenge in applying these techniques is that the
choice of a good distribution strategy depends critically
on concrete combinations of machine and workload.

Our work starts with the observation that memory ac-
cess patterns of applications are often encoded in high-
level languages or known by programmers. We show
how this information can be used to tune memory place-
ment and access without programmers having to under-
stand the characteristics of the machine at hand.

Automatic annotations from high-level DSLs. A trend
we exploit is the emergence of high-level domain spe-
cific languages (DSLs) [20, 37, 41]. These languages are
known for the ease of programming since their seman-
tics closely match a specific application domain. DSLs
typically compile to a low-level language (such as C),
possibly with several backends depending on the target
machine to execute the program. DSLs can provide us
with memory access patterns directly from the input pro-
gram with relatively simple modifications to high-level
compilers. Listing 1 shows an example program for the
Green-Marl graph analytics DSL.

Memory access patterns from two of Green-Marl’s

Procedure pagerank(/* arguments */) {
// .. initialization here
Do {

diff = 0.0; cnt++;
Foreach (t: G.Nodes) {

Double val = (1-d) / N + d*
Sum(w: t.InNbrs) {

w.pg_rank / w.OutDegree()} ;
diff += | val - t.pg_rank |;
t.pg_rank <= val @ t;

}
} While ((diff > e) && (cnt < max));

}
Listing 1: Excerpt from Green-Marl’s PageRank

high-level constructs in the PageRank example can be
determined as follows: (i) Foreach (T: G.Nodes)
means the nodes-array will be accessed sequen-
tially, read-only, and with an index, and (ii) Sum(w:
t.InNbrs) implies read-only, indexed accesses on in-
neighbors array.

We argue that memory access patterns encoded in
DSLs present a significant performance opportunity, and
should be passed to the runtime to enable automatic
tuning of memory allocation and access. Since low-
level code is generated by the DSL compiler, it is also
relatively easy to change the programming abstractions
used by the generated code for accessing memory. Only
the compiler (rather than the input program) must be
changed in such a case.

Manual annotations. Even without a DSL, program-
mers often know data access patterns when writing a pro-
gram. They understand the semantics of their programs
and, hence, how memory is accessed, but have no way
of passing this knowledge to the runtime to guide data
placement and access. Existing interfaces intended to en-
able this coarse-grained and inflexible. One example is
libnuma’s [34] NUMA-aware memory allocation, which
allows a client to specify which node memory should be
allocated from, but does not allow combining this with
other allocation options (such as large pages), and re-
quires a programmer to manually integrate this with par-
allel task scheduling.

In Shoal, we automatically tune data placement and
access based on memory access patterns and hints pro-
vided by a high-level compiler or by programmers. We
introduce (i) a new interface for memory allocation, in-
cluding machine-aware malloc call that accepts hints to
guide placement and (ii) an abstraction for data access
based on arrays. For these arrays, we provide several im-
plementations including data distribution, replication and
partitioning. All implementations can be interchanged
transparently without the need to change programs. Our
abstraction also admits implementations that are tuned to
hardware features (such as DMA engines) or accelerators
(Xeon Phi). The Shoal library automatically selects ar-
ray implementations based on array access patterns and
machine specifications. We currently support adaptions
based on the NUMA hierarchy, DMA engines, and large
MMU pages.

The result is that Shoal allows programmers to write
programs that achieve good performance without having
(i) to understand machine characteristics and (ii) need-
ing to constantly rewrite applications in order to keep up
with hardware changes. We demonstrate Shoal using the
Green-Marl graph DSL, and the Streamcluster low-level
C program from the PARSEC benchmark suite.

3

3 Shoal’s array abstraction
Shoal’s memory abstraction is based on arrays. We found
this sufficient for the workloads we have been looking at
in the context of this research, but we expect to add more
data types in the future. We provide several array imple-
mentations, but all of them implement the same interface.
This allows Shoal to select an implementation transpar-
ently to the programmer. The optimal choice depends on
machine characteristics and memory access patterns.

// allocate an array
template<class T>
shl_array<T>* shl__malloc_array(size_t size,

bool ro, bool indexed,
bool used);

// get element at position i
T get(size_t i);
// set element at position i to v
void set(size_t i, T v);
// number of elements
size_t get_size(void);
// copy from another Shoal array
int copy_from_array(shl_array<T> *src);
// initialize every element with value
int init_from_value(T value);
// copy from a non-Shoal array
void copy_from(T* src);
// calculate the CRC checksum
unsigned long get_crc(void);
// initialize the current thread
void shl__thread_init(void);
// synchronize replicas
void shl__repl_sync(void* src, void **dest,

size_t num_dest, size_t size);

Listing 2: Interface of Shoal

3.1 Interface and programming model
Listing 2 illustrates Shoal’s programming interface,
which decouples computation and memory access allow-
ing transparent selection of different array implementa-
tions. Besides the usual set() and get() operators, we
provide a collection of high-level functions to initialize
memory and copy between Shoal arrays.

Thread initialization. In OpenMP, Shoal uses builtin
functions to determine the thread ID and the cor-
responding replica to be used. Per-thread array
pointers can otherwise be setup by manually calling
shl__thread_init() on each thread.

Array allocation. shl__malloc_array allocates
Shoal arrays and selects the best implementation for
the machine it is running on based on memory access
pattern hints given as arguments. Shoal always maps all
pages of an array to guarantee memory allocation and
avoid non-determinism.

Data operations. Reads and writes to arrays are per-
formed with get() and set(), but we also provide op-

timized high-level array operations for initializing and
copying arrays. These provide relaxed consistency guar-
antees: the order in which elements are initialized or
copied is not specified, allowing these operations to be
parallelized and offloaded to DMA engines in an asyn-
chronous fashion. Writes to replicas can be realized by
writing to the master copy and propagating the changes
to all replicas using shl__repl_sync(). This allows to
re-initialize replicated arrays, for example to reuse other-
wise read-only buffers in streaming applications.

3.2 Array types
We currently provide four array implementations.

Single-node allocation. Allocates the entire array on the
local node. While limited in scalability, performance is
independent of the OS since memory is guaranteed to be
mapped in the allocation phase. Single-node arrays are
rarely used for parallel programs.

