
First International Workshop on Rack-scale Computing (WRSC 2014)

The Case for the Holistic Language Runtime System

Martin Maas? Krste Asanović? Tim Harris† John Kubiatowicz?

? University of California, Berkeley † Oracle Labs

ABSTRACT
We anticipate that, by 2020, the basic unit of warehouse-
scale cloud computing will be a rack-sized machine instead
of an individual server. At the same time, we expect a
shift from commodity hardware to custom SoCs that are
specifically designed for the use in warehouse-scale comput-
ing. In this paper, we make the case that the software for
such custom rack-scale machines should move away from the
model of running managed language workloads in separate
language runtimes on top of a traditional operating system
but instead run a distributed language runtime system capa-
ble of handling different target languages and frameworks.
All applications will execute within this runtime, which per-
forms most traditional OS and cluster manager functionality
such as resource management, scheduling and isolation.

1. INTRODUCTION
We introduce Holistic Language Runtime Systems as a way
to program future cloud platforms. We anticipate that over
the next years, cloud providers will shift towards rack-scale
machines of custom designed SoCs, replacing the commod-
ity parts in current data centers. At the same time, we
expect a shift towards interactive workloads developed by
third-party, non-systems programmers. This leads to a pro-
gramming crisis as productivity programmers have to develop
for increasingly complex and opaque hardware (Section 2).

We believe that, as a result, the cloud will be exclusively
programmed through high-level languages and frameworks.
However, today’s software stack is ill-suited for such a sce-
nario (Section 3): the conventional approach of running each
application in a separate runtime system leads to inefficiency
and unpredictable latencies due to interference between mul-
tiple runtime instances, and prevents optimizations.

We propose to solve this problem through running all ap-
plications in a rack-wide distributed runtime system. This
holistic runtime (Section 4) consists of a per-node runtime
that executes all workloads within that node, and a dis-
tributed inter-node runtime that coordinates activities be-
tween them (Figure 1). The per-node runtime takes over the
functionality of a traditional OS (such as resource manage-
ment, scheduling and isolation), while the distributed layer
coordinates activities between the different nodes (similar to
a cluster manager, but with low-level control of the system).
This enables to e.g. coordinate garbage collection between
nodes to not interfere with low-latency RPCs, share JIT re-
sults, or transparently migrate execution and data.

We discuss the merits of this model and show challenges
that need to be addressed by such a system (Section 5).

Cluster-level Scheduler (Mesos, Omega)!

 !

Programming FireBox with Managed Languages
Martin Maas (maas@eecs.berkeley.edu)

Advisors: Krste Asanovic, John Kubiatowicz. In collaboration with Tim Harris, Oracle Labs.
Thanks is owed to Mario Wolczko (Oracle Labs) and Philip Reames (Azul Systems) for early feedback.

Algorithms and Specializers for Provably-optimal Implementations with Resilience and Efficiency Laboratory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P0! P1! P2! P3!

28 32 36 40
P0!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P0! P1! P2! P3!

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
P0! P1! P2! P3!

CPU! CPU! x10-100!

Vector Core!

Accelerators!

Crypto!

Custom System-on-Chip!

SoC! SoC! SoC! SoC!…!

~1,000 SoC’s!

High-speed Interconnect

RAM! RAM! RAM! RAM!…!

NVM
Storage!

NVM
Storage!

NVM
Storage!

Disaggregated bulk non-volatile  
memory, globally accessible!

CPUs! Accelerators! DRAM!

High-speed Interconnect!

CPUs! Accelerators! DRAM!…!

Profiling!

JIT! GC!
Objects!

Program 1 Program 2!Per-node Runtime!

Client #1! App A! App B! Client #2! App C! App D!Service Interfaces!

Coordinate GC!
Share JIT/profiling results! Transparent relocation of

execution and data!

Schedule work on available runtime instances!

Distributed Runtime!

SoC! SoC!

Manage distributed heaps!
Failure tolerance!

Target accelerators!

Enforce SLAs!

NIC!

Handle remote DRAM reqs.!
CPUs! DRAM!

10Gb/s Ethernet at rack-level interconnect!

…!

Profiling!

JIT! GC!

Objects!

Single application!

Threads!

Runtime Instance!

Client #1! App A! App B! Client #2! App C! App D!Service Interfaces!

Commodity Server!

Storage (SQL/NoSQL)!
Parallel computation/dataflow!Frameworks!

Failure tolerance!

Commodity OS (Linux)!

CPUs! DRAM!

Profiling!

JIT! GC!

Objects!

Single application!

Threads!

Runtime Instance!

Commodity Server!

Storage (SQL/NoSQL)!
Parallel computation/dataflow!Frameworks!

Failure tolerance!

Commodity OS (Linux)!

Objects!
Threads! Profiling!

JIT! GC!
Objects!

Program 1 Program 2!

Objects!
Threads!

Cluster Scheduler!

App #1!

Language
Runtime!

Commodity OS!

App #2!

Language
Runtime!

App #1! App #2!App #3!

Language
Runtime!

Commodity OS!

App #4!

Language
Runtime!

App #3! App #4!

Today: Multiple Runtime Instances per node,
coordinated by a cluster scheduler.!

The Holistic Language Runtime: One runtime
system per node with global coordination.!

Distributed Runtime (Coordination Layer)!

Per-node  
Language Runtime!

Per-node  
Language Runtime!

Holistic Runtime System!

Figure 1: Comparing today’s software stack and holistic runtimes

2. CLOUD COMPUTING IN 2020
Warehouse-scale computers in the cloud are becoming the
backbone for a growing portion of applications. We expect
this trend to continue: in this section, we identify a set of de-
velopments that, we believe, will lead to significant changes
to cloud infrastructure over the next 5-10 years.

