Lock Inference in the Presence of Large Libraries

Khilan Gudka', Tim Harris?, and Susan Eisenbach!

mperial College London
{khilan,susan}@imperial.ac.uk
2Microsoft Research Cambridge

tharris@microsoft.com

Abstract. Atomic sections can be implemented using lock inference. For
lock inference to be practically useful, it is crucial that large libraries be
analysed. However, libraries are challenging for static analysis, due to
their cyclomatic complexity.

Existing approaches either ignore libraries, require library implementers
to annotate which locks to take or only consider accesses performed upto
one level deep in library call chains. Thus, some library accesses may
go unprotected, leading to atomicity violations that atomic sections are
supposed to eliminate.

We present a lock inference approach for Java that analyses library meth-
ods in full. We achieve this by (i) formulating lock inference as an In-
terprocedural Distributive Environment dataflow problem, (ii) using a
graph representation for summary information and (iii) applying a num-
ber of optimisations to our implementation to reduce space-time require-
ments and locks inferred. We demonstrate the scalability of our approach
by analysing the entire GNU Classpath library comprising 122KLOC.

1 Introduction

Atomic sections [1] are an abstraction for shared-memory concurrency. They al-
low a programmer to demarcate a block of code that should execute without
interference from concurrent threads but leave the low-level details of achieving
this to the compiler and/or run-time. If used correctly, they can remove many of
the problems that have plagued programmers for decades, such as low-level race
conditions, deadlock, priority inversion and convoying [2]. With current abstrac-
tions, the frequency of such unfortunate encounters is only likely to increase,
given that multi-core processors are the norm [3, 4].

Atomic sections are a language-level construct, hence an important question
is, how should we implement them? Software Transactional Memory (STM) [5] is
a popular approach, wherein memory updates are buffered during execution and
then committed atomically. If a conflicting update has already been committed
by another thread, the buffer is discarded and the transaction is re-executed
(rollback). This ability to abort and re-run is essential to STM, as implementa-
tions are typically optimistic; they execute with the assumption that interference
is unlikely to occur. Rolling back execution is unappealing because irreversible

operations (e.g. system calls) cannot be rolled back and performance can be
harmed by maintaining undo-logs to allow rollback.

In light of these shortcomings, pessimistic alternatives have been proposed,
based on lock inference. These alternatives statically infer enough locks to pre-
vent interference and instrument the program with the corresponding lock op-
erations. Since lock inference must consider all possible execution paths, this
compile-time approach may introduce more lock/unlock operations than strictly
necessary, resulting in less concurrency.

Real-world programs make extensive use of libraries, hence being able to
analyse them is important. However, libraries create a scalability challenge for
static analysis [6] because they are large and have a high cyclomatic complexity.!
Most problematic is that an analysis may not be able to complete if the mem-
ory requirements are too great. Furthermore, even simple programs can involve
vast amounts of library code. Consider a “Hello World!” example extended with
atomic sections:

atomic {
System.out.println ("Hello World!");
}

Lock inference prides itself on being able to support I/0, so one would expect
it to be able to handle this library call. In practice, this example is non-trivial
with a compile-time call graph containing 1150 library methods for GNU Class-
path 0.97.2. Analysing the library is a hard problem as is evident from the fact
that existing work either ignores libraries [8-11], requires library implementers to
annotate which method parameters should be locked prior to the call [12] or only
considers accesses performed upto one level deep in library call chains [13]. All of
these have the potential that some shared accesses performed within the library
may go unprotected, leading to atomicity violations. Our previous approach [14]
on this example was intractable.

Our main contribution is a lock inference approach for Java that analyses
library methods in full. Specifically:

— We formulate lock inference as an Interprocedural Distributive Environment
(IDE) dataflow problem.

— We adapt the pointwise graph representation of Sagiv et al [15] to reduce
the number of edges in our summary graphs.

— We present delta transformers that dramatically reduce IDE analysis space-
time requirements by only propagating new dataflow information.

— We identify and remove many locks for thread-local, internal, dominated and
read-only objects.

— We implement our whole-program analyses in Soot.

We evaluate our approach as follows:

! Cyclomatic complexity [7] is a measure of the number of linearly independent paths.
Library call chains can be long and consist of large strongly connected components.

— We demonstrate analysis scalability by analysing the entire GNU Classpath
library (122KLOC) and the popular Java SQL database engine HSQLDB
(150KLOC) on top of GNU Classpath.

— We evaluate the effects of a number of analysis optimisations: delta trans-
formers, CFG summarisation [6], parallel processing of worklists and work-
list ordering. We show that our delta transformers give the biggest speedup
whilst also reducing memory usage.

— We evaluate the run-time performance of a range of benchmarks instru-
mented with our locks and compare results with the original synchronisation
and Halpert et al [13].

2 General Approach

Our general approach is to use the Soot framework [16] to analyse Java classes
annotated with atomic sections (we treat synchronized blocks and methods as
atomic sections) and replace these annotations with suitable locks. Our analysis
ensures weak atomicity.

class Scheduler {
Printer pl, p2;

1

2

3

4 atomic boolean schedule(Job j) {
5 // lockRead(this)

6 // lockWrite (this.pl);

7 // lockWrite (this.p2);

8 if (this.pl.job = null) {

9 this.pl.job = j;

10 } else if (this.p2.job = null) {
11 this.p2.job = j;

12

13 // unlockWrite (this.p2);

14 // unlockWrite (this.pl);

15 // unlockRead (this)

16}

17 }

Fig. 1. An example atomic method and the locks we infer

First, we perform a dataflow analysis to infer what objects are accessed in
each atomic section. Nested atomics are flattened and merged. We compute a
summary for each method, which describes the accesses performed by it and all
transitively called methods. The result is a graph describing all objects accessed
in the atomic section, which we convert to locks.

We infer instance locks where possible, however, for those portions of the
graph that describe a statically unbounded set of accesses, we infer locks on

the types of these objects. We use multi-granularity locking [17] to support both
kinds of lock simultaneously: a type lock can be acquired if none of the locks on
its instances are currently acquired and vice-versa.

We use simple analyses to identify objects that don’t have to be locked such
as thread-local or internal objects. We also detect when only a single thread is
executing to avoid acquiring/releasing locks.

Finally, we instrument the program with the inferred set of locks, such that
they are acquired upon entry to the atomic section and released upon exit. Ac-
quiring all locks together at the start, allows us to test for deadlock at run-time.
If it occurs, we release all locks that have already been acquired and subsequently
attempt to re-acquire them. As no updates have been performed this is safe.

Fig. 1 shows an atomic method and the lock operations that would be instru-
mented by our analysis. The example consists of two Printers and a Scheduler,
which allocates a given job to the next available Printer (which handles one job
at a time). Statically, we can’t be sure which conditional branch will be executed,
so we must acquire a write lock on both Printers.

3 Inferring Accesses

In this section, we present our analysis for inferring which objects are accessed by
each atomic section. We represent object accesses as syntactic expressions called
paths [18,14]. A path is an expression used to identify an object in code and
consists of a variable followed by zero or more field and/or array lookups in any
order. An example of a path expression is x.f.g[i].h. Our main contribution
is that our analysis can scale to large programs that make use of large libraries.

We compute a summary function for each method m that describes the cu-
mulative effects of m (including all methods transitively called by m). These
functions are computed by composing the individual transfer functions for each
of m’s statements where the dataflow information are these transfer functions.
For scalability, it is essential to have a compact representation for transfer func-
tions with fast composition and meet operations.