Distribution. Distributed arrays allocate data equally
across NUMA nodes. The precise distribution is not
specified and depends on the implementation. This re-
duces pressure on memory controllers, but can lead to
high latency or congestion if many accesses are re-
mote. The performance of distributed arrays can be non-
deterministic, as data is scattered semi-randomly and
might vary between program executions.

Replication. Several copies of the array are allocated.
We currently always place one replica on each memory
controller. All data is then accessed locally. In addition
to distributing load across the system, this reduces pres-
sure on the interconnect at the cost of increased memory
footprint.

Partitioning. Partitioning is a form of distribution where
data is spread out in the machine such that work units
can be executed local to where their data is allocated. If
done carefully, array accesses are local as with replica-
tion, but without the increased memory footprint. This
implies a scheduling challenge, since the working set for
each thread must be known and the jobs scheduled ac-
cordingly.

3.3 Selection of arrays
In selecting an array implementation, we try to: (i) max-
imize local access to minimize interconnect traffic, (ii)
load-balance memory on all available controllers to avoid
points of contention, and (iii) transparently use hardware
features when available (e.g. DMA and large pages).

We show our policy for selecting array implementa-
tions in Figure 2: 1. we use partitioning if the array is
only accessed via an index, 2. we enable replication if
the array is read-only and fits into every NUMA node
of the host machine, and 3. we otherwise use a uniform
distribution among all available memory controllers.

4

We only replicate read-only arrays, as we found that
the cost for maintaining consistency dominates the per-
formance benefits in current NUMA machines (Sec-
tion 5.4) – however, we plan to revisit this for more com-
plex NUMA hierarchies. In case of limited RAM, where
the increase in working set size with replication is not
tolerable, we can selectively activate replication based
on the cost function of memory accesses extracted from
the high-level program.

start

indexed
access?

is read
only?

partitioned distributed

fits all
nodes?

replicated

yes

no yes

no

yes

no
Figure 2: Array Selection

Large pages. If available, we use large pages. This is
not always optimal, and the impact of using large pages
is hard to anticipate, but on average enabling large pages
improves performance (in the future, we plan to enable
large pages per-array). Most current multi-core machines
have independent TLBs for different page sizes, sug-
gesting it might be useful to retain some arrays on nor-
mal pages. Also, the TLBs coverage for randomly ac-
cessed large arrays is still not sufficient to prevent TLB
misses. One approach would use large pages for mostly-
sequential array access, and 4k pages for randomly ac-
cessed data. We also plan to use huge pages (typically
1GB), which may keep most of the working set covered
by the TLB even for big workloads.

Overall, we have found this policy to be simple, but
effective.

4 Implementation
The Shoal runtime library is structured in two parts: (i)
a high-level array representation as defined in Section 3
based on C++ templates and (ii) a low-level, OS-specific
backend. We now describe the work-flow invoked when
Shoal is used together with a high-level DSL, and then
describe our low-level backends.

Figure 3 shows how Shoal is used with high-level, par-
allel languages.

High-level program. The input program is written in
a high-level parallel language, which in this paper is
Green-Marl, a DSL for graph analysis. Many other
high-level languages such as SQL [18] and OptiML [37]
provide similar resource usage information to the kind
we extract from Green-Marl; we show an example of a
Green-Marl expression of PageRank in Listing 1.

high-level
program

high-level
compiler Shoal

low-level
code (e.g. C)

compiler

access
patterns

hardware spec
config file

program

Shoal
library

Figure 3: Shoal system overview

High-level compiler. High-level DSLs often encode ac-
cess patterns in an intuitive way: for instance, the Green-
Marl DSL features language constructs to access all
nodes in a graph (see Foreach (t: G.Nodes) in List-
ing 1). From the language specification, we know that
this represents a read-only and sequential data access to
the nodes array. The high-level compiler translates the
input into low-level code while such access information
is lost. Our modifications to the Green-Marl compiler
extract this knowledge about array access patterns from
the input source code and makes it accessible to the gen-
erated code which uses Shoal’s array abstraction.

Low-level code with array abstractions. The gener-
ated code – here, C++ – uses Shoal’s abstraction to al-
locate and access memory. At compile time the concrete
choice of array implementation is not made; this happens
later at runtime based on hardware specifications.

Access patterns. In high-level languages, memory ac-
cess are usually implicit and translated into simple load
and store instructions. In Shoal, however, we use the
compiler to generate important information about load/-
store patterns which is then used by the runtime library.

Firstly, we capture the read/write-ratio. The number
of reads and writes by a program is workload specific,
but Shoal can still in many cases extract a formula es-
timating the number of reads and writes for a given in-
put. For example, the number of reads in Green-Marl’s
PageRank rank array is: kE ∗ kN, where E is the number
of edges and N is the number of nodes. Currently, Shoal
derives these formulas but only uses them to determine if
the array is read-only; we expect more sophisticated uses
of this information in the future. Secondly, we infer if
all accesses to an array are based solely on the loop vari-
able of a parallel loop. tmp indicates the array is used for
temporary values, ro that it is read-only, etc.

An example of the automatically extracted informa-
tion for Green-Marl’s PageRank can be seen on Table 1.

Hardware specification. The Shoal runtime takes the
hardware configuration of the system into account when
selecting array implementations. Currently, we consider
the following hardware features: (i) NUMA topology:
Shoal has a NUMA-aware array allocation function that

5

array N E ro std tmp indexed
begin y y y
r_begin y y y
r_node_idx y y y
pg_rank y
pg_rank_nxt y y y

Table 1: Shoal’s extracted array properties for PageRank

attempts to distribute load on all memory controllers and
localize access to reduce pressure on interconnects. (ii)
RAM size: available memory can limit which arrays can
be replicated. (iii) Page size: Modern systems offer var-
ious page sizes and often provide a dedicated TLB for
each size. The use of large and huge pages is useful in re-
ducing TLB misses [17] in large working sets. (iv) DMA
engines: Some CPUs have integrated DMA engines [22].
We make use of these for copy and initialization.

Shoal program. The Shoal library takes care of select-
ing array implementations based on the extracted access
patterns, and hardware specification of the machine. The
executable generated by the compiler is a program binary
which links against the Shoal library.

OS-specific backends. To improve portability, we sep-
arate high-level array implementations from low-level,
OS-dependent functions which mediate access to the
memory allocation facilities or DMA devices. Currently,
we run on the Linux and Barrelfish [6] OSes to demon-
strate portability.