2.1 Different Cloud Hardware
As the market for IaaS and PaaS cloud services is growing,
and an increasing number of organizations and developers
are adopting the cloud, we expect providers to shift away
from using commodity parts. While this kind of hardware
has been the most economical solution for the last decade,
the overheads of replicated and often unused components
(such as unnecessary interfaces, motherboards or peripher-
als) lead to significant inefficiency in energy consumption,
hardware costs and resource utilization. We expect that due
to the increasing scale of warehouse-scale computing, it will
become more economical to design custom SoCs for data
centers (either as a third-party offering, or designed from
stock IP by the cloud provider itself). This has been facil-
itated by the availability of high-quality IP (such as ARM
server processors) and would enable to produce SoCs with
10s of cores, accelerators, on-chip NICs integrated into the
cache hierarchy (such as [38]) and DRAM controllers that
enable remote accesses without going through a CPU.

We envision 100 to 1,000 of these SoCs to be connected in
a rack-scale environment with a high-bandwidth/low-latency
interconnect. Such a rack of SoCs will be the new basic unit
of the data center. While the different SoCs are tightly
coupled and may provide a global address space, remote
caching may be limited. At the same time, I/O and bulk
storage are moved to the periphery of the rack and accessed
over the network. Compared with today’s clusters, advan-
tages of such a system include better energy efficiency and
better predictability due to flatter interconnects enabled by
the rack-scale form factor (such as a rack-level high-radix
switch) and being able to integrate NICs into the SoC.

1

First International Workshop on Rack-scale Computing (WRSC 2014)

The rack-scale setup bears similarity to systems such as
the HP Moonshot [4] or the AMD SeaMicro SM10000 [41],
but with custom SoCs. This trend towards rack-scale sys-
tems extends to the research community: for example, an in-
creasing amount of work is looking at scale-out architectures
for memory [38] and CPUs [35]. Storage systems are chang-
ing as well, with DRAM becoming the main base for stor-
age [45] and new low-latency non-volatile memory technolo-
gies on the horizon [19]. Research is also looking at accelera-
tors to make use of available chip area and tackle the power
wall [34, 48], and custom SoCs enable inclusion of acceler-
ators for common cloud workloads, such as databases [34].
However, this increases the degree of heterogeneity.

→ The cloud is becoming more opaque: It is likely that
details of the SoC design will be proprietary and program-
mers will have less knowledge about the hardware they run
on. Even today it is difficult (and not desirable for portabil-
ity) to fine-tune programs to the underlying hardware [31].
However, as cloud providers move to custom SoCs, it will
become infeasible. This creates a programmability crisis:
programmers will have to program a platform they know
little about, while the complexity of the system is growing.

2.2 Different Mix of Cloud Workloads
Today, the majority of workloads running in cloud providers’
data centers are developed in-house, such as Google Search
or Microsoft Hotmail. Developers of these workloads have
access to deep knowledge about the underlying infrastruc-
ture and can fine-tune them to the platform if necessary.
These workloads are often interleaved with IaaS jobs from
external customers, through platforms such as AWS [1], Ap-
pEngine [3] or Azure [6]. Some cloud providers (such as
Rackspace) even cater exclusively to external customers.

By 2020, we envision that these third-party workloads will
make up the majority of data center workloads, just like
third-party apps today make up the majority of apps on any
smartphone or PC. We see a shift towards ubiquitous com-
puting, with large numbers of apps for smartphones, watches
or TVs that interact with a growing number of sensors and
use the cloud as backend. At the same time, new computa-
tion and data intensive interactive applications emerge, such
as augmented reality, remote gaming or live translation.

This significantly changes the mix of data center work-
loads. Today, latency-sensitive workloads are relatively rare,
and can be run on their own servers, with an ample supply
of batch workloads sharing the other machines. However, by
2020, interactive workloads will be in the majority, requiring
low latency response times while operating on large amounts
of data. Further, there will be a much larger and more het-
erogeneous set of workloads running in the cloud, and the
majority of them will be supplied by external developers.

Like today, these workloads will require performance guar-
antees, tail-tolerance [22], failure tolerance (e.g. through
replication) and security guarantees (such as privacy through
encryption [8] and isolation between applications [43]). Fur-
thermore, there is increasing adoption of service-oriented ar-
chitectures (SOAs) to increase productivity and reduce risk.
We expect that this adoption will continue, requiring cloud
platforms to handle such service interfaces efficiently.

→ Radical over-provisioning will cease to be cost-
effective: Cloud providers today have to radically over-
provision resources. This is happening for two reasons:

First, the high degree of complexity in the system can lead
to high tail-latencies. This is unacceptable for interactive
jobs, which hence require over-provisioning and other tech-
niques to be tail-tolerant [22]. This approach works today,
since interactive jobs make up a relatively small part of the
mix. However, as the portion of interactive jobs is growing,
more resources are wasted for over-provisioning and replica-
tion, which quickly becomes economically infeasible.

Second, load on the warehouse-scale system varies greatly
between different times of the day, week and year, and cloud
providers need to provision for peak times. Shutting off in-
dividual machines is difficult, since workloads and storage is
spread across many machines and the overhead of consoli-
dating them before shutting off may be too large.

Due to the rising cost of over-provisioning, we expect that
much of it will have to be replaced by fine-grained sharing of
resources – both to reduce tail-latency and to make it possi-
ble to consolidate workloads on a smaller set of nodes (and
switch off unused parts of a running system). This implies
a need to reduce detrimental interference between jobs on a
highly loaded machine, which is a challenging problem [27].