For the general class of dataflow problems, called Interprocedural Distributive
Environment (IDE), Sagiv et al [15] represent transfer functions as graphs, al-
lowing composition to be computed by taking the transitive closure and meet by
graph union or intersection. Rountev et al [6] have also shown that IDE analyses
with this representation can scale well to programs using large Java libraries. We
thus formulate our analysis as an IDE dataflow problem. In an IDE problem,
dataflow values are mappings called environments. Transfer functions are called
environment transformers.

In previous work [14], we represent sets of paths as non-deterministic finite
automata (NFA). Fig. 2(a) shows an example NFA we might infer for the set
{this, this.pl}. In our NFAs, numbers within states refer to the CFG node that
generated the access. So, in this case, CFG nodes 1 and 2 generated an access
of this and CFG node 3 generated an access of this.pl (whereby the this
was generated at CFG node 1). We assume three-address code and thus each

this — {(0,1), (0,2)}
pl = {(1,3)}

(b)

Fig. 2. (a) Example NFA for the set of paths {this,this.pl} and its environment rep-
resentation (b)

CFG node dereferences at-most one object. Labelling NFA states with the CFG
node that generated them allows us to efficiently detect looping accesses [14].
Transition labels correspond to variables, class names (for static lookups), field
names and [*] to represent an array lookup.

IDE analyses require dataflow values to be maps, so in this paper, we rep-
resent NFAs as mappings of the form ¥ — P(Q x Q), where X is the set of
transition labels and @ is the set of NFA states. The states in each pair refer to
the source and destination of the transition respectively.

3.1 IDE Transformers

We now define the environment transformers for our analysis. Transformers de-
scribe how dataflow values, i.e. environments, should be translated for a partic-
ular program statement. The challenge we face is that the object referred to by
a path, such as x, may differ between the point where x is dereferenced and the
point where locks are acquired, due to assignments that occur in-between. Our
analysis is a backwards analysis because we push path expressions upwards. Our
transformers translate these paths to preserve the set of objects that are accessed
below, albeit potentially introducing new accesses due to the conservatism of our
alias analysis (we use type information).

Fig. 3 contains our transformers, which we now describe in turn. We use
Soot’s three-address Jimple representation. We also assume a control flow graph
(CFQG) exists, whereby each CFG node is labelled with a unique identifier n. We
represent a CFG node in text with the notation [...]"

[x = y]™ The object referenced by x after this assignment was pointed-to by y
before the assignment. To preserve object accesses performed lower down, paths
beginning with x are rewritten to begin with y. We achieve this by modifying the
incoming environment e by replacing all automaton transitions of the form 0 =
n’ with 0 % n’. This involves copying x’s transitions to y’s set: y — e(y) Ue(x),
and deleting x’s transitions: x s (.

[z = new™ and [z = null]™ In these two cases, accesses of x below the assign-
ment will either be local to the atomic section (new) or generate a NullPoint-
erException (null). No locks need to be acquired, so we delete paths beginning
with x by removing all 0 = n’ transitions: x — ().

L = yn = Ae.ely — e(y) Ue(z)][x — 0]
Ae.e[z — 0]

t[z:null or new|”

ta=y.fin = Aeely = e(y) U{(0,n)}]
[-f = e(.f) U{(n,n)|(0,n') € e(x)}]
[z — 0]
Lo fmyn = Aeelz — e(z)U{(0,n)}]
[y e(y) U {0, n")|(W',n") € e(.N)}]
Lo fonmull or new]n = Ae.e[r = e(z)U{(0,n)}]
U{(0,n)}]

Lomy[sn = Ae.ely— e(y%
e

tas=yn = Ae.e[z = e(x)U{(0,n)}]

Uo[s]=nu1l or newjn = Ae.e[x — e(x) U {(0,n)}]

Fig. 3. Environment transformers for path inference

[= y.f]™ The transformer for this statement performs two tasks. Firstly, it
records that the object pointed-to by y is being accessed, by adding the transition
0 % n to the incoming environment e: y — e(y)U{(0,7)}. Secondly, it preserves
object accesses performed via paths prefixed with the variable x by rewriting
them to start with y.f instead. For example, in atomic { x = y.f; x.g =
1; }, to protect the object access x in x.g at the start of the atomic section,

we require locking y.f. This is achieved by replacing all transitions of the form

0 = n’ with the pair of transitions 0 2% n (already generated above) and n NP

S el f)U{(n,n)|(0,n') € e(x)}. Finally, we delete x’s transitions: x — ().

[x.f = y]™ This statement accesses the object x and modifies its £ field to point
to object y. Our transformer records the access by adding it to x’s transition set
in the incoming environment e: — e(z) U{(0,n)}.

With previous statements, we preserve object accesses made below by simply
rewriting paths beginning with the lvalue to instead be prefixed with the rvalue.
However, this assignment could, in addition to paths starting with x.f, also
affect paths prefixed with z.f for all variables z that alias x. For example, in
atomic { x.f = y; z.f.g = 1; }, to protect the access z.f in z.f.g, there
are two possibilities. (i) x and z are aliases: the atomic section is then the same
as atomic { z.f = y; z.f.g = 1; }, sowelocky. (ii) x and z are not aliases:
the object z is not modified by the assignment, therefore the path z.f is not
affected so we lock z.f (and not y).

Our analysis uses type information to determine whether two paths may
alias each other. In particular, the assignment x.f = y affects the path z.f if
the classes that define the field £ being accessed in both x. f and z.f (determined
statically in Java) are the same. If they are, we add the path y, otherwise we
conclude that z.f will definitely not be affected and do nothing. Note, even if x
and z may be aliases, the original path z.f is not deleted in case they’re not.

In general, the affected path may be of the form v. f.f where f is a sequence
of zero or more field lookups that could include £. Hence, our transformer adds

a transition 0 % n/ for each n” L5 1’ transition whereby the field f is the same
as that being accessed in x.f: y — e(y) U {(0,n")|(n’,n") € e(.f)}. Points-to
information would reduce the number of 0 % n' transitions but may complicate
the composition of transformers.

[.f = new]™ and [x.f = null]® As type information only tells us if two paths
may alias, we can never assert that they definitely must alias. Hence, we cannot
assume that accesses of the form z.f will be local (new) or generate a Null-
PointerException (null). We can assume this for paths prefixed with x.f as
we know x.f aliases itself. In this latter case, we would not acquire the lock
for x.f. To cover both scenarios where we can and can’t delete the path, the
transformer only adds the access of x.

[z = y[*]]™ The transformer for this statement is similar to that for x = y.f.
We record the access of the array object y in the incoming environment e:
y — e(y) U {(0,n)}. We do not distinguish between different array locations
representing them all using [*], which can be read as “somewhere in the array.”
Our transformer preserves object accesses by translating all paths that begin

with x to start with y[*]. We replace each transition 0 % n’ with the pair

0 % n (generated above) and n NN [] = e([*]) U {(n,n)|(0,n') € e(x)}. At

run-time, locking y [*] involves locking all elements of the array y.