Topology information. Shoal needs to obtain informa-
tion about the system architecture including number of
NUMA nodes, their sizes and corresponding CPU affini-
ties. On Linux, this information can be obtained us-
ing libnuma [34]. In Barrelfish, hardware information
is stored in the system knowledge base [33].

Scheduling. For replication and partitioning, Shoal must
map threads to cores. On Linux we pin threads by set-
ting the affinities, whereas on Barrelfish we directly cre-
ate threads on specific cores. Given a concrete data dis-
tribution, scheduling can be optimized to execute work
units close to where data is accessed. To date, Shoal
is not fully integrated with the OpenMP runtime and
we use a static OpenMP schedule for partitioning to
ensure that work units are executed close to the parti-
tions they are working on. This works well for bal-
anced workloads, but can lead to significant slowdown
compared to dynamic schedules if the cost of execut-
ing work units is non-uniform. In the future, we plan
to design and integrate our own OpenMP runtime to pro-
vide us fine-grained control of scheduling without losing
performance for unbalanced workloads. An alternative
approach would schedule work units on partitions using
OpenMP 4.0’s team-statement.

Memory allocation. We want to provide strong guaran-
tees on where memory is allocated, but allocation poli-
cies are not consistent across OSes – indeed, they even
change between different version of the same OS. Linux,
for instance, implements a first touch allocation policy,
which causes confusion about where and when memory
will actually be allocated. Libraries such as libnuma pro-
vide an interface which gives more control, but this lacks
support for large and huge pages. Barrelfish [7] gives the
user the ability to manage its own address space via self-
paging [19]: an application requests memory explicitly
from a specific NUMA node and maps it as it wishes.

These systems provide different trade-offs between
complexity, portability, and maintainability of applica-
tion code and efficient use of the memory system: an ex-
plicit, flexible interface imposes an additional burden on
the client. We believe that programmers should not have
to deal with this complexity and want to avoid manual
tuning to adapt programs to new machines.

5 Evaluation
Our goal in this section: we show that programs scale
and perform significantly better with Shoal than with a
regular memory runtime. We also show a comparison of
our array implementations and analyze Shoal’s initializa-
tion cost, and finally we investigate the benefits of using
a DMA engine for array copy.

Table 2 shows the machines used for our evaluation.
Our results on both, 8x8 AMD Opteron and 4x8x2 Intel
Xeon, are similar. For brevity, we focus on results from
our 8x8 AMD Opteron unless stated otherwise. We use
two workloads: Green-Marl and PARSEC Streamcluster.

Green-Marl. The Green-Marl compiler comes with a
variety of programs of which we have selected three
graph algorithms to demonstrate the performance char-
acteristics of Shoal: (i) PageRank [30] iteratively calcu-
lates the importance of each node in the graph as a sum of
the rank of all incoming neighbors divided by the number
of outgoing edges they have, (ii) hop-distance calculates
the distance of every node from the root using Bellman-
Ford, and (iii) triangle-counting that counts the number
of triangles in the input graph. This is implemented as a
triple loop: for all nodes in the graph, it looks at all com-
binations of nodes reachable from it and checks if there
is an edge connecting them.

For our evaluation we used two graphs: (i) the Twit-
ter graph [23] having 41M nodes and 1468M edges. The
total working set size is 2.459 GB with Green-Marl con-
figured to 64 bit node and edge types (excluding unused
arrays). We were not able to run triangle-counting on the
Twitter graph on our system, hence we were falling back
on the LiveJournal graph [5] for that workload. LiveJour-
nal has 4M nodes and 69M edges with a total working set
of 392 MB in Green-Marl.

6

machine 8x8 AMD Opteron 4x8x2 Intel Xeon 2x10 Intel Xeon
CPU AMD Opteron 6378 Intel Xeon E5-4640 Intel Xeon E5-2670 v2
micro architecture Piledriver Sandy Bridge Ivy Bridge
#nodes/#sockets 8/4 @ 2.4 GHz 4/4 @ 2.4 GHz 2/2 @ 2.5 GHz
L1 data size 16K /thread 32K /core 32K /core
L2/L3 size 2048K / 6144K 256K / 20480K 256K / 25600K
memory 512 GB (64 GB per node) 512 GB (128 GB per node) 256 GB (128 GB per node)

Table 2: Machines used for evaluation (L2 shared by core, L3 shared by socket)

PARSEC – Streamcluster. Streamcluster [9] solves the
online clustering problem. Input data is given as an array
of multi-dimensional points. We manually modified it to
use Shoal for memory allocation and accesses.

5.1 Scalability
In highly parallel workloads, scalability is one of the key
concerns. In this section we show the benefits of using
Shoal over unmodified versions of the workloads and that
allocating memory based on access patterns, if available,
is favorable over online methods.

Green-Marl. We evaluated scalability of three Green-
Marl workloads on an 8x8 AMD Opteron comparing
Shoal () against the original Green-Marl implemen-
tation () and Carrefour [13] (). Figure 4 shows
that Shoal clearly outruns the original implementation
by almost 2x and also performs better than the online
method as a result of an optimized memory placement.
Furthermore, our results show that an online method
can harm the performance in case pages are getting mi-
grated back and forth (hop-distance). Overall, except for
triangle-counting, all implementations scale well. Note
that we do not include the graph loading time and Shoal
initialization.

We also executed the same measurements on Bar-
relfish () to show Shoal’s portability. Our intention
is not to show that either operating system is faster than
the other, but rather their comparability. On Barrelfish,
only static OpenMP schedules are supported due to im-
plementation limitations. This negatively impacts the
performance for triangle-counting. However, Shoal still
performs better than the original implementation, which
uses dynamic OpenMP schedules.

PARSEC – Streamcluster. In contrast to Green-Marl,
Streamcluster is implemented in C and hence there is
no automatic method of extracting access patterns. We
modified Streamcluster to use Shoal’s array abstraction
to demonstrate that using Shoal directly by program-
mers can improve scalability with little efforts for man-
ual annotation. To make Streamcluster work with Shoal,
we had to (i) abstract access to arrays using Shoal’s
get and set methods, (ii) initialize each thread using
shl__thread_init() and change the array allocation
to use shl__malloc_array() instead of malloc().