2.3 Different Group of Cloud Programmers
An increasing portion of cloud workloads is programmed by
productivity programmers [20], similar to PHP webapps in
2000 and iOS apps today. A large portion of smartphone
apps already use the cloud as backend and high-level frame-
works and languages are widely used when programming
for the cloud – examples include the AppEngine stack [3],
Hadoop [51], DryadLinq [55] and Spark [56]. The program-
ming languages of choice include Java, C# and Python,
which are all high-level managed languages.

The reason these frameworks and languages are popular is
that except for an expert programmer deeply familiar with
the underlying system, it is prohibitively difficult to handle
its complexity (e.g. distribution, replication, synchroniza-
tion and parallelism) while maintaining productivity.

We expect that in 2020, the majority of data center work-
loads will be written by productivity programmers. Expert
programmers deeply familiar with the system will exist, but
will be creating a smaller portion of the workloads them-
selves. They will instead provide frameworks for productiv-
ity programmers to use and program workloads for compa-
nies large enough to run their own data centers.

→ The cloud will be exclusively programmed using
high-level languages and frameworks: While high-level
languages and frameworks are already widely used to pro-
gram the cloud, they will become the only way to develop for
future cloud platforms, due to the nascent programmability
gap of productivity programmers having to program com-
plex opaque systems. High-level managed languages bridge
the gap between software and hardware, as they abstract
away hardware details and have more flexibility in adapting
code to the underlying platform. This makes the problem
of programming increasingly complex cloud architectures
tractable and facilitates moving between cloud providers.

We therefore expect that cloud applications in 2020 will be
almost exclusively written in high-level managed languages
and use high-level frameworks for storage, parallelism, dis-
tribution and failure/tail tolerance. Instead of providing
customers with machine VMs, cloud providers will expose
high-level APIs that give access to frameworks which the
provider implements however it chooses (a PaaS model).

2

First International Workshop on Rack-scale Computing (WRSC 2014)

3. LANGUAGE RUNTIMES TODAY
We are already seeing the start of some of the trends iden-
tified in Section 2. In particular, high-level managed lan-
guages and frameworks are already a main way to program
the cloud (Section 2.3). Arguably, the current source of this
popularity are their good productivity and safety properties.
However, they also give the runtime system additional free-
dom in tuning workloads to the underlying hardware. This
property becomes increasingly important on platforms that
cannot be hand-tuned for, such as the rack-scale machines
we are envisioning. Specifically, the advantages of managed
language workloads include the following:

• They add a level of abstraction: Managed languages
hide the complexity of the underlying architecture.
This is often considered a disadvantage (since it pre-
vents some low-level tuning), but in the cloud scenario,
it is necessary as hand-tuning will not be possible.

• They operate on Bytecode: This allows transparent re-
compilation and auto-tuning to a particular architec-
ture based on runtime performance counters (using a
JIT). There are also high-level frameworks such as SE-
JITS [20] or Dandelion [44] that can help to program
accelerators in a high-level language by using intro-
spection into compiled programs.

• They provide automatic memory management : Ex-
plicit memory management is prone to errors, and bugs
such as memory leaks or buffer overruns can be partic-
ularly damaging in a cloud scenario of long-running,
security-sensitive workloads. At the same time, there
is little benefit of explicit management in an opaque
system – automatic memory management and garbage
collection (GC) are therefore a significant advantage.

• They operate on references instead of pointers: This al-
lows transparent migration of data and execution be-
tween different nodes and automatic forwarding. It
also gives more flexibility for memory management, as
it allows data to be relocated.

Unfortunately, the way managed languages are integrated
into today’s software stack has inefficiencies and is a bad
fit for future cloud data centers, with large (rack-scale) ma-
chines, high load and a requirement for fine-grained resource
sharing. In today’s deployments, applications run in isolated
containers (depending on the platform, these are VMs, re-
source containers [14] or processes), and each container runs
a separate instance of the language runtime for that appli-
cation (Figure 2). This causes four problems:

The Interference Problem: As cloud workloads exhibit
an increasing spectrum of resource requirements, it becomes
increasingly important to be able to run a large number
of different applications on the same machine (to consoli-
date workloads and for load balancing reasons). For parallel
workloads, co-scheduling of applications on the same ma-
chine can lead to detrimental interference through schedul-
ing [27, 39] (in addition to other sources of interference such
as memory bandwidth or caches). This applies to managed
language runtimes as well: for example, GC threads can get
descheduled at inopportune times (and stall the application)
or application servers receiving an RPC may not be sched-
uled when the RPC arrives. The OS cannot schedule around

Cluster-level Scheduler (Mesos, Omega)!

 !

Programming FireBox with Managed Languages
Martin Maas (maas@eecs.berkeley.edu)

Advisors: Krste Asanovic, John Kubiatowicz. In collaboration with Tim Harris, Oracle Labs.
Thanks is owed to Mario Wolczko (Oracle Labs) and Philip Reames (Azul Systems) for early feedback.

Algorithms and Specializers for Provably-optimal Implementations with Resilience and Efficiency Laboratory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P0! P1! P2! P3!

28 32 36 40
P0!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P0! P1! P2! P3!

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
P0! P1! P2! P3!

CPU! CPU! x10-100!

Vector Core!

Accelerators!

Crypto!

Custom System-on-Chip!

SoC! SoC! SoC! SoC!…!

~1,000 SoC’s!

High-speed Interconnect

RAM! RAM! RAM! RAM!…!

NVM
Storage!

NVM
Storage!

