

QuakeTM: Parallelizing a Complex Sequential Application
Using Transactional Memory

Vladimir Gajinov†∗ Ferad Zyulkyarov†∗ Osman S. Unsal† Adrian Cristal†

Eduard Ayguade† Tim Harris‡ Mateo Valero†∗
†Barcelona Supercomputing Center ∗Universitat Politecnica de Catalunya ‡Microsoft Research Cambridge

vladimir.gajinov@bsc.es ferad.zyulkyarov@bsc.es osman.unsal@bsc.es adrian.cristal@bsc.es
eduard.ayguade@bsc.es tharris@microsoft.com mateo.valero@bsc.es

ABSTRACT
“Is transactional memory useful?” is the question that cannot be
answered until we provide substantial applications that can
evaluate its capabilities. While existing TM applications can
partially answer the above question, and are useful in the sense
that they provide a first-order TM experimentation framework,
they serve only as a proof of concept and fail to make a
conclusive case for wide adoption by the general computing
community.

This paper presents QuakeTM, a multiplayer game server; a
complex real life TM application that was parallelized from the
sequential version with TM-specific considerations in mind.
QuakeTM consists of 27,600 lines of code spread across 49 files
and exhibits irregular parallelism for which a task parallel model
fits well. We provide a coarse-grained TM implementation
characterized with eight large transactional blocks as well as a
fine-grained implementation which consists of 58 different critical
sections and compare these two approaches. In spite of the fact
that QuakeTM scales, we show that more effort is needed to
decrease the overhead and the abort rate of current software
transactional memory systems to achieve a good performance. We
give insights into development challenges, suggest techniques to
solve them and provide extensive analysis of the transactional
behavior of QuakeTM, with an emphasis and discussion of the
TM promise of making parallel programming easier.

Categories and Subject Descriptors: D.1.3
[Programming Techniques]: Concurrent Programming – Parallel
Programming.

General Terms: Design, Experimentation, Performance.

Keywords: Game Server, Transactional Memory

1. INTRODUCTION
Recently, processor manufacturers have done a right-hand turn

away from increasing single core frequency and complexity. Low
returns from instruction level parallelism (ILP) and problems with
power/heat density have led to the appearance of multi-core
processors that leverage thread level parallelism (TLP). In this
new era of multi-core architectures, the coordination of the work
done by the multiple threads that cooperate in the parallel
execution is one of the challenging issues both in terms of
programming productivity and execution performance.
Transactional memory (TM) is a technology that may help here,
by aiming to provide the performance of fine-grained locking
with the ease-of-programming of coarse-grained critical sections.
In this paper we assess the extent to which this is true of current
TM implementations, based on code descriptions and examples as
well as through performance evaluation.

As a case study we started from a sequential version of Quake, a
complex multi-player game. Using OpenMP and software
transactional memory (STM) we built QuakeTM, a parallel
version which consists of 27,600 lines of code spread across 49
files. Developed in 10 man-months, QuakeTM exhibits irregular
parallelism and long transactions contained within eight different
atomic blocks with large read and write sets.

Our intention was not to pursue performance per se, but to
examine whether or not it is possible to achieve good results with
a coarse-grained parallelization approach. This decision was
driven by one of the hopes for TM, to make parallel programming
easier by abstracting away the complexities of using fine-grained
locking, while still achieving good scalability. When parallelizing
an application from scratch using TM, this kind of coarse-grained
approach is likely to be popular with programmers. Consequently,
this approach needs to be tested on a highly complex application
in order to see how well it works in practice.

This paper makes following contributions:

• We describe how we developed QuakeTM and discuss the
challenges we encountered.

• We show that our implementation scales reasonably well,
despite the use of coarse-grained transactions. However, we
show that this scalability is unable to compensate for the
high overhead and abort rate of the software transactional
memory system.

• Further on, we have adapted the fine-grained TM
implementation described in our previous work on Atomic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS’09, June 8–12, 2009, Yorktown Heights, New York, USA.
Copyright 2009 ACM 978-1-60558-498-0/09/06...$5.00.

Quake [20] in order to compare these two different
parallelization approaches.

• In a pleasant side-effect during our performance optimization
effort, we developed a simple mechanism, which we call
ReachPoints, that could be useful to discover and isolate
TM-related performance problems.