8 16 32
0

20

40

60

number of threads

ru
nt

im
e

[×
10

4
m

s]

original
Shoal

Carrefour

Figure 5: Scalability of PARSEC streamcluster on 8x8 AMD
Opteron

Since Streamcluster is a streaming application, arrays
for input coordinates are reused for each chunk of new
streaming data, but are otherwise read-only. We use (iii)
shl__repl_sync() to synchronize the master copy of
the array to it’s replicas once after a new chunk has been
read. We compare the original Streamcluster implemen-
tation with Carrefour and Shoal (Figure 5). Our results
confirm the bad scalability of Streamcluster due to the
use of memset() after allocating arrays [13, 17], which
causes all memory to be allocated on a single NUMA
node. This leads to congestion of the interconnect and
memory controllers of that node. Shoal achieves an 4x
improvement over the original implementation. Shoal’s
annotated access allocation function outperforms Car-
refour’s online method. We want to emphasize here, that
we replaced only one of the used arrays with a Shoal ar-
ray (large pages and replication) and did not apply further
optimizations.

5.2 Comparison of array implementations
We conducted a detailed analysis of Shoal’s different ar-
ray implementations using all physical cores of our ma-
chines. In this section we show, that Shoal achieves
better performance than the original Green-Marl imple-
mentation regardless of which array configuration we
use. Figure 6 shows our results normalized to the orig-
inal Green-Marl implementation and Figure 8 shows
the breakdown into initialization and computation times.
The measurements were executed on the 8x8 AMD
Opteron using all 32 physical cores. Following, we give

7

8 16 32
0

5

10

15

20

number of threads

ru
nt

im
e

[×
10

4
m

s]
PageRank

8 16 32
0.0

0.5

1.0

number of threads

hop-distance

8 16 32
0.0

1.0

2.0

3.0

4.0

number of threads

triangle-counting

original OpenMP Green-Marl (Linux) Shoal (Linux) Shoal (Barrelfish) Carrefour

Figure 4: Scalability on 8x8 AMD Opteron. Workload: Twitter (LiveJournal for triangle-counting). For Shoal, we chose the best
configuration each. We omit results for 64 threads: using SMT threads has similar performance to using only the 32 physical cores.

PageRank hop-distance triangle-counting
0

0.5

1

no
rm

al
iz

ed
ru

nt
im

e

OpenMP Shoal-d Shoal-d -r
Shoal-d -r -l Shoal-d -r -p Shoal-d -r -p -l

Figure 6: Comparison of various combinations of array imple-
mentations on 8x8 AMD Opteron: distribution (-d), replication
(-r), partitioning (-p), large page (-l) (runtime normalized to
stock-Green-Marl)

explanations for each configuration and relate them to
our performance counter observations (Figure 7).

Distribution (). The original Green-Marl implemen-
tation already initializes memory for storing the graphs
with a OpenMP loop to distribute memory in the ma-
chine. However, this is not done for dynamically allo-
cated arrays (e.g. the rank_next in PageRank). With
Shoal, all arrays are ensured to be distributed among the
nodes, resulting in a more even distribution of memory
and a better performance across all workloads. Initial-
ization of distributed arrays relies on an OpenMP loop to
allocate memory evenly across all NUMA nodes. Initial-
izing memory is hence executed in parallel, which results
in small initialization cost compared to other array types.
We show this in Figure 8.

Our claims are supported by measurements of each
memory controller’s read- and write throughput. (Fig-
ure 7): compared to the original implementation (i)
where all reads and writes are executed on socket 0, en-
abling distribution (ii) results in an evenly distributed
load on all memory controllers. However, in both cases,

the memory controllers are not saturated. Memory
throughput suffers from the lower bandwidth of the in-
terconnect links, i.e. 9.6GB/s for QPI. With randomly
distribution of memory, only 1/4 of all memory accesses
are expected to be local.

Distribution + replication (). In contrast to distribu-
tion, replication is applied only to read-only data. In our
workloads, the graph itself is not altered by the program
and hence replicated among the nodes. This results in a
increased fraction of locally served memory accesses and
lower interconnect traffic: memory accesses are evenly
distributed among all memory controllers as shown in
(iv) of Figure 7. Note, enabling replication without dis-
tribution allocates non-read-only arrays into single-node
arrays resulting in an unbalanced memory access for that
part of the working set, see (iii) of Figure 7. Initializa-
tion cost for replicated arrays are higher than distributed
arrays because more memory needs to be allocated. We
force correct allocation by touching each replica on its
designated node. Finally, copying the master array to the
other replicas causes some additional overhead when ini-
tializing such an array (Figure 8).

Partitioning (and). Replication of data increases
the memory footprint of the application. Partitioning
tries to preserve the locality of replication without in-
creasing the memory footprint. Our current implemen-
tation requires a static OpenMP schedule for partitioning
to ensure scheduling of work units to the right partitions.
However, static schedules potentially lead to imbalance
of work among the execution units as workloads may be
skewed (e.g. in triangle-counting). Eventhough the same
amount of memory has to be allocated as with distributed
arrays, its initialization is more complex: using Linux’
first touch policy, Shoal ensures memory is touched on
the correct node by migrating a thread to where memory
should be allocated and touching each page from there.
This results in similar initialization time as with replica-
tion, but slightly less time to copy the data.

8

Large Pages (and). Modern CPUs support vari-
ous page sizes and have a distinct TLB for each page
size. A miss in the TLB enforces the CPU to do a full
page table walk which drastically increases the access
time. Shoal supports large pages for its arrays. Enabling
large pages for PageRank and triangle-counting results
in a slightly better performance, while hop-distance run-
time increases slightly. Gaud et al. [17] concluded sim-
ilar findings in their experiments with large pages. En-
abling large pages reduces the total number of pages used
and therefore the number of required first touches in the
allocation process. This results in a decrease of the allo-
cation time (Figure 8).

We conclude that despite the additional overhead of
allocation and initialization, the total runtime with Shoal
is still reduced. However, we want to emphasize here,
that we do not consider initialization time as a main tar-
get of optimization as typically time spent for computa-
tion dominates the program execution. Nevertheless, al-
location could be improved by (i) maintaining a cache of
pre-allocated pages on each node, (ii) applying a smarter
page mapping strategy or (iii) by initializing Shoal while
input data (e.g. the graph) is loaded.