NVM
Storage!

Disaggregated bulk non-volatile  
memory, globally accessible!

CPUs! Accelerators! DRAM!

High-speed Interconnect!

CPUs! Accelerators! DRAM!…!

Profiling!

JIT! GC!

Objects!

Program!

Threads!

Runtime Instance!

Client #1! App A! App B! Client #2! App C! App D!Service Interfaces!

Profiling!

JIT! GC!

Objects!

Program!

Threads!

Runtime Instance!

Coordinate GC!
Share JIT/profiling results! Transparent relocation of

execution and data!

Schedule work on available runtime instances!

Distributed Runtime!

SoC! SoC!

Manage distributed heaps!
Failure tolerance!

Target accelerators!

Enforce SLAs!

NIC!

Handle remote DRAM reqs.!
CPUs! DRAM!

10Gb/s Ethernet at rack-level interconnect!

…!

Profiling!

JIT! GC!

Objects!

Single application!

Threads!

Runtime Instance!

Client #1! App A! App B! Client #2! App C! App D!Service Interfaces!

Commodity Server!

Storage (SQL/NoSQL)!
Parallel computation/dataflow!Frameworks!

Failure tolerance!

Commodity OS (Linux)!

CPUs! DRAM!

Profiling!

JIT! GC!

Objects!

Single application!

Threads!

Runtime Instance!

Commodity Server!

Storage (SQL/NoSQL)!
Parallel computation/dataflow!Frameworks!

Failure tolerance!

Commodity OS (Linux)!

Figure 2: The current software stack

this because the required high-level information about the
threads is not available to the OS scheduler.

In addition, when there are more runtime instances than
hardware threads, it can be challenging to dispatch a request
to the right instance, and the overhead of waking up that
process adds latency. This makes RPC unsuitable for fine-
grained communication with remote calls on the order of
microseconds. However, in a service-oriented architecture,
there will be a very large number of service calls with low
latency requirements. Work on the hardware level tackled
this for RDMA [38], but does not generalize to RPCs yet.

The Redundancy Problem: When running multiple lan-
guage runtimes, a large amount of code in shared libraries
is loaded and JITed multiple times (for example, OpenJDK
7 loads 379 classes for a minimal ”Hello World” program).
Since the JITed code is tied into the logical data structures
of the runtime, page sharing between processes cannot avoid
this problem. Additionally, each runtime instance runs its
own service daemons such as JIT compiler or profiler, adding
further overheads. Finally, VM images often contain an en-
tire OS with a large amount of unused libraries and code,
even if only a small subset is used (which can lead to three
orders of magnitude overhead in binary size [36]).

The Composability Problem: For productivity and main-
tainability, applications are often broken into a large number
of services – e.g. page requests to Amazon typically require
over 150 service calls [23]. However, when services are shared
between different runtime instances, a service call requires
crossing the boundary between two processes. This pre-
vents optimizations such as code inlining or service fusion,
and adds overheads from context switches and scheduling.
At the same time, simply putting all services into the same
process would cause problems in current systems, such as
losing failure isolation and not being able to dynamically
migrate service instances between nodes.

The Elasticity Problem: Adding servers in response to
increased load involves launching new VMs, which have a
significant startup latency and take time to warm up (e.g.
JITing the code). This makes it harder to react to varying
workload demands at a fine granularity.

Taken together, these problems show that the current ap-
proach of running each application in its own runtime system
appears infeasible for the cloud in 2020 (and already causes
inefficiency today). We aim to solve these problems through
the introduction of a Holistic Language Runtime System.

3

First International Workshop on Rack-scale Computing (WRSC 2014)

Cluster-level Scheduler (Mesos, Omega)!

 !

Programming FireBox with Managed Languages
Martin Maas (maas@eecs.berkeley.edu)

Advisors: Krste Asanovic, John Kubiatowicz. In collaboration with Tim Harris, Oracle Labs.
Thanks is owed to Mario Wolczko (Oracle Labs) and Philip Reames (Azul Systems) for early feedback.

Algorithms and Specializers for Provably-optimal Implementations with Resilience and Efficiency Laboratory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P0! P1! P2! P3!

28 32 36 40
P0!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P0! P1! P2! P3!

1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16
P0! P1! P2! P3!

CPU! CPU! x10-100!

Vector Core!

Accelerators!

Crypto!

Custom System-on-Chip!

SoC! SoC! SoC! SoC!…!

~1,000 SoC’s!

High-speed Interconnect

RAM! RAM! RAM! RAM!…!

NVM
Storage!

NVM
Storage!

NVM
Storage!

Disaggregated bulk non-volatile  
memory, globally accessible!

CPUs! Accelerators! DRAM!

High-speed Interconnect!

CPUs! Accelerators! DRAM!…!

Profiling!

JIT! GC!
Objects!

Program 1 Program 2!Per-node Runtime!

Client #1! App A! App B! Client #2! App C! App D!Service Interfaces!

Coordinate GC!
Share JIT/profiling results! Transparent relocation of

execution and data!

Schedule work on available runtime instances!

Distributed Runtime!

SoC! SoC!

Manage distributed heaps!
Failure tolerance!

Target accelerators!

Enforce SLAs!

NIC!

Handle remote DRAM reqs.!
CPUs! DRAM!

10Gb/s Ethernet at rack-level interconnect!

…!

Profiling!

JIT! GC!

Objects!

Single application!

Threads!

Runtime Instance!

Client #1! App A! App B! Client #2! App C! App D!Service Interfaces!

Commodity Server!

Storage (SQL/NoSQL)!
Parallel computation/dataflow!Frameworks!