[z[*] = y]™ We assume all arrays are aliased, so this assignment could affect all
paths that end in [*]. When translating, we cannot be sure they refer to the
same array location being assigned to. Even in the case of x[*], although we are
certain the same array is being modified, the indices may differ. Consequently,
our transformer does not delete any paths (like for x.f = y) but adds a transition

0 % n/ for each transition of the form n” T n/: y— e(y) U{(0,n)|(n",n') €

e((])}-

3.2 Graph Representation of Transformers

We now present the pointwise graph representations for our transformers. Infor-
mally, these graphs describe how the outgoing environment e’ is derived from
the incoming environment e when passing through a program statement. An

edge d; ER ds in the graph means that e’(dz) is obtained from e(d;), with edge
function f: P(Q x Q) — P(Q x Q) describing exactly how so. In the simplest
case, f = Al.l (the identity function), so €’(d2) = e(dy). If €’(d3) is dependent
on multiple e(dy), the meet of the values (after applying the edge functions) is
taken. New values are introduced using the special symbol A.

Fig. 4 shows the pointwise representations for {,—yjn, tjz=y.fjn and f[z p—yn
from Fig. 3 (we assume that ¥ = {z,y,.f}). Note: our analysis is backwards.
Our analysis has five edge functions:

S)
< S ALL
S N
ALL X ALL ALL|N ALL| =)
Q
ALL ALL S

(a) tp=yn (b) to=y.sn (€) ta. p=ym

Fig. 4. Pointwise representations for Fig. 3 key transformers

1. M. {(n’,n")} for introducing a new automaton transition n’ 4 . For ex-
ample, the statement [z = y.f]" of Fig. 4(b) accesses object y and there-
fore €’(y) must contain the new pair (0,n). This is represented by the edge

AL{(0,n)}
A0y

2. A0 for killing transitions. For example, in Fig. 4(a), €’(z) = 0 corresponds

to the edge A A,

3. ALl for copying transitions. The edges y LN y and x AL, y in Fig. 4(a)
collectively give that ¢/(y) = e(y) Ue(x) (as defined in Fig. 3).

4. load, = N.{(n,n")|(n"”,n’) € I} for preserving object accesses across state-
ments of the form [z = y.f]" and [z = y[*]]™. In Fig. 4(b), the edge

load,,

x — .f rewrites all paths beginning with x to instead begin with y.f

MAOM},). The important

(the access of y is represented with the edge A
thing to note is that n is common in both edges.

5. store, = Al.{(0,n")|(n"”,n’) € I} for preserving object accesses across state-
ments of the form [z.f = y|™ and [x[*] = y]™. In Fig. 4(c), .f Storen, o adds
an access of y for every path ending in .f. Existing paths ending in .f are

preserved with the edge .f ALl .f.

3.3 Sparsity

Sparsity is important to keep memory usage down. We keep graphs sparse by not

explicitly representing trivial edges of the form d 2L 4. These implicit edges
should not have to be made explicit, as that would be expensive. However, it
turns out that determining whether an implicit edge exists is costly for our analy-
sis. Fig. 5(a) shows an example transformer and Fig. 5(b) is its sparse equivalent.
Dashed edges are used for trivial edges. Both z and y have no outgoing edges

but while the implicit edge y LN y exists, the same is not true for z LN

This is because z is killed in the outgoing environment, as represented by the

edge A A, To determine if an implicit edge d; KN d; exists, the transitive

closure now requires checking whether the edge A ALD, d; exists. This has to be
done for all d;, which will slow down transformer composition tremendously.

A Y oz A oz Y A D oz Y
SR

A

: I -~

| |

Ay oz A w0y A D oz Y
(a) All edges (b) Sparse (c) Refined

Fig. 5. Determining whether an implicit edge exists is costly

To overcome this problem, we firstly introduce a new special symbol (. Killing
the value for symbol d; in the outgoing environment is then represented with
the edge d; — 0. Secondly, we observe that a large majority of our transformers
perform kills, hence we implicitly encode killing within transformer edges. That

is, an edge d; EN dy now additionally has the meaning e’(d;) = @. This latter
refinement removes the need for kill edges when rewriting paths (e.g. [z = y]|"),
leading to sparser graphs. The two refinements combined yield the result that
an implicit edge d; — d; exists iff d; has no outgoing edges. Fig. 5(c) shows
the refined graph. Symbols A, § and y have no outgoing edges and so each
have implicit edges. = has an outgoing edge, therefore has no implicit edge.
Fig. 6 shows the refined sparse pointwise representations of Fig. 4. In the case

of Fig. 4(c), as we do not kill .f in the outgoing environment, we must add an

explicit edge .f A f. However, statements of the form [z = ...]" are more

common, hence the overall effect is that our transformers contain significantly
fewer edges.

)
~N o
N N e\ | AL
S
A O oy .f .f A 0 x Y f
(a) tp=yn (€) tpa. p=yn

Fig. 6. Refined pointwise representations for Fig. 4

Transformer Meet When all edges are explicitly represented, the meet of trans-
formers is graph union. However, when edges are implicitly represented this is
not the case and extra care is needed. Fig. 7(a) gives two example transformers
whose meet is to be computed. The first transformer preserves all values from
the incoming environment to the outgoing environment. The second transformer,
however, copies z’s value across to y before killing z’s value. Hence, the com-
bined transformer should both preserve 2’s value and also copy it to y. Fig. 7(b)

10

shows the resulting transformer after union, which is not the desired result. This
is because graph union is oblivious to the fact that = has an implicit edge in
the first transformer. To resolve this, our meet operation makes an implicit edge
explicit if at least one other transformer doesn’t also have the implicit edge. If
none of the transformers have the implicit edge, then it isn’t generated in the
merged result. The result for this example is shown in Fig. 7(c).

A Q9 =y A Q9 =y A Q9 =Y A Q9 =z Y
ALl ALl ALl

Al

A 0 Y A 0 Y A0 =Y A 0 Y

(a) Transformers to meet (b) Graph union (c) Correct result

Fig. 7. Computing the meet when implicit edges are present

3.4 Native Code, Reflection and Dynamic Loading

All prior lock inference approaches, including our own [14], assume a closed
world. Hence, they typically ignore native code, reflection and dynamic loading
and assume that the only classes loaded are those that are analysed. We deal
with native code/VM calls in this paper like Halpert et al by assuming all effects
on the receiver and parameter objects. We do not handle reflection but could
approximate the effects of reflective calls by using a tool such as TamiFlex [19],
which executes a Java program and produces a reflection trace file. This trace
can then be used by the analysis. It would not be possible to acquire locks late
in dynamically loaded code, as it may lead to deadlock.

4 Inferring Locks

In this section, we describe how we convert NFAs computed by our analysis
to locks. The important challenge here is to balance concurrency and locking
overhead. We use instance locks where possible and revert to coarse type locks
when we cannot statically determine the set of objects being accessed. We would
like to acquire fine-grained locks when we can but still allow the possibility of
acquiring type locks when necessary, so we use multi-granularity locking. We
also describe how we identify objects that do not need to be locked.

From the summary function computed by our IDE analysis at the start of the
atomic section, we extract the NFA describing all objects that may be accessed
in the atomic section. We use our previous algorithm [14] to convert the NFA to
instance and type locks with the modification that for this paper we use points-to
information to determine the possible types of objects involved in cyclic accesses

11

(e.g. linked list traversal), rather than conservatively inferring all types in the
class hierarchy rooted at the object’s static type.

Our access inference analysis assumes that all object accesses need to be
locked. However, there are some objects which do not need to be locked. We
identify several classes of such objects: thread-local, instance-local, method-local,
class-local, read-only and dominated objects. We also detect when there is only
a single thread executing and avoid taking locks in this case. We now describe
each of these.

4.1 Thread-Local Objects (TLA)

An object only needs to be locked if it may be accessed by multiple concurrent
threads. We perform a simple analysis to identify objects that are thread-local
and do not infer a lock for them. We use Lhotak [20]’s BDD-based thread lo-
cal analysis implemented in Soot’s Paddle framework. This analysis defines all
objects reachable from static fields or fields in Runnable classes as being thread
shared [34]. Tt uses Paddle’s points-to graph to find these objects.