8 16 32 64
0.0

0.5

1.0

1.5

2.0

number of threads

ru
nt

im
e

[x
10

5
m

s]

OpenMP Shoal alloc Shoal copy
Shoal + distribution + replication + partitioning

+ large page - partitioning

Figure 8: Shoal initialization and runtime on 8x8 AMD
Opteron for various array configurations using PageRank with
Twitter workload

5.3 Use of DMA engines
Modern CPUs have integrated DMA engines, which pro-
vide a rich set of memory operations. For instance, re-
cent Intel server CPUs provide integrated CrystalBeach
3 DMA engines [22]. We evaluate the use of DMA en-
gines for initialization and copy operations on a 2x10 In-
tel Xeon (our 8x8 AMD Opteron and 4x8x2 Intel Xeon
do not have DMA engines). We run these experiments
on Barrelfish, as user-level support for DMA engines
is already integrated and requires no additional setup.

We now compare the raw copy performance of DMA
controllers to CPU memcpy() and further evaluate how
DMA engines can be used in Shoal. Asynchronous
memory operations offered by DMA controllers can free
up the CPU of the burden of copying data around and
provide cycles to do actual work. Shoal offers an inter-
face to start an asynchronous memory copy and to check
for completion of the operation.

1 8 16 1 10 20 1 8 16 1 10 20

5

10

15

20

number of threads / channels
th

ro
ug

hp
ut

[G
B

/s
]

DMA (1 node) DMA (2 nodes)
memcpy (1 node) memcpy (2 nodes)

Figure 9: Comparison of parallel OpenMP copy and DMA
copy on 2x10 Intel Xeon for large buffers (� cache size)

Comparing raw memory throughput. Our results of a
raw throughput evaluation (Figure 9) show, that the use
of DMA engines does not necessarily improve the se-
quential performance, especially for blocking copy oper-
ations as used by PageRank. However, to outperform the
DMA controller, all threads of the CPU have to be used
for memory copying and hence no other computational
task can be executed in the meantime.

We now show the DMA engines are useful if only a
few threads are available for synchronously copying ar-
rays or asynchronous copies. For example, we are plan-
ing to evaluate the use of DMA engines to propagate
writes to replicas in the background.

0 50 100
0

500
1000
1500
2000

% Fraction DMA transfers

co
py

tim
e

[m
s]

40 SMT threads
20 threads

Figure 10: Initialization cost for copying data into Shoal arrays
using the Twitter working set with replication on Barrelfish

DMA engines for initialization. We benchmark the ini-
tialization phase of PageRank where data is copied from
the graph’s memory into the Shoal arrays. We copy
a certain ratio of the array using DMA engines asyn-
chronously while using parallel OpenMP loops to copy
the remaining elements. Figure 10 shows how varying

9

20 40 60 80
0

5

10

15

20

time [s]

th
ro

ug
hp

ut
G

B
/s

(i) no optimizations

20 40 60 80
0

5

10

15

20

time [s]

(ii) distributed

20 40 60 80
0

5

10

15

20

time [s]

(iii) replicated

20 40 60 80
0

5

10

15

20

time [s]

(iv) distributed + replicated

socket 0 read socket 0 write socket 1 read socket 1 write

Figure 7: Memory throughput for sockets 0 and 1 on 4x8x2 Intel Xeon. In the first 35 seconds, the graph is loaded from disk. For
replication, we show the replica initialization cost in green. Note: Sockets 2 and 3 are equal to socket 1 and left out for readability.

the ratio of how much of the array is copied using DMA
engines vs. parallel OpenMP loops affects performance.
For the parallel copy, we show the result for using all 20
physical threads and 40 SMT-threads respectively. First,
we see a big difference if we enable SMT (): as
expected, memory access latency is hidden and the use
of a DMA engine improves performance only slightly
(about 10%). This is presumably because these 40 hyper-
threads are sufficient to saturate all memory controllers
on that machine. With SMT disabled (), the mem-
ory latency cannot be hidden. Our results show clearly,
that using DMA engines and CPU copy simultaneously
reduces the time for copying arrays by 2x.

DMA engines for array copy. In our PageRank work-
load, the ranks are copied between two arrays in every
iteration. With our implementation, we can use DMA
engines to improve the copy time in that case too. How-
ever, our measurements show, that depending on the ar-
ray configuration only 1-5% of the entire runtime is spent
copying and hence optimize that part does not have a no-
table effect on PageRank’s total runtime, hop-distance
behaves similarly. However, workloads allowing asyn-
chronously copy of data would be a more obvious candi-
date for optimizations based on DMA engines.

To sum up, the effect of using DMA controllers for
memory operations highly depends on whether the pro-
gram has to share the resources with other workloads or
not. If all resources are available, DMA engines provide
about 10% improvement. On the otherhand if resources
are shared with other users, DMA engines provide up to
2x improvement in our case.

5.4 Writeable replication
Finally, we look at the issue of write-shared arrays.

Efficiently maintaining consistency of replicated data
is difficult; updates must be propagated to all replicas.
This can be achieved by issuing writes to all replicas
or by applying techniques such as double-buffering and
asynchronous copies. Both relax consistency guarantees,
but are strong enough for use with OpenMP loops, where

concurrent writes and reads in the same loop iteration
would cause non-determinism.

In this section, we show that replicating non-read-only
data does not deliver much benefit on current NUMA
machines for already otherwise optimized workloads:
the additional cost of house-keeping (e.g. maintaining
write-sets) and propagating updates to all replicas out-
weighs the potential performance gain of replication.

We compare writeable replicas with single-node allo-
cation and distribution (Table 3). Our results show that
the cost of maintaining consistency grows with the num-
ber of replicas. Furthermore, replication not necessarily
achieves better performance compared to distributed ar-
rays as the load on the interconnect in the latter case is
already relatively low.

We believe that writeable replication will be useful
(and needed) in heterogeneous systems, where memory
non-uniformity is more drastic (e.g. more NUMA nodes,
slower links). In that case, replication of data in local
memory is crucial for performance even in the presence
of updates. Writeable replication could also have an ap-
plication for more complex workloads (e.g. a smaller
fraction of read-only data), where the simple mecha-
nisms we presented in this paper cannot be applied.

dist configuration cost stderr notes
single-node 214.0 11.0
distributed 203.0 0.9
wr-rep, 2 reps 248.8 7.0 nodes: 0,n-1
wr-rep, 4 reps 333.6 5.9 nodes: 0,n-1
wr-rep w/o copy op 202.9 7.2

Table 3: Writeable replicas on 8x8 AMD Opteron. Workload:
hop-distance with -d -r -h configuration

6 Related work
Our work was originally inspired by recent research in
domain specific languages. Such languages are based
on the observation that it is hard to write efficient code
for a wide-range of different systems, as algorithms need
to be tuned to a concrete machine in order to achieve
good performance. DLSs express algorithms in a rich

10

and intuitive way. The Green-Marl [20] graph analytics
DSL, OptiML [37], a machine learning DSL , as well as
SPL [41], a signal processing language, all provide a rich
set of powerful high-level operators. They use a compiler
that generates code that is highly tuned to the target ma-
chine and makes heavy use of data parallelism. While
all of these languages encode memory access patterns in
their high-level languages, none uses them to adapt mem-
ory allocation at runtime.