Failure tolerance!

Commodity OS (Linux)!

CPUs! DRAM!

Profiling!

JIT! GC!

Objects!

Single application!

Threads!

Runtime Instance!

Commodity Server!

Storage (SQL/NoSQL)!
Parallel computation/dataflow!Frameworks!

Failure tolerance!

Commodity OS (Linux)!

Objects!
Threads! Profiling!

JIT! GC!
Objects!

Program 1 Program 2!

Objects!
Threads!

Figure 3: High-level Overview of a Holistic Language Runtime

4. HOLISTIC LANGUAGE RUNTIMES
There is a sense that the changing cloud computing land-
scape provides an opportunity for a new approach to the
software stack. Some work proposes new OS structures that
span multiple nodes/cores and enable inter-node coordina-
tion such as gang-scheduling – examples include Akaros [42],
Barrelfish [15] and DiOS [46]. The service-oriented model
has also been adopted by several research OSs (such as
fos [50] or Tessellation [21]). At the same time, library OSs
on hypervisors (like Mirage [36] or OSv [7]) tackle the redun-
dancy problem by compiling application and OS together
and removing layers of indirection.

We are exploring a different approach: we believe that the
problems from Section 3 can be tackled by having all jobs
logically share a distributed language runtime that manages
all applications in a rack-scale machine. In this model, all
threads, heaps and applications are exposed to the same
runtime system and live in the same address space (assuming
a global, but not necessarily cache-coherent, address space).
Applications are supplied as a set of (PaaS-style) services1

that are restricted to a single coherence domain and can be
replicated. The runtime system consists of two parts: a per-
node runtime on each SoC that runs all workloads within
that node, and a distributed runtime that spans all nodes
in a distributed fashion, enabling fine-grained coordination
between SoCs. We call this system the ”Holistic Language
Runtime System”, for its holistic view of the rack (Figure 3).

Compared to the current model (Figure 2), the per-node
runtime and the OS merge. Services become the unit of vir-
tualization and the runtime coordinates resource allocation
and device access (in particular the NIC) between them.
Storage and drivers are implemented as libraries, similar to
the Exokernel [24]. This proposal is supported by the fact
that many traditional OS services have already been pushed
out of the OS: for example, many scheduling tasks have been
moved into the application level (e.g. through cluster sched-
ulers such as Mesos [28] or Omega [47]) and many virtualiza-
tion tasks have been pushed into hardware (e.g. Infiniband
NICs). Within each per-node runtime, applications are pro-
tected through software-based isolation, with controlled ref-
erences between sub-heaps (and potentially hardware sup-
port in the SoC, such as Mondrian-style protection [53]).

In contrast, the distributed runtime coordinates the dif-
ferent per-node runtime instances. This includes tasks tra-

1Here, a service is a monolithic unit that communicates only
through a service interface. Services access bulk DRAM
through RDMA-style transfers and communicate through
RPCs (more complex patterns can be provided by libraries).

ditionally performed by the cluster manager (such as load
balancing), but also coordinated decisions such as when to
run GC on a part of the heap, how to relocate or resize ap-
plications and sharing profiling/optimization results. While
the distributed runtime can make use of the fact that it can
access the entire shared address space (e.g. for zero-copy
transfers), each SoC is treated as a separate fault domain
and the distributed runtime has to operate using traditional
agreement protocols (similar to a Multikernel [15]).

This approach has a number of advantages and solves the
four problems from Section 3. We believe that a holistic
runtime system will enable the following features:

• Transparent migration of execution and data between
nodes of the system while preserving a PaaS view. This
can exploit locality in workloads, and interacts with
other mechanisms such as performance guarantees.

• Solving the redundancy problem through reusing JIT
results or profiling data across multiple nodes and con-
solidating runtime services within the rack.

• Fine-grained coordination and interleaving of parallel
jobs [27], alleviating the interference problem.

• Coordinating GC between nodes (i.e. scheduling GC
to not interrupt critical operations, and avoid deschedul-
ing threads in certain GC phases). A holistic runtime
can also track and collect references across nodes.

• Low-latency RPCs (∼ 1us per RPC call) in the lan-
guage runtime (to solve the composability problem).
This is not currently possible under load and requires
scheduling handlers from different applications very
quickly, without the overhead of a context switch.

• Service fusion and other dynamic optimizations that
become possible by having high-level information avail-
able (similar to those performed in Optimus [33]) and
sharing a JIT compiler between jobs. This can be
guided by higher-level measurements and semantics as
in Jockey [25] or Pacora [17], and enables auto-tuning.
This also targets the composability problem.

• A unified mechanism for failure handling instead of
each framework having its own. This would allow to
coordinate failure handling between applications (such
as replicating to the same racks so that everything can
be migrated at once in the case of correlated failures).

• Adding resources at a much finer granularity (addi-
tional threads instead of VMs). This allows scaling
much more smoothly to solve the elasticity problem.

Most of these advantages also apply to conventional rack-
scale clusters with RDMA, but benefit from tight coupling
of nodes, low latencies and hardware support – the custom
rack-scale machines we envision therefore pose an opportu-
nity to exploit these advantages even better.

Holistic runtimes bear some resemblance to Singularity [30]
and MVM [32] (and the debate about the precise split be-
tween OS and runtime is, in fact, much older [29]). How-
ever, in contrast to this work, we target rack-scale machines,
which bring some unique challenges (Section 5). The holistic
runtime is also related to past work on distributed JVMs [12,
13]. While these JVMs aim to provide a single-system view
at the level of the JVM interface, we aim to provide a single-
system view at the framework and service level.