The remainder of this paper is organized as follows: In Section 2,
we comment on related work. In Section 3, we describe the
structure of the sequential Quake application. In Section 4, we
describe the parallelization process and the development of
QuakeTM. Section 5, details the evaluation environment and
Section 6 follows with the results. In Section 7 we discuss future
work and we conclude in Section 8.

2. RELATED WORK
Early TM research used micro-benchmarks to demonstrate the
potential of the new programming paradigm. Subsequently, sets
of kernel applications have been developed, such as Lee-TM [5],
Delaunay mesh refinement and/or agglomerative clustering
[9][11][17] and STMBench7 [8]. The total code size of these
kernels ranges from 800 lines for Lee-TM to 5000 lines for
STMBench7, but the common fact is that the total size of critical
sections doesn’t exceed a couple of hundred lines of code.

There are several benchmark suites of programs using TM. The
Haskell STM benchmark suite [15], consists of nine Haskell
applications of different sizes, which target different aspects of an
underlying TM system. While it is good for its domain, the
Haskell STM benchmark suite is not directly applicable to other
languages. The STAMP benchmark suite [13], consists of eight
applications that cover a variety of domains and exhibit different
characteristics in terms of transaction lengths, read and write set
sizes and amounts of contention. The downside of these
applications, when used with STM, is the fact that they were
manually optimized, with an application level knowledge
beforehand, which enabled authors to manually implement the
optimal number of read/write barriers in the code. This doesn't
help the effort to prove the primary goal of TM which is to make
multithread programming easier. If programmers are required to
manually instrument the code in order to achieve basic
performance then TM is not the solution. As it was pointed out by
Dalessandro et al. [6] library interfaces can remain a useful tool
for systems researchers, but application programmers are going to
need language and compiler support.

In general, most previous TM applications and benchmarks were
either derived automatically from lock-based parallel versions
(this is, replacing lock-based critical sections with transactions),
or if they were developed from sequential versions then the
resulting code was somewhat limited in size and complexity
(which limits the benefits of detailing the development challenges
and the programmer effort). Therefore, there is a clear need to
develop a substantial TM application from the ground up while
extensively detailing the parallelization process and the
challenges involved. This is one of the main contributions of this
paper.

In recent work [20], we developed a transactional version of
Quake from an existing lock-based version [2][3]. We

encountered a different set of challenges when parallelizing the
sequential version of Quake with TM. Comparing that approach
with the one in this paper gives us a new perspective on how the
use of “atomic” blocks in new parallel code might compare with
their use as a replacement for lock-based critical sections. We
discuss these two issues further in Section 4.

3. QUAKE DESCRIPTION
Quakeworld is the multi-player mode of Quake I, the first person
shooter game released under the GNU general public license by
ID Software. It is a sequential application, built as a client-server
architecture, where the server maintains the game world and
handles coordination between clients, while the clients perform
graphics update and implement user-interface operations.

The server executes an infinite loop, where each iteration
performs the calculation of a single frame. The frame execution
algorithm is presented in Figure 1(a). The server blocks on the
select system call waiting for client requests. If requests are
present on the receiving port, it starts the execution of the new
frame. It is possible to distinguish three stages of frame execution:
world physics update (P), request receiving and processing (R)
and reply stage (S). Upon the end of execution of all three stages
the server frame ends and the process is repeated. Generally, the
server will send replies only to clients which were active in the
current frame, namely those who have sent a request. All replies
are sent after all requests have been processed. This clear
separation of the frame stages simplifies the parallelization, as we
present later in the paper.

The Quake game world is a polygonal representation of the 3D
virtual space in which all objects, including players, are referred
to as entities. Each entity has its own specific characteristics and
actions it can perform. During the update, the server will send
information only for those entities which are of interest to the
client. Nevertheless, the server has to simulate and model, not
only the players’ actions, but also the effects induced by these
actions. Thus, server processing is a complex, compute intensive
task that increases superlinearly with the number of players [3].