4.2 Internal Objects (ILA)

Another class of objects we avoid locking are internal objects that exist solely
to implement the functionality of another object. An example is the underlying
array object used in Java’s ArrayList implementation. Such internal objects
are dominated by their enclosing object 0, meaning that all accesses to them
are performed solely by 0. This means that to protect accesses to them, when
locking is performed outside 0, it is sufficient to acquire a lock on 0.

We use a simple and conservative flow-insensitive escape analysis to identify
objects that are never accessed outside the instance they are created in. Our
escape analysis has two escape modes: Internal and Frternal (whereby External
< Internal). When an object is created, it is marked as being Internal and may
become external if:

— It is assigned to a field that is external.

— It is passed as an argument to a method and the receiver object is external
or the method is static.

— The object was created in the application’s main() method or a thread’s
run() method.

A field may become external if:

— It is accessed through an external reference.
— It is assigned an external reference.

Initially, static fields are marked External, instance fields are marked Internal,
non-static method parameters are Internal and static method parameters are
FExternal. We model the return value as assignment to a special return variable r,

12

which is initially Internal for instance methods and External for static methods.
For all methods, this is always Internal. We model array lookups as fields.

Our whole-program analysis finds all reachable methods in the program (in-
cluding all reachable library methods) and processes them sequentially until a
fixed-point is computed. We do not process the call graph in any particular or-
der. We compute per-class and per-method state during fixed-point computation.
Per-class summaries keep track of the escape state of fields, while per-method
summaries do so for locals, parameters and the return value. Our analysis can
also handle inner classes (as used by iterators) and object handover, such as A
a = new A(new B()); (here the new instance of B is being handed-over to the
new instanceof A).

We use the results of our escape analysis when converting the access NFA to
locks by locking the outermost object to protect accesses of internal objects. We
can handle multiple levels of internal objects within a single outermost object.

4.3 Single-threaded Execution

We have found that during the initialisation of an application, many objects are
accessed but there is typically only a single-thread executing. Lock acquisitions
and releases of our locks can impose significant overheads in this scenario (we do
not use thin locks). Thus, we optimise our lock implementation so that locks are
treated as no-ops when there is only one thread executing. These object accesses
are not thread-local but just that they are only being accessed by a single thread
at present. We already remove thread-local locks, as described above.

We detect whether only a single thread is executing or not by increment-
ing and decrementing a counter when Thread.start () and Thread. join() are
called respectively. If this counter is 0 then we elide the locks otherwise we
acquire them as normal. This works because we assume that threads are not
spawned by atomic sections.

4.4 Multi-granularity Locks

We use the multi-granularity locking protocol of Gray et al [17] to simultaneously
support both type and instance locks. Usually, both coarse- and fine-grained
locks cannot protect the same data simultaneously so only one of them would
be used. However, multi-granularity locking allows both to be used at the same
time for the same data. The multi-granularity locking protocol allows an instance
lock to be taken if a coarse-grained type lock protecting the same object hasn’t
already been acquired and vice-versa. When locking a large number of objects,
such as all instances of a type, one can reduce locking overhead by locking
the type, whereas in other cases one can lock individual instances to get more
concurrency. This orchestration is done at run-time. We implement [21] these
locks using Doug Lea’s Synchronizer framework [22, 23] for performance.

13

4.5 Other Optimisations

In addition to removing thread-local and instance-local locks, we perform a num-
ber of optimisations to further reduce the locks inferred. This includes analyses
for finding: locks that are dominated by other locks (DOM), locks for method-
local objects (MLA), locks for objects referred to by static fields that never
escape the enclosing class and can therefore be protected by locking the corre-
sponding Class object (CLA), objects that are only ever locked in read-mode
and are thus read-only (RO) and finally, types that do not need to be locked in
intention mode [17] when their instances are locked (IMP).

Many of these analyses require looking at locks across all atomic sections (e.g.
to find out which objects are read-only), therefore we did a final optimisation to
ignore atomic sections that are not-reachable from the program’s main method
and will thus never be executed. This greatly improved the results of the previous
mentioned analyses.

4.6 Deadlock

Atomic sections must not deadlock as a result of the locks we insert. We ac-
quire locks at the start of the atomic section, allowing us to prevent deadlock
at run-time and thus keep per-instance locks, rather than coarsen the locking
granularity or impose a static ordering at compile-time and thus potentially hin-
der concurrency [13,12]. Given that deadlock rarely occurs, such compile-time
approaches to deadlock-avoidance are undesirable.

We avoid deadlock at run-time as follows: when a thread is about to block
on a lock [, it first releases all already acquired locks. It then blocks waiting
for [to become available after which it starts from scratch to try to acquire all
locks (starting from the first lock). This guarantees freedom from deadlock, as
it means that locks are not held while waiting, thereby breaking one of the four
necessary conditions for deadlock [24].2 Path expressions must be re-evaluated
when re-acquiring locks after waiting because there may have been concurrent
updates to the heap. This approach to avoiding deadlock is essentially the same
as retry used in STM [25]. To improve performance, we use an adaptive locking
scheme whereby we first poll [N times before releasing all already acquired
locks. Thereafter, we don’t block waiting on [but poll until it becomes available
before starting the locking stage from scratch as mentioned above.

5 Implementation

We implemented our lock inference approach as a whole-program transformation
in Soot (SVN r3588). Here, we give details including optimisations to reduce the
memory consumption and running time of our analysis.

2 We reduce the likelihood of livelock by using random backoffs.

14

5.1 Summary Computation

In this section we describe how we compute per-method summaries. Each method
m has a unique entry node NV, and exit node X,,. We store for each CFG node n
in m, its local transformer ¢,, that describes how n transforms environments (see
Fig. 3) and an aggregate transformer ¢, x, that summarises the transformation
on environments along all execution paths between n and X, inclusive. The local
transformer for a method invocation statement [z = y.foo(ay, ..., ax)]" encapsu-
lates three steps: (i) parameter passing, (ii) invocation of the callee method foo
and (iii) storing the return value to result variable . Thus, ¢,, can be expressed
asty, =1t O tninvore O T The transformer ¢ is the summary of
the callee foo, i.e. T, However, due to polymorphism, there may be several
possible callees. We therefore take the meet of all such callee summaries.

The summary 7}, for a method m is obtained from ¢y, x,, by removing
method-local information. Aggregate transformers are computed using a worklist
algorithm with two worklists: intra and inter. Intra consists of nodes whose ag-
gregate transformer needs to be recomputed because the aggregate transformer
of at least one intraprocedural successor has changed. Inter contains call nodes
n whose invoke transformer ¢,,, .. needs to be updated because the summary
of at least one callee has changed. If ¢,,, . changes as a result, n’s aggregate
transformer also needs to be recomputed. Per CFG node information is only
needed during summary computation after which only the method’s summary
is kept. Initially, intra contains the exit statement X,, of each method m in the
current strongly connected component. Either list is processed exclusively until
it becomes empty because interprocedural propagation is expensive and hence
it is more efficient to do as much intraprocedural propagation as possible before
propagating across method boundaries.

MNparams Nresult * Ninvoke

5.2 Reducing Space and Time Requirements

There can be many CFG nodes and transformers can get very large, leading to
vast memory usage and slow analysis times. We employ the following techniques
to reduce both memory and running time.