4

First International Workshop on Rack-scale Computing (WRSC 2014)

5. CHALLENGES & FUTURE WORK
There are many challenges that need to be addressed to im-
plement a holistic runtime and make it work in a real deploy-
ment. Many of these challenges apply to conventional sys-
tems as well, but can benefit from the coordination abilities
and high-level information available to a holistic runtime.

Communication: The communication model between ser-
vices is crucial, since it has to enable low-latency commu-
nication within and between nodes, but also strong isola-
tion between applications. Singularity provided this isola-
tion through channel contracts, but incurred performance
hits due to the lack of pipelining, context switch overheads
and not being able to express certain asynchronous commu-
nication patterns. This problem may be solved through a
more expressive contract language and hardware support for
ultra low-latency RPCs (e.g. inspired by work on active mes-
sages [49] and LRPC [16]) – low-latency access to the NIC
from a managed runtime is another important challenge.
At the same time, it is important to keep the programmer-
facing model simple, to not harm productivity.

Garbage Collection: Objects can be spread across multi-
ple nodes and have references between them. This may re-
quire approaches for cross-node garbage collection, a largely
unexplored area. Approaches to divide the heap into iso-
lated portions will be crucial, as a rack-wide heap would be
infeasible to garbage-collect, and collection of tera- or peta-
byte sized heaps is an unsolved problem. However, research
has looked at garbage collection for NUMA systems [26] and
DRAM-based storage systems [45]. Some of these solutions
may apply to the rack-scale scenario as well.

Fault isolation and life-cycle support: It is essential
that failures in a single application, a hardware component
(e.g. an SoC) or a runtime instance do not bring down the
entire rack-scale machine. In addition, it must be possible to
update parts of the system without shutting down the entire
rack (a rack is a much larger unit than an individual server,
and shutting it down incurs a higher cost). These prob-
lems are already being recognized in Java, were summarized
in JSR-121 [5] and implemented in the Multi-tasking VM
project [32] and commercial products [9]. They could be
addressed by the holistic runtime through e.g. isolated per-
application data structures and language-level containers.

Security and isolation: A holistic runtime needs to pro-
vide security guarantees. While applications live in the same
address space, they need to be logically isolated, potentially
with hardware support to harden software-based security.
This challenge already exists in data centers today: just like
today’s cloud servers, the rack-level machine will be shared
between multiple entities, and it is important to avoid side-
channels between tenants and encrypt all data in memory.
Performance interference is important as well, to prevent
applications from impacting another’s performance (either
maliciously – such as a DoS attack – or through failure).

Extensibility: Expert programmers should be able to im-
plement new optimizations and auto-tuners, potentially us-
ing some knowledge of the hardware. This is required to
allow the runtime to make optimal use of the platform it is
running on. Projects like Graal [54] can help with this by
exposing low-level runtime functionality to frameworks. As
projects such as the Jikes RVM [10] show, writing low-level
systems frameworks is possible in high-level, safe languages.

Backward-compatibility: It must be possible to run ex-
isting frameworks (such as Naiad [37] or Cassandra [2]) and
applications on top of the system, with minimum changes.
The compatibility layer is the language runtime (e.g. Java
Bytecode and Class library). However, how to best struc-
ture this interface is an open question, as is integrating other
(e.g. per-tenant) runtimes, similar to the goal of Mesos [28].

For backward-compatibility, it is necessary to emulate a
vast amount of existing functionality in class libraries, which
uses syscalls and OS functionality. One approach is to have
an instance of a legacy OS running in a container, to handle
functionality not handled by the holistic language runtime
(this is the approach taken in Libra [11]). An alternative is
to handle them with a library OS such as Drawbridge [40].

Support for different languages: Since the holistic lan-
guage runtime will run most workloads on the rack-scale ma-
chine, it must support all languages that people will use in
their applications. Precedents for this type of system exist:
Microsoft already uses a cross-language approach with their
CLR and projects like Truffle [52] can help to support addi-
tional languages in a runtime. Frameworks like MMTk [18]
can support GC in a language-independent way.

Tail-tolerance: Dean and Barroso define tail-tolerance as
”[creating] a predictably responsive whole out of less pre-
dictable parts” [22]. Tail-tolerance is crucial for cloud work-
loads, particularly interactive ones. A holistic runtime needs
to be able to support techniques for providing tail tolerance,
such as hedging requests or selective replication.

Performance Guarantees: The system needs to be able
to provide probabilistic performance guarantees to services.
However, providing such guarantees for managed language
workloads (in a way that is compositional) is difficult, in par-
ticular in the presence of a large portion of interactive work-
loads. One question is how guarantees are to be expressed.
For example, they could be provided as a service agreement
when an application enters the system (similar to the Tes-
sellation OS [21]) or specified as high-level application goals
as in Pacora [17]. There are many aspects to enforcing these
guarantees, such as handling interference between applica-
tions while taking GC, JIT compilation and other hard-to-
predict aspects into account. There also needs to be a way
to respond to unpredicted interference (e.g. in the cache
hierarchy), such as dynamically relocating jobs [57].

Resource management: The runtime needs to make deci-
sions when and where to migrate data or execution. This is
similar to the classic resource allocation problem, as well as
cluster-level scheduling [47]. However, trade-offs are differ-
ent in a rack-scale machine, where migration to a different
SoC may be cheaper than in a traditional cluster. The run-
time also has to colocate data and computation to reduce
communication. Another challenge is how to handle appli-
cations that span more than a single rack – these cases still
require the equivalent for cluster-level scheduler that needs
to interact with the holistic runtimes within each rack.