3.1 Map Description
A map of the Quake world is represented with a file which holds
the binary space partition (BSP) implementation of the 3D world
with all the details relevant to draw and position the objects in the
world [7][12]. The level of details contained within theBSP tree is
large; therefore BSP trees are hard to maintain for dynamic
scenes. If the server wants to generate a quick list of the objects
that an entity may interact with, traversing the BSP tree is
inefficient, and since this is a common operation involved in each
move command, the server constructs and maintains a secondary
binary-tree structure, called an areanode tree. This is a 2D
representation of the BSP tree, constructed during server
initialization by dividing the 3D volume in the x-y plane. Figure
1(b) demonstrates the building process. Each areanode has an
associated list of objects contained within the space defined by
that areanode. When an object is moved, it is necessary to update
the areanode tree to reflect the new position of the object. This is
done by removing the object from the original list, and inserting it
into the list of the areanode that corresponds to the destination of
the object.

3.2 Move Execution
Clients influence the gameplay by sending the move command,
which specifies various parameters related to the player’s state,
actions and intentions. Using the data extracted from the
command (motion indicators, origin of the player and time to run
the command), the server constructs the bounding box of the
player's motion, thus defining the region of the world it can affect.
Then it traverses the areanode tree to find all the objects
contained within this bounding box and associate them with the
move command. It then simulates the move, and upon
completion, removes the player's object from the old position in
the game world and links it to the new one.

4. PARALLELIZATION
Parallelization of the Quake server has already been done using
POSIX threads (pthreads) in [2]. It is the fine-grained lock-based
implementation which, to the best of our knowledge, took about
15 man-months of development. That version is the base for our
previous work on Atomic Quake [20], whose main objective was
to evaluate the effort of replacing locks with transactions. In that
paper [20] we report that the process was not straightforward and
that we encountered specific challenges which considerably
increased the development effort. First, the lock parallelization is
not block structured which required code reorganization to adapt
to the TM model. The second problem was to avoid I/O
operations which is not an issue in a lock based system. Finally, a
big fraction of the development time was spent in understanding
how locks are associated with the variables and to get a grip with
the locking strategy.

This paper doesn’t build on top of the pthreads version, but
implements a different parallelization strategy. Our intention was
to start from the sequential application and parallelize it using
OpenMP and transactional memory. Further on, we deliberately
decided to implement a coarse-grained parallelization approach
driven by the desire to test one of the promises of transactional
memory, which is to make multithreaded programming easier by
providing good performance scaling coupled with a coarse-
grained parallelization effort.

In order to give a complete overview of the parallelization of the
Quake game server using transactional memory, we also adapted
the fine grained implementation described in Atomic Quake.
Later on, in the results section, we give a comparison between
these two implementations and show that both of them suffer
from the same problems associated with high transactional
memory instrumentation overhead, though the extent in which the
fine-grained version is affected is lower.

Semantically comparing these two solutions, it is clear that
QuakeTM, a coarse-grained implementation, is characterized with
atomic blocks and read and write sets that are an order of
magnitude bigger. Overall, there are only eight transactional
blocks in QuakeTM compared to 58 in the fine-grained
implementation of Atomic Quake. These facts lead to a noticeable
difference in the abort rate which is 35.3% in the QuakeTM
compared to only 4.1% in the Atomic Quake case. Nevertheless,
the TM instrumentation overhead is still high in both
implementations, but it does seem to be proportional to the read
set size of transactions.

4.1 QuakeTM
One of the main goals of this work was to test the primary
objective of transactional memory [10], to make multithreaded
programming easier. We had no prior knowledge of the
application itself, so we took some time to understand the code.
We have identified the parts of the application suitable for
parallelization, using profile information and by studying the
program structure. The process of adding OpenMP parallelization
pragmas and transactional boundaries was then straightforward
and simple, if we disregard occasional problems with the
compiler. The real challenge was to identify which of the global
data structures and variables must be shared and which can be re-
structured as thread-local data. From a performance perspective
this is crucial, since a lot of sharing leads to bad performance. The
development of QuakeTM, our coarse grained version, was done
in ten man-months. Additional two months were spent on
adapting the fine-grained solution described in our work on
Atomic Quake [20]. In this section we describe our QuakeTM
parallelization approach.

LEVEL 4

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 5

Areanode tree
Top view

Process

Read

Physics

SELECT

Reply

Yes

No

Tx

Rx

(b)(a)
Figure 1: (a) Frame execution algorithm. (b) Constructing areanode tree from the BSP map volume. Adapted from [3]

4.1.1 Shared Data
During the gameplay, there are three types of shared data
structures: message buffers, the areanode tree and game objects
(entities). Among the buffers we further distinguish the global
state buffer and per-player reply buffers. The global state buffer,
updated in the physics update stage and the request stage, is used
to hold the updates that reflect the actions of all players involved
in the game session.