Modern machines are becoming inherently complex:
Baumann et al. argued that computers are already a
distributed system in their own right [8]. They pro-
posed a multikernel approach [7] which avoids sharing
of state among OS nodes by replication and applying
techniques from distributed systems. Similarly, Went-
zlaff et al. [40] apply partitioning to OS services. Tech-
niques from distributed systems are beneficial not only
on an OS level, but also for applications. Multimed [31]
replicates database instances within a single multi-core
machine. Salomie et al. showed that congestion of
memory controllers and interconnects impact the over-
all performance. Carrefour [13] attempts to reduce the
contention on interconnect and memory controllers by
online monitoring of memory accesses and auto-tuning
NUMA-aware memory allocation. This approach can
be applied to any application without modifications to
the program code, but is less fine-grained. While Shoal
derives a program’s semantics from annotations or DSL
compiler analysis, the former these approaches need to
guess programmers’ intentions in retrospect.

Systems such as SGI’s Origin 2000 [35] use page-level
migration and replication of data. Hardware monitors de-
tect the access patterns to pages (e.g., which processors
tend to access the page, and whether these are reads or
writes). Based on the gathered data, pages are replicated
or migrated towards a frequently accessing CPU.

With highly parallel workloads, efficient synchroniza-
tion is crucial for application performance [14]. Lock
cohorting [15] implements NUMA-aware locks by tak-
ing cache hierarchy and NUMA-topology into account.
Shoal’s treatment of memory is analogous to these sys-
tems’ treatment of locks.

Access to large and huge MMU pages is provided by
services and libraries like libhugetlbfs [4]. The lat-
ter, however, requires static setup of a large page pool,
among other issues.

Cache coherence protocols like MOESI [2] allow
cache-lines to be in a shared state which is a form of
hardware-level replication. This is only effective with
workloads having good locality and small working set,
which is not the case for our graph workloads. Research
systems, such as Stanford FLASH, have provided soft-
ware control over this form of replication [36].

The Solaris operating system provides a madvise [28]

operation to let an application give hints on future ac-
cesses to a memory region which results in a distributed
or local allocation to the calling thread. Shoal extends
this approach with a wider range of possible usage pat-
terns, and infers appropriate settings to use.

Li [24] attempts to find the best algorithm for a specific
task depending on machine characteristics and work-
load based on empirical search. In contrast, we decide
a priori based on additional information extracted from
high-level languages or given by manual annotations.
Franchetti et al. [16] automatically tune FFT programs to
multi-core machines. They argue that programming such
machines is increasingly complicated, which increases
the burden for programmers and makes a case for auto-
matic tuning. Atune-IL [32] auto-tunes applications, in-
cluding the number of threads etc. It explores all possible
parameters, but tries to reduce the search space.

However, tuning data placement and parallelism indi-
vidually is not optimal, because data and threads may not
end up on the same node. Hence, affinity of threads and
data need to be enforced in order to improve the perfor-
mance of OpenMP programs [38].

Finally, PGAS languages such as UPC [39], co-array
Fortran [27], X10 [12], Chapel [11], and Fortress [29]
provide an abstraction of shared arrays which can be im-
plemented across a distributed system. Code iterating
over an array can execute on the node holding the por-
tion of the array being accessed.

In high-performance computing, array abstrac-
tions [26] have been used to simplify programming
while still providing good performance and scalability.
They support high-level operations on arrays e.g. matrix
multiplications or atomic operators.

7 Conclusion

In this paper, we presented Shoal, a library that provides
an array abstraction and rich memory allocation func-
tions that allow automatic tuning of data placement and
access depending on workload and machine characteris-
tics. Tuning is based on memory access patterns. These
are either (i) given by manual annotation, or, ideally, (ii)
by modifying compilers of high-level languages to ex-
tract that information automatically. We have shown that
we can use this additional information to automatically
choose array implementations that increase performance
on today’s NUMA systems. We report an up 2x improve-
ment for Green-Marl, a high-level graph analytics work-
load, without changing the Green-Marl input program.
We found our memory abstraction as well as the simple
policy for selecting the array implementation sufficient
for current workloads and machines, but believe that fu-
ture machines can benefit from a more fine-grained se-
lection of array implementations.

11

References
[1] ACHERMANN, R. Message Passing and Bulk

Transport on Heterogenous Multiprocessors. ETH
Zurich, 2014. Master’s Thesis, http://dx.doi.
org/10.3929/ethz-a-010262232.

[2] ADVANCED MICRO DEVICES. AMD64 Archi-
tecture Programmer’s Manual Volume 2: System
Programming. Online, 2013. http://amd-dev.
wpengine.netdna-cdn.com/wordpress/
media/2012/10/24593_APM_v21.pdf. Publica-
tion Number 24593. Revision 3.23.

[3] APPAVOO, J., SILVA, D. D., KRIEGER, O., AUS-
LANDER, M., OSTROWSKI, M., ROSENBURG,
B., WATERLAND, A., WISNIEWSKI, R. W.,
XENIDIS, J., STUMM, M., AND SOARES, L. Ex-
perience Distributing Objects in an SMMP OS.
ACM Transactions on Computer Systems 25, 3
(Aug. 2007).

[4] ARAVAMUDAN, N., LITKE, A., AND MUNSON,
E. libhugetlbfs. Online, 2015. http://
libhugetlbfs.sourceforge.net/.

[5] BACKSTROM, L., HUTTENLOCHER, D., KLEIN-
BERG, J., AND LAN, X. Group Formation in Large
Social Networks: Membership, Growth, and Evo-
lution. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining (New York, NY, USA, 2006),
KDD ’06, ACM, pp. 44–54.