In conclusion, we make the case that future warehouse-scale
cloud computing will be performed on rack-scale machines
and that the traditional software stack will be unsuitable.
We instead propose to run cloud workloads within a holis-
tic language runtime. We are investigating such runtimes on
both software and hardware level and are planning to imple-
ment a JVM-based prototype of a holistic runtime system.

5

Acknowledgements
We would like to thank Scott Beamer, Juan Colmenares,
Kim Keeton, Margo Seltzer and the anonymous reviewers
for their feedback on earlier drafts of this paper. We would
also like to thank Philip Reames and Mario Wolczko for dis-
cussions about managed language runtime systems. Addi-
tional thanks goes to the FireBox group at UC Berkeley for
discussion and input on the future of rack-scale platforms.

References
[1] “Amazon web services.” [Online]. Available: http://aws.

amazon.com/

[2] “The apache cassandra project.” [Online]. Available: http:
//cassandra.apache.org/

[3] “Google app engine: Platform as a service.”

[4] “HP moonshot system.” [Online]. Available: www.hp.com/
go/moonshot

[5] “JSR-000121 application isolation API specifica-
tion.” [Online]. Available: https://jcp.org/aboutJava/
communityprocess/final/jsr121/

[6] “Microsoft windows azure.” [Online]. Available: http:
//www.windowsazure.com/

[7] “OSv: designed for the cloud.” [Online]. Available:
http://osv.io/

[8] Software Guard Extensions Programming Reference. [On-
line]. Available: http://software.intel.com/sites/default/
files/329298-001.pdf

[9] “Waratek - cloud virtualization and java specialists.”
[Online]. Available: http://www.waratek.com/

[10] B. Alpern, S. Augart, S. Blackburn, M. Butrico, A. Coc-
chi, P. Cheng, J. Dolby, S. Fink, D. Grove, M. Hind,
K. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, V. Sarkar,
and M. Trapp, “The jikes research virtual machine project:
Building an open-source research community,” IBM Systems
Journal, vol. 44, no. 2, 2005.

[11] G. Ammons, J. Appavoo, M. Butrico, D. Da Silva,
D. Grove, K. Kawachiya, O. Krieger, B. Rosenburg,
E. Van Hensbergen, and R. W. Wisniewski, “Libra: A
library operating system for a jvm in a virtualized execution
environment,” in Proceedings of the 3rd International
Conference on Virtual Execution Environments, ser. VEE
’07, 2007.

[12] J. Andersson, S. Weber, E. Cecchet, C. Jensen, and
V. Cahill, “Kaffemik - a distributed JVM featuring a
single address space architecture,” in Proceedings of the
2001 Symposium on JavaTM Virtual Machine Research and
Technology Symposium - Volume 1, ser. JVM’01, 2001.

[13] Y. Aridor, M. Factor, and A. Teperman, “cJVM: a single
system image of a JVM on a cluster,” in Parallel Processing,
1999. Proceedings. 1999 International Conference on, 1999.

[14] G. Banga, P. Druschel, and J. C. Mogul, “Resource
containers: A new facility for resource management in
server systems,” in Proceedings of the Third Symposium on
Operating Systems Design and Implementation, ser. OSDI
’99, 1999.

[15] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania,
“The multikernel: A new OS architecture for scalable
multicore systems,” in Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, ser.
SOSP ’09, 2009.

[16] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy, “Lightweight remote procedure call,” ACM Trans.
Comput. Syst., vol. 8, no. 1, Feb. 1990.

[17] S. L. Bird and B. J. Smith, “PACORA: performance aware
convex optimization for resource allocation,” in Proceedings
of the 3rd USENIX Workshop on Hot Topics in Parallelism
(HotPar: Posters), 2011.

[18] S. M. Blackburn, P. Cheng, and K. S. McKinley, “Oil
and water? high performance garbage collection in java
with MMTk,” in Proceedings of the 26th International
Conference on Software Engineering, ser. ICSE ’04, 2004.

[19] G. Burr, B. Kurdi, J. Scott, C. Lam, K. Gopalakrishnan,
and R. Shenoy, “Overview of candidate device technologies
for storage-class memory,” IBM Journal of Research and De-
velopment, vol. 52, no. 4.5, Jul. 2008.

[20] B. Catanzaro, S. Kamil, Y. Lee, K. Asanovic, J. Demmel,
K. Keutzer, J. Shalf, K. Yelick, and A. Fox, “SEJITS: get-
ting productivity and performance with selective embedded
JIT specialization,” Programming Models for Emerging Ar-
chitectures, 2009.

[21] J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moretó,
D. Chou, B. Gluzman, E. Roman, D. B. Bartolini,
N. Mor, K. Asanović, and J. D. Kubiatowicz, “Tessellation:
Refactoring the OS around explicit resource containers with
continuous adaptation,” in Proceedings of the 50th Annual
Design Automation Conference, ser. DAC ’13, 2013.

[22] J. Dean and L. A. Barroso, “The tail at scale,” Commun.
ACM, vol. 56, no. 2, Feb. 2013.

[23] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels, “Dynamo: Amazon’s highly available key-
value store,” in Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, ser. SOSP
’07, 2007.

[24] D. R. Engler, M. F. Kaashoek, and J. O’Toole,Jr., “Exoker-
nel: An operating system architecture for application-level
resource management,” in Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, ser. SOSP
’95, 1995.

[25] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and
R. Fonseca, “Jockey: guaranteed job latency in data
parallel clusters,” in Proceedings of the 7th ACM european
conference on Computer Systems, ser. EuroSys ’12, 2012.