Accesses to the areanode tree are in the form of linked list
operations on the object lists associated with each areanode. The
access pattern for the request stage has already been covered in
the explanation of the move command. A similar pattern is
observed in the physics update stage since physical influences,
which may affect an object, can change its position and hence its
areanode container.

Game objects are updated in the physics update stage and the
request processing stage. During the move execution, each object
that is touched is updated in a global, shared part of the memory
which is divided into a number of regions (strings, functions,
statements, field definitions, global definitions, globals and
entities). The fact is that only the entity part of the program
memory has to be shared, while other parts should be thread-
private to achieve better concurrency.

4.1.2 Parallelization Strategy
An execution breakdown of the sequential Quake server is given
in Table 1. It is clear that the majority of time is spent in the
request processing phase, and even though physics update
exhibits similar shared data access patterns, its operations seem to

be significantly less involved. Therefore, we concentrate on the
parallelization of the request processing stage. The algorithm for
this stage is presented in Figure 2(a). Each iteration of the loop in
Figure 2(a) performs the execution of a single client request. A
tasking model is the most suitable for parallelization of this loop
for two reasons: (i) given the diversity of the client requests, load
balancing is an important factor to consider and (ii) we are not
aware of the number of requests that are pending on the receiving
port. The profiling information tells us that the time needed to
receive all packets is negligible compared to the processing time.
Therefore, to enable application of the tasking model, we separate
the receiving phase from the processing phase, and receive all
packets first, storing them into a temporary list. Afterwards, the
list is traversed and a processing task created for each packet in
the list. Figure 2(b) illustrates our approach.

The QuakeTM coarse-grained approach consists of eight large
atomic blocks, but here we describe only the four which are
involved in synchronization of the client move command
processing, the most common action performed by the Quake
server. The client message is extracted from the packet and parsed
into one or more commands. Each message can hold only one
move command which is by far the most common type of
commands. The execution of the move command is illustrated by
the diagram in Figure 3 together with the transactional block
markers. The execution begins with the client’s physics update
(ClientPhysics) followed by the so called “think” function
(ClientThink). This is a special feature of Quake to register
an action that needs to be carried out, in regard to the client, in the
future. This is not specific to the client entities, but overall this is
the way to implement actions that exceed the duration of a single

Figure 2: Pseudocode for the request processing stage: (a) sequential and (b) parallel implementation

while (NET_GetPacket ()) {
 // Filter packets
 if (connection related packet) {
 SV_ConnectionlessPacket ();
 continue;
 }

 // game play packets
 for (i=0 ; i<MAX_CLIENTS ; i++) {
 // Do some checking here
 SV_ExecuteClientMessage ();
 }
}

while (NET_GetPacket ()) {
 // Filter packets
 if (connection related packet){
 SV_ConnectionlessPacket ();
 continue;
 }
 AddPacketToList();
 CopyBuffer();
}

#pragma omp parallel shared(packetlist, ...){
 #pragma omp single
 while (packetlist != NULL) {
 #pragma omp task firstprivate(packetlist){
 NET_Message_Init(..);
 // Do some checking here
 for (i=0 ; i<MAX_CLIENTS ; i++){
 // Do some checking here
 SV_ExecuteClientMessage ();
 }
 }
 packetlist = packetlist->next;
 }
}

(b) (a)

frame. Along with the pmove (player move) structure
initialization (PmoveInit), these actions form the preparation
for the actual move execution, and can be contained inside a
single transactional block.

The next phase in the execution – AddLinksToPmove,
determines which entities could be affected by the current move
command. Starting from the origin of the player the maximum
affected area is determined. Next, the areanode tree is traversed
and the corresponding areanode entity lists checked to discover
those objects whose position falls into this area. Links to all
affected objects are added to the pmove structure entity list.

Further processing is carried on with the execution of the
PlayerMove function. First, a model box is assigned to the
player’s entity and each entity from the pmove entity list. Then,
using the parameters from the move command extracted from the
received message, a trajectory is followed from the player's
original position to its potential destination. If the player's model
box clips a model box of the other entity moving along the
trajectory line, there is a collision between them. Depending on
the various parameters of the collided objects and the
environment that surrounds them (air, water, solid area, etc.) the
player’s final position is calculated.