[6] BARRELFISH PROJECT. The Barrelfish Operating
System. Online, 2015. www.barrelfish.org.

[7] BAUMANN, A., BARHAM, P., DAGAND, P.-E.,
HARRIS, T., ISAACS, R., PETER, S., ROSCOE, T.,
SCHÜPBACH, A., AND SINGHANIA, A. The Mul-
tikernel: A new OS architecture for scalable multi-
core systems. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles
(New York, NY, USA, 2009), SOSP ’09, ACM,
pp. 29–44.

[8] BAUMANN, A., PETER, S., SCHÜPBACH, A.,
SINGHANIA, A., ROSCOE, T., BARHAM, P., AND
ISAACS, R. Your computer is already a distributed
system. Why isn’t your OS? In Proceedings of
the 12th Conference on Hot Topics in Operating
Systems (Berkeley, CA, USA, 2009), HotOS’09,
USENIX Association, pp. 12–12.

[9] BIENIA, C., KUMAR, S., SINGH, J. P., AND LI,
K. The PARSEC Benchmark Suite: Characteriza-
tion and Architectural Implications. In Proceed-
ings of the 17th International Conference on Paral-
lel Architectures and Compilation Techniques (New

York, NY, USA, 2008), PACT ’08, ACM, pp. 72–
81.

[10] BOYD-WICKIZER, S., CHEN, H., CHEN, R.,
MAO, Y., KAASHOEK, F., MORRIS, R.,
PESTEREV, A., STEIN, L., WU, M., DAI, Y.,
ZHANG, Y., AND ZHANG, Z. Corey: An Oper-
ating System for Many Cores. In Proceedings of
the 8th USENIX Conference on Operating Systems
Design and Implementation (Berkeley, CA, USA,
2008), OSDI’08, USENIX Association, pp. 43–57.

[11] CHAMBERLAIN, B., CALLAHAN, D., AND ZIMA,
H. Parallel Programmability and the Chapel Lan-
guage. International Journal of High Performance
Computing Applications 21, 3 (Aug. 2007), 291–
312.

[12] CHARLES, P., GROTHOFF, C., SARASWAT, V.,
DONAWA, C., KIELSTRA, A., EBCIOGLU, K.,
VON PRAUN, C., AND SARKAR, V. X10: An
Object-Oriented Approach to Non-Uniform Clus-
ter Computing. In Proceedings of the 20th Annual
ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applica-
tions (New York, NY, USA, 2005), OOPSLA ’05,
ACM, pp. 519–538.

[13] DASHTI, M., FEDOROVA, A., FUNSTON, J.,
GAUD, F., LACHAIZE, R., LEPERS, B., QUEMA,
V., AND ROTH, M. Traffic Management: A Holis-
tic Approach to Memory Placement on NUMA
Systems. In Proceedings of the Eighteenth Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems
(New York, NY, USA, 2013), ASPLOS ’13, ACM,
pp. 381–394.

[14] DAVID, T., GUERRAOUI, R., AND TRIGONAKIS,
V. Everything You Always Wanted to Know About
Synchronization but Were Afraid to Ask. In Pro-
ceedings of the 24th ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2013),
SOSP ’13, ACM, pp. 33–48.

[15] DICE, D., MARATHE, V. J., AND SHAVIT, N.
Lock Cohorting: A General Technique for Design-
ing NUMA Locks. In Proceedings of the 17th ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Programming (New York, NY, USA,
2012), PPoPP ’12, ACM, pp. 247–256.

[16] FRANCHETTI, F., VORONENKO, Y., AND
PÜSCHEL, M. FFT Program Generation for
Shared Memory: SMP and Multicore. In Pro-
ceedings of the 2006 ACM/IEEE Conference on

12

http://dx.doi.org/10.3929/ethz-a-010262232
http://dx.doi.org/10.3929/ethz-a-010262232
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://libhugetlbfs.sourceforge.net/
http://libhugetlbfs.sourceforge.net/
www.barrelfish.org

Supercomputing (New York, NY, USA, 2006), SC
’06, ACM.

[17] GAUD, F., LEPERS, B., DECOUCHANT, J., FUN-
STON, J., FEDOROVA, A., AND QUEMA, V.
Large Pages May Be Harmful on NUMA Sys-
tems. In 2014 USENIX Annual Technical Confer-
ence (USENIX ATC 14) (2014), USENIX Associa-
tion.

[18] GICEVA, J., SALOMIE, T.-I., SCHÜPBACH, A.,
ALONSO, G., AND ROSCOE, T. COD: Database
/ Operating System Co-Design. In CIDR (2013),
www.cidrdb.org.

[19] HAND, S. M. Self-paging in the nemesis operat-
ing system. In Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation
(1999), pp. 73 – 86.

[20] HONG, S., CHAFI, H., SEDLAR, E., AND
OLUKOTUN, K. Green-Marl: A DSL for Easy
and Efficient Graph Analysis. In Proceedings of
the 17th International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (New York, NY, USA, 2012), ASPLOS
XVII, ACM, pp. 349–362.

[21] HOWARD, J., DIGHE, S., VANGAL, S. R., RUHL,
G., BORKAR, N., JAIN, S., ERRAGUNTLA, V.,
KONOW, M., RIEPEN, M., GRIES, M., ET AL.
A 48-Core IA-32 Processor in 45 nm CMOS Us-
ing On-Die Message-Passing and DVFS for Perfor-
mance and Power Scaling. IEEE Journal of Solid-
State Circuits 46, 1 (2011), 173–183.

[22] INTEL CORPORATION. Intel Xeon Processor
E5-1600/E5-2600/E5-4600 v2 Product Fami-
lies, Datasheet - Volume One of Two. Online,
2014. http://www.intel.com/content/dam/
www/public/us/en/documents/datasheets/
xeon-e5-v2-datasheet-vol-1.pdf, Docu-
ment Number: 329187-003.

[23] KWAK, H., LEE, C., PARK, H., AND MOON, S.
What is Twitter, a Social Network or a News Me-
dia? In WWW ’10: Proceedings of the 19th inter-
national conference on World wide web (New York,
NY, USA, 2010), ACM, pp. 591–600.

[24] LI, X., GARZARÁN, M. J., AND PADUA, D.
A Dynamically Tuned Sorting Library. In Pro-
ceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed
and Runtime Optimization (Washington, DC, USA,
2004), CGO ’04, IEEE Computer Society, p. 111.