Delta Transformers We observed that after an initial period of propagation,
transformers only grow. That is, each time a transformer (¢,; t, x,,.; Tm) is up-
dated, it contains at least the edges it did previously and possibly more. This
leads to redundant work because (i) transformer composition is distributive,
hence if two edges (one from each transformer) have already been composed
before, composing them again will give the same result and (ii) taking the meet
is union and unioning old edges gives nothing new. The distributive nature of
the analysis thus allows us to process only new edges and then union the results
with what has already been computed. We differentiate new edges using a dif-
ferent type of transformer, which we call delta transformers. This approach of
only propagating additions gives us the biggest speed up and the second best
reduction in memory usage.

15

Summarising CFGs We implement the technique of Rountev et al [6] that
summarises the effects of all execution paths between a pair of CFG nodes n
and mo in a method m, by combining transformers for statements along these
paths. This summary ¢,, n, allows dataflow information to be propagated from
ng to ny (backwards analysis) in one step by composing with it thus reducing
propagation and storage. The result of this optimisation is a reduced CFG for m
containing three types of nodes: NV,,, X,, and recursive calls rc; together with
a set of summary transformers describing effects along execution paths between
them.

Parallel Propagation Another technique we employ to speed up the analysis
is to perform propagation in parallel when possible. Our intra worklist contains
all CFG nodes that may have to be updated because at least one successor has
changed. Although an ordering exists between CFG nodes in the same method,
we can exploit the independence between different methods to construct a set of
per-method worklists and process the lists in parallel. Our inter worklist contains
call nodes that need to be updated when the summary of at least one callee
has changed. This involves taking the meet of all callee summaries and then
performing parameter-to-argument renaming. There is no dependence between
different call nodes in the list so we process them all in parallel.

Efficient Data Structures Efficient implementations typically use primitives
to represent state [22] and manipulate it very quickly using bit-wise operations.
We represent transformer edges as 64-bit longs and implement edge composi-
tion as a bit-wise operation. However, using primitives with the Java Collections
classes leads to boxing/unboxing in/out of their corresponding wrapper classes
(e.g. Long), which again is not ideal. We use the Trove library®, which pro-
vides primitive implementations of many data structures such as HashSets and
HashMaps. We implement transformers as maps, using integers to represent sym-
bols (and sets of longs for their edges).

Worklist Ordering Ordering the worklist so that successor CFG nodes are
given preference over predecessor nodes is an important and well-known opti-
misation. This makes intuitive sense because dataflow information propagates
up the CFG, so if a successor is to be processed again (i.e. it is in the work-
list), it may as well be processed before its predecessors in case its value changes
once more, thus avoiding unnecessary propagation. We were surprised that this
optimisation gave a bigger speed up than CFG summarisation.

6 Evaluation

We now present experimental results for our lock inference approach. We used
two experimental machines: (1) liatris: a commodity machine consisting of an 8-

% http://trovedj.sourceforge.net /

16

core 3.4GHz Intel Core i7-2600 CPU, 8GB RAM and running Ubuntu 11.04; and
(2) az8: a much larger machine containing 32 8-core 2.67GHz Intel Xeon E7-8837
CPUs totalling 256 cores, 3TB RAM and running SUSE Linux Enterprise Server
11. We use ax3 for analysing hsqldb and liatris for analysing all other code and
for executing all programs. For running our analysis, we used Oracle’s 64-bit
JVM and for instrumented runs, we used a modified version of the Jikes RVM.
On liatris, we used Oracle JVM version 1.6.0-26-b03 with a minimum/maximum
heap size of 4GB and version 1.7.0.03-b04 with a minimum/maximum heap size
of 70GB on ax3. We did not specify a stack size in either case. For running
programs, we used a modified version of the production build of Jikes RVM
version 3.1.14svn (r15989M). Details of the modifications we made are given
below.

We begin by giving results for Hello World and use it as a basis for comparing
the effect of our different analysis optimisations, as described in Section 5. We
demonstrate in Sections 6.4-6.5 that our analysis techniques can scale to large
programs by analysing the GNU Classpath library (122KLOC) and the Java
database engine hsqldb (150KLOC). Note, for Hello World and GNU Classpath,
we used a minimum/maximum heap size of 10GB.

We evaluate the run-time performance of the benchmarks sync, pcmab, bank,
traffic, mirt and hsqldb instrumented with our locks and compare results with
Halpert et al [13], the benchmark’s original synchronisation as well as using a
single global lock in Section 6.6. Our running times are for all lock optimisations
enabled (thread-local, internal object, dominators, etc.). Furthermore, for a fairer
comparison, we replace the original synchronized blocks and methods with our
locks (albeit still maintaining the same locking policy and behaviour as the
original synchronized blocks).

For fast instance lock retrieval, we modify Jikes by adding an ilock field
to every object. For fast lookup of type locks, we extend java.lang.Class
with a tlock field. We minimise the additional overhead to object creation by
lazily instantiating the lock field. While using a lock table would avoid this,
it introduces a lookup overhead which is encountered every time the lock is
required. We also extend the Thread class for quick access to thread local data
(as opposed to using java.lang.ThreadLocal that incurs high overhead).

6.1 Soundness of Halpert et al

Halpert et al [13] analyse library call chains upto one level deep and rely on
original library synchronisation beyond that. There are many programs where
this is sufficient, but it is not sufficient for all problems. Code which has deep
library calls fails. Furthermore, if there is no manual synchronisation present
then their approach does not guarantee safety of library accesses. For instance,
we ran their tool (r3043) on the Hello World program, having removed the
existing synchronisation in the library* and observed that because they only

4 See http://www.doc.ic.ac.uk/ khilan/code/ConcurrentPrintln.java.txt for the pro-
gram code

17

(a) Analysis (b) Locks
(secs) Instance Type
Paths|Locks| Total|[Read [Write|Read|Write

| 33 [06] 47 [215] 54 [148] 34 |

Fig. 8. Analysis results for Hello World

analyse one level deep they inferred empty read and write sets and when the
program executed, print buffers were corrupted causing strings to be printed out
multiple times or not at all.> Any comparison with their work is a loose one but
we do so because it is the closest work to ours.

6.2 Hello World

Although the Hello World program may appear to be a simple one-liner, it
requires analysing 1150 methods from the library. Previous work does not fully
analyse libraries, hence it is not clear whether existing work can handle this
program. Using our own previous work [14], we found it intractable.

The running times (in seconds) for the path and lock inference analyses are
given in Fig. 8(a). The Total column gives the time it took to run the whole anal-
ysis including Soot-related costs, such as building the call graph and performing
the points-to analysis. The times reported are with all analysis optimisations en-
abled and 8 worker threads. The number of instance read, instance write, type
read and type write locks inferred are given in Fig. 8(b). We do not remove any
locks. Memory usage peaks at 3.1GB and averages 1.6GB.

6.3 Analysis Optimisations

In this section we evaluate the impact of the analysis optimisations from Sec-
tion 5.2. We use the Hello World program and compare the effects of delta
transformers, CFG summarisation, worklist ordering and parallel propagation
on memory usage and running time. All configurations uses the efficient data
structures detailed in Section 5.2. Fig. 9 shows our comparison.

The comparison gives a number of interesting insights. Summarising CFGs
gives the biggest reduction in memory usage. This is because the number of
CFG nodes is significantly reduced and thus so is the amount of analysis state.
Secondly, deltas give the best running time performance even if only one thread is
used. This is not surprising, because firstly it performs very little redundant work
and secondly, as the analysis progresses, the amount of dataflow information
propagated reduces thus leading to lesser work over time. Memory usage is also
lower because temporary objects are reduced.