The last phase of the move execution is LinkEntity function
which re-links the player’s entity to the new position in the
areanode tree. In the end, the player’s influence during its
movement is applied to each entity that was “touched” along the
trajectory. This action is denoted as PlayerTouch in Figure 3.

4.2 Parallelization Issues and ReachPoints
Even though we dedicated significant time to manually identify
global data that could be thread-private, for unmanaged code
written in a sequential programming style, where a vast amount of
data is global, as in the Quake case, it is not enough. During our
attempt to boost performance we came up with a solution, which
we call ReachPoints, that helped us identify the rest of the global
variables that could be thread private and discover the problems
that arose from TM cache-line granularity conflict detection
implementation.

The ReachPoints solution, shown in Figure 4, consists of
allocating an array of counters for each thread, taking cache line
granularity into account (x*16 integers for each thread where
x=1,2,... and cache line size of 64 bytes). At the end of execution,
when we print the state of counters, the difference between two
counters pinpoints the region of the code where transactions
abort. Analyzing that region, it is possible to discover causes for
the aborts. Simple as it may be, we found ReachPoints very
valuable and useful. As already stated, it even helped us discover
sources of false conflicts referred to as false sharing [21], which
occur mostly within structured data and are the consequence of
the fact that two different variables or structure fields reside in the
same cache line. Assuming that only one of them is written, say
variable X, under the cache line granularity conflict detection
system, a read-only variable Y is also causing conflicts, since the
writes to X are treated as writes to Y. When we applied cache
padding for such cases, we noticed a significant performance
improvement due to a decrease in the number of aborts. This
solution is specific for eager conflict detection, since in TM
systems with lazy conflict detection transactions can be aborted
anytime, regardless of the read or write issued in the moment of

the abort. It should be said that one could think of better
mechanisms to detect which data access is causing conflicts, and
one of them is certainly debugger support.

int reachpoints[NumThreads][x*16]

TM_PURE
void PointReached(int check) {
 reachpoints[ThreadId][check]++;
}

int main () {
 . . .
 TRANSACTION
 PointReached (1);
 statement_1;
 PointReached (2);
 TRANSACTION_END
 . . .
}

Figure 4: ReachPoints: Simple solution for discovering
conflicting regionsof the transactional code.

AddLinksToPmove

 Execute Move

ClientPhysics

ClientThink

PmoveInit

PlayerMove

LinkEntity

PlayerTouch

T1

T2

T3

T4

Figure 3: Diagram of the move command execution
with transactional block markers.

Table 1: Execution breakdown of the sequential server

Stage Time [%]
Request Processing 87.8
Reply 3.1
Physics Update 2.1
Measuring and Info 5.3
Other 1.7

5. EVALUATION
For testing purposes, we used the existing Quake client code to
build an automatic trace client called TraceBot, whose behavior is
controlled by a finite state machine. We also had to implement
certain changes on the server side to be able to synchronize the
client’s actions with the server response. Essentially, TraceBot is
simply sending messages at the server frame rate until it dies, as a
result of actions of the other connected players, or until the end of
the trace, when it commits suicide. After TraceBot dies, it sends
another special string command which function is to respawn the
client into the game world and the process is repeated. The traces
are recorded using VideoClient, which is similar to TraceBot with
the addition of graphics. To record traces we use the original,
sequential Quake server, and connect VideoClient to play the
game, producing traces that represent recorded human actions.

We run the server on one machine and the clients on another, to
simulate the real game environment, given that network latency
and bandwidth are not critical [2]. The server and client frame
rates are synchronized and set to 100ms which is enough time for
the worst case transactional frame length. Both machines are
PowerEdge 6850, with four dual-core 64-bit Intel® Xeon™
processors running at 3.2 GHz, with 16MB L3 cache memory per
processor unit, running SUSE LINUX 10.1.