[26] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro, “A study
of the scalability of stop-the-world garbage collectors on
multicores,” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13, 2013.

[27] T. Harris, M. Maas, and V. J. Marathe, “Callisto: co-
scheduling parallel runtime systems,” in Proceedings of the
9th ACM European Conference on Computer Systems, ser.
EuroSys ’14, 2014.

[28] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: a
platform for fine-grained resource sharing in the data
center,” in Proceedings of the 8th USENIX conference
on Networked systems design and implementation, ser.
NSDI’11, 2011.

[29] J. Howell and M. Montague, “Hey, you got your language
in my operating system!” Dartmouth College, Tech. Rep.,
1998.

[30] G. C. Hunt and J. R. Larus, “Singularity: rethinking the
software stack,” SIGOPS Oper. Syst. Rev., vol. 41, no. 2,
Apr. 2007.

6

[31] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cho-
lia, J. Shalf, H. J. Wasserman, and N. Wright, “Performance
analysis of high performance computing applications on the
amazon web services cloud,” in Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International
Conference on, Nov. 2010.

[32] M. Jordan, L. Daynès, G. Czajkowski, M. Jarzab, and
C. Bryce, “Scaling J2EE application servers with the multi-
tasking virtual machine,” Sun Microsystems, Inc., Tech.
Rep., 2004.

[33] Q. Ke, M. Isard, and Y. Yu, “Optimus: A dynamic rewriting
framework for data-parallel execution plans,” in Proceedings
of the 8th ACM European Conference on Computer Systems,
ser. EuroSys ’13, 2013.

[34] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index
traversals for in-memory databases,” in Proceedings of the
46th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, 2013.

[35] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos,
O. Kocberber, J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji,
E. Ozer, and B. Falsafi, “Scale-out processors,” in
Proceedings of the 39th Annual International Symposium on
Computer Architecture, ser. ISCA ’12, 2012.

[36] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft, “Unikernels: Library operating systems for
the cloud,” in Proceedings of the Eighteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’13, 2013.

[37] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham,
and M. Abadi, “Naiad: A timely dataflow system,” in
Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, ser. SOSP ’13, 2013.

[38] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot,
“Scale-out NUMA,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2014.

[39] H. Pan, B. Hindman, and K. Asanović, “Composing parallel
software efficiently with lithe,” in Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’10, 2010.

[40] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. C. Hunt, “Rethinking the library OS from the top down,”
in Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XVI, 2011.

[41] A. Rao, “System overview for the SM10000 family,” Jul.
2011. [Online]. Available: http://www.seamicro.com/sites/
default/files/TO2 SM10000 System Overview.pdf

[42] B. Rhoden, K. Klues, D. Zhu, and E. Brewer, “Improving
per-node efficiency in the datacenter with new OS
abstractions,” in Proceedings of the 2Nd ACM Symposium
on Cloud Computing, ser. SOCC ’11, 2011.

[43] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in Proceedings of the
16th ACM Conference on Computer and Communications
Security, ser. CCS ’09, 2009.

[44] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and
D. Fetterly, “Dandelion: A compiler and runtime for
heterogeneous systems,” in Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles,
ser. SOSP ’13, 2013.

[45] S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-
structured memory for DRAM-based storage,” in Proceed-
ings of the 12th USENIX Conference on File and Storage
Technologies, 2014.

[46] M. Schwarzkopf, M. P. Grosvenor, and S. Hand, “New wine
in old skins: The case for distributed operating systems
in the data center,” in Proceedings of the 4th Asia-Pacific
Workshop on Systems, ser. APSys ’13, 2013.

[47] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes, “Omega: flexible, scalable schedulers for large
compute clusters,” in Proceedings of the 8th ACM European
Conference on Computer Systems, ser. EuroSys ’13, 2013.

[48] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B.
Taylor, “Conservation cores: Reducing the energy of mature
computations,” in Proceedings of the Fifteenth Edition
of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XV, 2010.

[49] T. von Eicken, D. E. Culler, S. C. Goldstein, and
K. E. Schauser, “Active messages: A mechanism for
integrated communication and computation,” in Proceedings
of the 19th Annual International Symposium on Computer
Architecture, ser. ISCA ’92, 1992.

[50] D. Wentzlaff, C. Gruenwald,III, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal, “An operating system for multicore and clouds:
Mechanisms and implementation,” in Proceedings of the 1st
ACM Symposium on Cloud Computing, ser. SoCC ’10, 2010.

[51] T. White, Hadoop: The Definitive Guide: The Definitive
Guide, 2009.

[52] C. Wimmer and T. Würthinger, “Truffle: A self-optimizing
runtime system,” in Proceedings of the 3rd Annual
Conference on Systems, Programming, and Applications:
Software for Humanity, ser. SPLASH ’12, 2012.

[53] E. Witchel, J. Cates, and K. Asanović, “Mondrian memory
protection,” in Proceedings of the 10th International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS X, 2002.

[54] T. Würthinger, “Extending the graal compiler to op-
timize libraries (demonstration),” in Proceedings of the
ACM International Conference Companion on Object Ori-
ented Programming Systems Languages and Applications
Companion, ser. SPLASH ’11, 2011, p. 41–42.

[55] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson,
P. K. Gunda, and J. Currey, “DryadLINQ: a system
for general-purpose distributed data-parallel computing
using a high-level language,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and
Implementation, ser. OSDI’08, 2008.

[56] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’10, 2010.

[57] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale,
and J. Wilkes, “CPI2: CPU performance isolation for shared
compute clusters,” in Proceedings of the 8th ACM European
Conference on Computer Systems, ser. EuroSys ’13, 2013.

7