Also, parallel propagation only gives gains in speed for up to three threads.
We think the reason for this is because we process our two worklists in sequence

® The output of running their tool on Hello World can be found on
http://www.doc.ic.ac.uk/ khilan/code/ConcurrentPrintInHalpertOutput.txt

18

16 b . None ———1
I Summarise CFGs

15 ¢ Worklist Ordering

14 - Deltas mum—m
. 13 r All
$ 12
§ 1 | Optimisation |Average MB|Peak MB|
=0l None 192392 | SIs3.18
£ sf Summarise CFGs| 2094.68 3470.65
g ; § Worklist Ordering 4804.73 8037.14
é 51 Deltas 3848.98 6538.27

‘3‘ [All 1741.39 3122.84

oL

1L

oLl

Number of threads

(a) (b)

Fig. 9. Effect of each optimisation on analysis time (a) and memory usage (b) for Hello

‘World

(a) Library Info[(b) Analysis (c) Locks
(secs) Instance Type

Package|1\lethods Paths|Locks R | w R | w
gnu 16882 | 64.43 | 9.40 |16536| 6235 | 7510 {1310
java 13815 |46.11 | 13.67 |30065| 9940 |30007|5354
javax 14088 | 11.06 | 6.03 | 7640 | 3307 | O 0
org 2794 1.31 | 1.09 | 1275 | 401 0 0
sun 28 0.01 | 0.03 11 4 0 0

[Total [47607 [127.79] 30.22 [55527|19887]37517]6655]

Fig. 10. Analysis results for GNU Classpath 0.97.2

(we do not start processing inter until there is nothing left to do in intra and
vice-versa). Consequently, threads that have become free cannot proceed with
the other list until all threads have completed. Some methods may require more
propagation than others and so this creates a bottleneck.

We were surprised that ordering the worklist so that successors are given
preference over their predecessors outperformed the running time when sum-
marising CFGs. This might indicate that unnecessary propagation occurs quite
often if worklists are not ordered appropriately.

6.4 GNU Classpath

To evaluate the scalability of our path analysis, we analyse the entire GNU Class-
path 0.97.2 library. It consists of 47607 non-private methods and totals about
122KLOC. We analyse each of these non-private methods in turnS, treating it
as an atomic method. We re-use summaries if they have been computed already
(during the current analysis run).

S Private methods are analysed implicitly with non-private callers.

19

We ran our analysis with all analysis optimisations turned on and with 8
worker threads. It took 5 minutes and produced a summary file of size 381MB.
Memory usage peaks at 5.1GB and averages 3GB. Fig. 10 gives a per-package
breakdown of: (a) number of methods; (b) path inference and lock inference
analysis times in seconds and (c) gives the number of each type of lock inferred.
Again, we do not remove any locks.

The method which took the longest to analyse was Logger . getLogger (String)
(30 seconds). Upon inspection, we found that this pulled in the same part of the
library as Hello World. Once this set of methods had been analysed, the sum-
maries for methods called by most other methods had already been computed
and so did not have to be recomputed. The remaining methods were analysed
in a fraction of the time (average of 2ms).

From the locks inferred (Fig. 10(c)), it can be observed that 78% are read
locks. This is crucial, as it means that most accesses can proceed in parallel.
Furthermore, although nearly 40% of all locks are types, 85% of them are read
locks. This again is promising, because it implies that coarse grained locking
would not necessarily cripple concurrency (although in the case of Hello World
above, we see that the type write locks do).

6.5 HSQLDB

Large real-world programs make extensive use of libraries. We evaluate how well
our approach can handle one such program: hsqldb.

This is an SQL relational database engine providing both in-memory and
disk-based tables. It is widely used in many open-source as well as commercial
products. We use the benchmark version (1.8.0-4) packaged in the Dacapo bench-
mark suite [26], consisting of an in-memory banking database against which a
number of transactions are executed. It comprises a total of 150KLOC and 240
atomic sections (we treat synchronized blocks and methods as atomic sections),
as well as making extensive use of GNU Classpath. Fig. 11(a)(i) gives a break-
down of the total number of client and library methods called by atomic sections.
Of the 5062 methods called, 58% are in the library.

Our path analysis was able to handle this program after enabling all our
analysis optimisations and with a heap size of 70GB. Memory usage peaked at
64.4GB and averaged 32.4GB. During the ~7 hours taken to complete the anal-
ysis, only 153 seconds (i.e. 2.5 minutes) were spent doing GC. The long analysis
time is due to long call chains, large call graph components and consequently
vast numbers of transformer edges that are propagated. Unsurprisingly, after the
first few atomics had been analysed, the remainder were quicker because a large
number of methods were common across atomics. Our lock-removing analyses
were able to identify many locks that could be removed, as shown in Fig. 12(a).

20

Atomics (i) Methods |(ii) Analysis (secs) (iii) Run (secs)
Program|Threads Total |[Reachable|Client|Library|Halpert Ours Manual|Global [Halpert|Ours
sync 8 2 2 0 0 22 127 69.14 | 71.22 | 72.69 |56.61
pcmab 50 2 2 2 15 22 127 2.28 3.15 2.28 |2.47
bank 8 8 6 6 7 22 127 20.89 | 19.50 | 35.69 |3.88
traffic 2 24 19 4 63 24 130 2.56 4.22 2.65 |4.42
mtrt 2 6 4 67 1324 29 169 0.80 | 0.82 | 0.78 |0.85
hsqldb 20 240 158 2107 | 2955 | 48104 23886 3.25 3.12 3.25 |11.39
@
Paths Locks Lock optimisations (secs)

Program|) | (secs) |[TLA| ILA [DOM| CLA | RO | IMP | MLA

sync 0.053 0.0090 |0.598]| 8.441 | 1.42 | 3.979 |0.0010{ 0.0 |0.0010
pcmab 0.194 0.018 |0.603| 8.309 |1.444 | 3.855 [0.0010{ 0.0 [0.0020
bank 0.151 0.019]0.408| 8.177 |1.376 | 3.802 [0.0020{0.0010{0.0020
traffic 0.433 0.059]0.569|9.267 |1.625 | 3.861 [0.0060(0.0020| 0.465
mtrt 33.901 1.902 |0.623] 9.063 |1.741| 4.259 | 0.079 | 0.03 |0.0050
hsqldb]21936.024|1345.859|1.667|28.589|9.597(53.125| 1.84 |2.724 | 0.079

(b)

Fig. 11. Analysis and run-time results comparison for a selection of benchmarks from
Halpert et al [13,27]. (a) is an overview of analysis and execution times and (b) gives
a breakdown of the time taken for each part of our lock inference analysis. The locks
column in (b) gives the time taken to convert NFAs to locks (before optimisations).

6.6 Comparison with Halpert et al

We compare the running times of a selection of benchmark programs transformed
using our approach with the closest known existing work of Halpert et al [13]
in Fig. 11(a).” We choose all benchmarks from their paper that do not use
wait/notify (our implementation does not currently support this) and provide
analysis and run-time statistics for each. We treat all synchronized blocks and
methods as if they are atomics and translate them using our algorithm. For a
fair comparison when comparing against manual, global and Halpert et al, we
replace synchronized blocks with calls to lock() and unlock() on our locks
instead (we maintain the original locking policy).