[25] MATTSON, T. G., VAN DER WIJNGAART, R.,
AND FRUMKIN, M. Programming the Intel 80-
core network-on-a-chip Terascale Processor. In
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (Piscataway, NJ, USA, 2008), SC
’08, IEEE Press, pp. 38:1–38:11.

[26] NIEPLOCHA, J., HARRISON, R. J., AND LIT-
TLEFIELD, R. J. Global Arrays: A Nonuniform
Memory Access Programming Model for High-
Performance Computers. The Journal of Supercom-
puting 10, 2 (June 1996), 169–189.

[27] NUMRICH, R. W., AND REID, J. Co-Array For-
tran for Parallel Programming. SIGPLAN Fortran
Forum 17, 2 (Aug. 1998), 1–31.

[28] ORACLE CORPORATION. madvise() in So-
laris 10. Online, 2015. http://docs.
oracle.com/cd/E19253-01/817-0547/
whatsnew-updates-72/index.html.

[29] ORACLE LABS. Fortress. Online, 2015. https:
//projectfortress.java.net.

[30] PAGE, L., BRIN, S., MOTWANI, R., AND WINO-
GRAD, T. The PageRank Citation Ranking: Bring-
ing Order to the Web. Technical Report 1999-66,
Stanford InfoLab, November 1999.

[31] SALOMIE, T.-I., SUBASU, I. E., GICEVA, J., AND
ALONSO, G. Database Engines on Multicores,
Why Parallelize When You Can Distribute? In Pro-
ceedings of the 6th Conference on Computer Sys-
tems (New York, NY, USA, 2011), EuroSys ’11,
ACM, pp. 17–30.

[32] SCHAEFER, C. A., PANKRATIUS, V., AND TICHY,
W. F. Atune-IL: An Instrumentation Language
for Auto-Tuning Parallel applications. In Proceed-
ings of the 15th International Euro-Par Conference
on Parallel Processing (Berlin, Heidelberg, 2009),
Euro-Par ’09, Springer-Verlag, pp. 9–20.

[33] SCHÜPBACH, A., PETER, S., BAUMANN, A.,
ROSCOE, T., BARHAM, P., HARRIS, T., AND
ISAACS, R. Embracing diversity in the Barrelfish
manycore operating system. In Proceedings of the
Workshop on Managed Many-Core Systems (2008).

[34] SILICON GRAPHICS INTERNATIONAL CORPORA-
TION. libnuma. Online, 2015. http://oss.sgi.
com/projects/libnuma/.

[35] SILICON GRAPHICS INTERNATIONAL
CORPORATION. Origin and Onyx2 The-
ory of Operations Manual. Online, 2015.
http://techpubs.sgi.com/library/tpl/

13

http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf
http://docs.oracle.com/cd/E19253-01/817-0547/whatsnew-updates-72/index.html
http://docs.oracle.com/cd/E19253-01/817-0547/whatsnew-updates-72/index.html
http://docs.oracle.com/cd/E19253-01/817-0547/whatsnew-updates-72/index.html
https://projectfortress.java.net
https://projectfortress.java.net
http://oss.sgi.com/projects/libnuma/
http://oss.sgi.com/projects/libnuma/
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=bks&srch=&fname=/SGI_Developer/OrOn2_Theops/sgi_html/ch02.html
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=bks&srch=&fname=/SGI_Developer/OrOn2_Theops/sgi_html/ch02.html

cgi-bin/getdoc.cgi?coll=0650&db=bks&
srch=&fname=/SGI_Developer/OrOn2_
Theops/sgi_html/ch02.html.

[36] SOUNDARARAJAN, V., HEINRICH, M., VERGH-
ESE, B., GHARACHORLOO, K., GUPTA, A., AND
HENNESSY, J. Flexible Use of Memory for Repli-
cation/Migration in Cache-Coherent DSM Multi-
processors. In Proceedings of the 25th Annual In-
ternational Symposium on Computer Architecture
(Washington, DC, USA, 1998), ISCA ’98, IEEE
Computer Society, pp. 342–355.

[37] SUJEETH, A., LEE, H., BROWN, K., ROMPF,
T., CHAFI, H., WU, M., ATREYA, A., ODER-
SKY, M., AND OLUKOTUN, K. OptiML: An Im-
plicitly Parallel Domain-Specific Language for Ma-
chine Learning. In Proceedings of the 28th Interna-
tional Conference on Machine Learning (ICML-11)
(2011), pp. 609–616.

[38] TERBOVEN, C., AN MEY, D., SCHMIDL, D., JIN,
H., AND REICHSTEIN, T. Data and Thread Affin-
ity in OpenMP Programs. In Proceedings of the
2008 Workshop on Memory Access on Future Pro-
cessors: A Solved Problem? (New York, NY, USA,
2008), MAW ’08, ACM, pp. 377–384.

[39] UPC CONSORTIUM. UPC Language and Li-
brary Specifications, November 2013. Version 1.3.
Online. http://upc.lbl.gov/publications/
upc-spec-1.3.pdf.

[40] WENTZLAFF, D., AND AGARWAL, A. Factored
Operating Systems (fos): The Case for a Scalable
Operating System for Multicores. SIGOPS Operat-
ing Systems Review 43, 2 (Apr. 2009), 76–85.

[41] XIONG, J., JOHNSON, J., JOHNSON, R., AND
PADUA, D. SPL: A Language and Compiler for
DSP Algorithms. In Proceedings of the ACM
SIGPLAN 2001 Conference on Programming Lan-
guage Design and Implementation (New York, NY,
USA, 2001), PLDI ’01, ACM, pp. 298–308.

14

http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=bks&srch=&fname=/SGI_Developer/OrOn2_Theops/sgi_html/ch02.html
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=bks&srch=&fname=/SGI_Developer/OrOn2_Theops/sgi_html/ch02.html
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=0650&db=bks&srch=&fname=/SGI_Developer/OrOn2_Theops/sgi_html/ch02.html
http://upc.lbl.gov/publications/upc-spec-1.3.pdf
http://upc.lbl.gov/publications/upc-spec-1.3.pdf

	Introduction
	Motivation
	Shoal's array abstraction
	Interface and programming model
	Array types
	Selection of arrays

	Implementation
	Evaluation
	Scalability
	Comparison of array implementations
	Use of DMA engines
	Writeable replication

	Related work
	Conclusion