An important difference between our approaches is that we analyse library
methods in full whereas they only consider accesses upto one level deep in li-
brary call chains and rely on original library synchronisation beyond that. Their
approach can thus be unsound (see Section 6.1). In Fig. 11(a)(i), we list the
number of client and library methods called by atomic sections. Fig. 11(a)(ii)
compares analysis times (both columns include Soot-related costs). We give a
breakdown for the running time of each component in our analysis in Fig. 11(b).

Fig. 12(a) gives a comparison of locks inferred. Fig. 12(a)(i) are the locks
inferred by Halpert et al, Fig. 12(a)(ii) the locks we infer and Fig. 12(a)(iii) again
shows the locks we infer but this time after applying all our lock optimisations.
We give a breakdown of how many locks are removed by each respective lock

" We do not use their published work [13] but their later improved version [27] that
they kindly made available to us. This infers sets of fine-grained locks per atomic
whereas in their published version they inferred at most one lock per atomic.

21

(i) Halpert Ours
(ii) No lock opt. (iil) With all lock opt.
Program Static| Dynamic Inst. Type Inst. Type
R|W|R|WI|R[W[R]|W
sync 0 2 1 2 0 0 0 2 0 0
pcmab 0 3 1 5 0 0 0 2 0 0
bank 0 3 0 12 0 0 0 6 0 0
traffic 0 19 33 67 0 0 11 (18] 0 0
mtrt 1 0 905 | 268 | 726 | 130 | O | 48 | 6 66
hsqldb 2 11 32508|24956(26429|10943|1725|4155(9792| 8301
(a)
(i) TLA (ii) ILA (i) DOM |(iv) CLA v) RO (vi) IMP |(vii) MLA
Program| Inst. [Type Inst. | Type Inst. Inst. Inst. | Type Inst. | Inst.[Type

RIW R|[W| R[W|R|W|R|W|R[W| R [W R W R [W|RWRW
sync O[O JO0JoJoJO0JO0JoJ] oo JoJo[1ol o]o[1t]2]ofofoo
pemab [0 1 o]0t 2[00 o0 [0 |o]o] o oo o] 1 5]ofo]oo
bank | 0] 0 [0]|0|0 2000 |3 [o]o] ool o o] o 12]0/0[00
trafic [0 1 0|0 | 4 [41] 0] 0] 1 | 0 |1]6]3L 0] 0 0|3l [49]0][2][0]0
mirt | 52| 5 24|20 92 | 57 | 24 | 60 | 491 | 204 119 6 | 613 [0 702 | 0] 560 | 63 [0]0]0]0
hsqldb | 464]6045[492|450]2352|3315]1682|2552| 1977513780 4951|487 | 17948 0 |15672] 0 |15070/2276/0] 00| 0

b)

Fig.12. Locks inferred for benchmarks in Fig. 11 by Halpert et al (a)(i) and our
approach for both without (a)(ii) and with all our lock optimisations enabled (a)(iii).
(b) gives a breakdown of how many locks are removed by each of our lock optimisations.

optimisation in Fig. 12(b). The number for IMP indicates how many instances
do not need to intentionally lock their type.

Halpert et al distinguish between two types of lock: (i) static locks are known
at compile-time and (ii) dynamic locks are the same as instance locks. Static locks
are not equivalent to our type locks because acquiring a type lock implicitly locks
all instances. That is, there is no relationship between static and dynamic locks
in their approach. Furthermore, all locks are write locks.

Fig. 11(c) gives execution times. We are noticeably slower for hsqldb due to
the larger number of locks being acquired. Note, hsqldb involves a large number of
library methods, which are not analysed by Halpert et al so a direct comparison
is not appropriate. At run-time, only 2745 of the 5062 methods (54%) analysed
for hsqldb are called. We are looking into using run-time coverage information to
reduce the number of locks taken for code paths that are infrequently executed.

7 Related Work

Lock Inference While software transactional memory remains the popular ap-
proach for implementing atomic sections, recent work has also looked at statically
inferring locks sufficient for atomic and deadlock-free execution.

In McCloskey et al’s Autolocker tool [12], the programmer annotates which
locks protect each path expression. Locks are acquired before object accesses
and released at the end of the atomic section. Deadlock is prevented statically

22

by ordering path expressions for locks, with the program being rejected if an
ordering is not possible. This approach is shown to scale to a 50KLOC web
server. Autolocker allows internal objects to be protected by the same lock with
a suitable annotation, however our approach differs because we automatically
infer these objects. Emmi et al [10] extend upon Autolocker by removing the
need for annotations. They have two types of lock: per-instance and per-path
expression whereby the latter protects all instances of a path expression and
is used when two path expressions p; and ps may alias each other along some
execution path. Lock inference is formulated as an 0-1 ILP problem that aims to
minimise the number of locks as well as the number of conflicts between atomic
sections. Their approach is shown to scale to 15 KLOC. These two approaches do
not translate path expressions past assignments and subsequently lock operations
cannot be pushed further up without coarsening the locking granularity.

Hicks et al [8] infer abstract objects that are each protected by their own
lock. This has the advantage that deadlock can be prevented statically, as the
number of locks is known at compile-time. However, less concurrency may occur
because per-instance locks are not supported. Locks are acquired at the start
and released at the end of the atomic section. We base our dominators analysis
on theirs but ours differs because we do it for path expressions. Furthermore, we
have a working implementation.

Cherem et al [9] also infer path expressions and translate them when pushing
through assignments. They also acquire locks at the start of the atomic and
release them at the end. However, there is a major difference: we represent
paths as non-deterministic finite state automata, allowing unbounded accesses
to be represented precisely, whereas they immediately collapse these accesses to
some lock R. The focus of their work is a general theoretical framework for lock
inference analyses.

Finally, Halpert et al [13] and Zhang et al [11] take a top-down approach
(whereas those previously mentioned and this paper are bottom-up approaches)
by instead determining which atomic sections may conflict with each other and
then preventing them from proceeding in parallel by allocating to each an ap-
propriate set of locks. These locks may or may not have any relation to the
objects being accessed but their purpose is just to prevent conflicting atom-
ics from running concurrently. Bottom-up approaches, like ours, map accesses
to locks, which implicitly prevent conflicting atomics from running in parallel.
Halpert et al use a May Happen In Parallel [28] analysis to improve the preci-
sion of conflict detection and a thread-local /thread-shared analysis to reduce the
size of the read/write set of each atomic section. They do not require two-phased
locking. However, deadlock is prevented by assigning the same static lock to each
atomic section involved in the wait-cycle, thus preventing them from executing
in parallel, even if on some/most runs they could. Halpert et al analyse Java
programs but only analyse library call chains upto one level deep.

Interprocedural Analysis of Large Programs The original callstrings approach
for interprocedural analysis [29] is known to not scale well [30]. Khedker et
al [30] propose grouping callstrings into equivalence classes based upon dataflow

23

values and subsequently performing propagation through a method only once per
value. We implemented this but were not successful for Hello World. However,
this may be due to our implementation of the technique. Regardless of this, the
callstrings approach also has the limitation of not allowing pre-computed results
for a method to be stored for re-use later, as it does not encode how methods
translate dataflow information. Consequently, library methods would have to be
re-analysed at each call site.

Recent work [15, 31, 32,6, 33, 34] has looked at scalable interprocedural analy-
ses using procedure summaries. [15] present an efficient graphical representation
for transfer functions and [6] apply this to Java programs that make use of the
library. Our work differs from [6] as they present a general framework for whole-
program IDE analyses but do not apply it specifically to lock inference . We
assume a closed world whereas they consider the possibility of call backs from
the library to client code. Our work could be extended to cater for this.

While propagation of delta information is not a new idea, we believe that
this is the first time that they have been presented for the IDE framework.

8 Conclusion & Future Work

We believe that this is the first lock inference approach that can analyse precisely
programs built with large libraries. Previous lock inference work [14,11,13,12,
8-10] either ignores libraries, requires library implementors to annotate which
locks to take or only consider accesses performed upto one level deep in library
call chains [13]. We are able to handle large programs by formulating our previous
path inference analysis [14] as an IDE dataflow problem. We have shown that
our analysis can scale to 122KLOC when using the pointwise representation of
[15, 6] together with a number of optimisations, which in turn we have evaluated.
We also analysed the large Java database engine HSQLDB comprising 150KLOC
(plus 3000 methods from GNU Classpath).

We have also implemented several analyses to reduce locks inferred, such as
for thread-local and internal objects. Our lock inference approach is the first to
automatically identify internal objects and elide locks for them. Furthermore,
these analyses are conservative but scale to library code and are still able to
identify many such objects, which we have shown through the hsqldb benchmark.
We detect when only a single thread is executing and elide locks in this case too.
This is orthogonal to thread locality because these are locks for shared objects.
This reduced our run-times tremendously, as the locking overheads incurred
during single-threaded execution were mitigated.

We evaluate the run-time performance of our instrumented programs for a
range of benchmarks and compare results with Halpert et al [13]. Halpert et
al only analyse library call chains up to one level deep. For benchmarks that
involve little library code, we obtain similar performance but for programs that
make extensive use of the library, we are slower. However, our approach analyses
all library code and is therefore sound, whereas it can be shown that Halpert et
al’s approach can produce unsound results (see Section 6.1).

24

In this kind of work there are always ways to improve it. We believe that
major areas of a program may rarely be executed and are looking to take ad-
vantage of this to reduce the number of locks taken at run-time by delaying the
acquisition of locks protecting such cold code regions.

We don’t expect our run-times to match those of optimal hand-crafted locks,
however for most code they are probably acceptable. More importantly it should
be a far simpler task for programmers to annotate blocks of code as atomic than
to get them to place locks correctly, and a correctly annotated program will be
a deadlock free, race free program.

Acknowledgements We are grateful to Microsoft for funding this work. We
would like to thank Dave Cunningham for the original idea [14] and the belief
that reasonable results could be obtained. We are also very appreciative of the
detailed discussions we had with Tristan O. R. Allwood and Sophia Drossopoulou
and all their helpful advice. We thank Richard Halpert for providing his bench-
mark programs and scripts. We also thank the entire SLURP research group at
Imperial College for interesting discussions about earlier versions of this work.
The work would not have been possible without the advice of members of the
Soot, Jikes RVM and concurrency-interest mailing lists.

References

1. Lomet, D.B.: Process structuring, synchronization, and recovery using atomic
actions. SIGPLAN Not. (1977)

2. Grossman, D.: The transactional memory/garbage collection analogy. In: Proceed-

ings of the 22nd annual ACM SIGPLAN conference on Object-oriented program-

ming systems and applications. (2007)

Cantrill, B., Bonwick, J.: Real-World Concurrency. ACM Queue (2008)

4. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal (2005)

5. Larus, J., Rajwar, R.: Transactional Memory (Synthesis Lectures on Computer
Architecture). Morgan {& Claypool Publishers (2007)

6. Rountev, A., Sharp, M., Xu, G.: IDE Dataflow Analysis in the Presence of Large
Object-Oriented Libraries. In: CC. (2008)

7. McCabe, T.: A complexity measure. IEEE Trans. Softw. Eng. (1976)

8. Hicks, M., Foster, J.S., Pratikakis, P.: Lock Inference for Atomic Sections. In:
Proceedings of the First ACM SIGPLAN Workshop on Languages Compilers, and
Hardware Support for Transactional Computing (TRANSACT). (2006)

9. Cherem, S., Chilimbi, T.M., Gulwani, S.: Inferring locks for atomic sections. In:
PLDI. (2008)

10. Emmi, M., Fischer, J.S., Jhala, R., Majumdar, R.: Lock allocation. In: POPL.
(2007)

11. Zhang, Y., Sreedhar, V.C., Zhu, W., Sarkar, V., Gao, G.R.: Minimum Lock Assign-
ment: A Method for Exploiting Concurrency among Critical Sections. In: LCPC.
(2008)

12. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: synchronization infer-
ence for atomic sections. ACM SIGPLAN Notices (2006)

@

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

25

Halpert, R.L., Pickett, C.J.F., Verbrugge, C.: Component-Based Lock Allocation.
In: PACT. (2007)

Cunningham, D., Gudka, K., Eisenbach, S.: Keep Off the Grass: Locking the Right
Path for Atomicity. In: CC. (2008)

Sagiv, Reps, Horwitz: Precise Interprocedural Dataflow Analysis with Applications
to Constant Propagation. TCS: Theoretical Computer Science (1996)

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot
- a Java bytecode optimization framework. In: CASCON. (1999)

Gray, J.N., Lorie, R.A., Putzolu, G.R.: Granularity of locks in a shared data base.
In: VLDB ’75: Proceedings of the 1st International Conference on Very Large Data
Bases. (1975)

Chan, B., Abdelrahman, T.S.: Run-Time Support for the Automatic Paralleliza-
tion of Java Programs. J. Supercomput. (2004)

Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming Reflection:
Aiding Static Analysis in the Presence of Reflection and Custom Class Loaders.
In: ICSE ’11: International Conference on Software Engineering. (2011)

Lhotak, O.: Program Analysis Using Binary Decision Diagrams. PhD thesis
Gudka, K., Eisenbach, S.: Fast Multi-Level Locks for Java: A Preliminary Perfor-
mance Evaluation. In: EC2 2010: Workshop on Exploiting Concurrency Efficiently
and Correctly. (2010)

Lea, D.: The java.util.concurrent Synchronizer Framework. Sci. Comput. Program.
(2005)

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley (2006)

Magee, J., Kramer, J.: Concurrency: state models {& Java programs. Wiley New
York (2006)

Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. Proceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming (2005)

Blackburn et al, S.M.: The DaCapo Benchmarks: Java Benchmarking Development
and Analysis. In: OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and Applications.
2006

%ialpe)rt, R.L.: Static Lock Allocation. Master’s thesis, McGill University (2008)
Naumovich, G., Avrunin, G.S.: A Conservative Data Flow Algorithm for Detecting
All Pairs of Statement That May Happen in Parallel. In: SIGSOFT FSE. (1998)
Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Program Flow Analysis: Theory and Applications. (1981)

Khedker, U.P., Karkare, B.: Efficiency, Precision, Simplicity, and Generality in In-
terprocedural Data Flow Analysis: Resurrecting the Classical Call Strings Method.
In: CC. (2008)

Gulwani, S., Tiwari, A.: Computing Procedure Summaries for Interprocedural
Analysis. In: European Symp. on Programming, ESOP 2007. (2007)

Rountev, A.: Component-Level Dataflow Analysis. In: International SIGSOFT
Symposium on Component-Based Software Engineering. (2005)

Whaley, J., Lam, M.: An efficient inclusion-based points-to analysis for strictly-
typed languages. Proceedings of the 9th International Static Analysis Symposium
2002

(Choi,)J.7 Gupta, M., Serrano, M., Sreedhar, V., Midkiff, S.: Escape analysis for
Java. Proceedings of the 14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (1999)