In this work we are using the prototype version 3.0 of the Intel
STM C/C++ compiler [4][14][19] with level O3 optimizations
enabled. The underlying STM implementation is an extended
version of the McRT-STM system [16]. The compiler implements
both optimistic and pessimistic concurrency control, and provides
single lock atomicity semantics and weak atomicity guarantees.
Serial execution mode is provided to support system calls and I/O
operations inside transactions. To optimize function calls within
transactions the compiler introduces function annotations:
tm_callable, tm_pure and tm_unknown. Nesting is
supported in a closed nesting fashion via flattening; a data conflict
rolls back to the outermost level and re-executes the transaction. It
uses cache-line granularity conflict detection and implements
strict two-phase locking for writes. Writes update values in place
and generate undo log entries. Transactions validate the read set at
commit time, and if necessary during the read operation, which
means that transaction can abort any time during the execution
when it encounters a conflict.

6. RESULTS
To test the performance of QuakeTM, we compare the results
with the sequential and global lock versions. For the parallel
setups we vary the number of threads from one to eight. We also
vary the number of clients from one to sixteen and take the mean
of five runs. Each run executes for 2000 frames (about 200s of
real time). The results are collected for the last 1000 frames in
order to avoid effects from server initialization and client
connection times. It should be noted that in our evaluation system
it is not necessary to stress the server by running a large number
of clients; if the server is able to service given number of clients
faster, it is able to service more clients in a desired frame length.

We use the rdtsc instruction to measure the number of cycles
between two events and then translate that value into
milliseconds. Even though only the request processing stage is
parallelized, we present results and for the entire frame execution.

Figure 5 presents normalized average frame execution times of
the parallel implementations for the single-thread case. The
baseline is always the average frame execution time of the
sequential server for a given number of clients. Since there is no
contention, the lock version introduces almost no overhead. On
the other hand, the overhead for the transactional version goes
from 3.5 times for a single client to 6 times for sixteen clients.
These results exceed the findings of Wang et al. [18] for non
optimized version of STM. For microbenchmarks the authors
report an overhead of non-optimized STM code from 2.4 to 4.5
times over a fine-grained locking implementation. For the
SPLASH-2 benchmarks the reported overhead doesn't exceed
20%, but it is a measure across the entire execution, which hides
the fact that little time is spent in critical sections. In our case
more than 85% of the time is spent in critical sections.

Figure 6 shows the comparative performance of the QuakeTM
and the global lock version for different numbers of connected
clients. As expected, the global lock version doesn't scale, while
the transactional version starts to scale only when the workload
becomes sufficient, which happens with eight connected clients.
We can see that the transaction overhead remains approximately
4x-6x. When we run the application with sixteen clients, then we
start to notice a considerable speedup. Figure 7(a) gives a better
view of this case. The values are normalized to a single thread
execution time. The speedup for eight threads is 1.62 which is a
good initial result, considering that this is the first real application
to test TM capabilities, but it is still not enough to cover the costs
of running transactions. Figure 7(b) shows the scalability of the
transactional Quake server running with sixteen clients. It is
obvious that the TM version scales, but it still performs worse
than the global lock version, even though it was able to
compensate for more than 50% of the transactional overhead.

To discover the reasons why the transactional version doesn't
perform better, it is necessary to look at the statistical data which
is provided by the Intel compiler. Table 2 presents these statistics
for the TM configuration running with eight threads. All
statistical values increase when we increase the number of clients
connected simultaneously, but the most important, from a
performance perspective, is the transaction abort rate. In the case
of sixteen connected clients 35.3% of transactions abort, causing a
high amount of wasted work. There are examples when a
transaction aborted 136 times before it eventually committed.

Figure 5: Normalized average frame execution times of
the QuakeTM parallel implementations for the single-
thread case. The baseline is the sequential execution.

0
1
2
3
4
5
6
7

1 2 4 8 16
Number of clients

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

serial global_lock TM_coarse

This leads to a significant waste of processor cycles to re-execute
the transactional code. Table 2 also shows that although the mean
value of the data read is about 5.1 KB there are cases when it
grew up to 1.7 MB. This is an important factor which could stress
the design of any hardware transactional memory system.

Table 3 presents the execution breakdown of the TM server
running with eight threads and sixteen clients. Out of eight atomic
blocks implemented in QuakeTM only the five presented in the
table contribute considerably to the overall performance. It can be

seen that the abort overhead is not significant even for the atomic
blocks which have a high abort rate. Since we are not in the
position to gain an insight from the profiling due to the fact that
Intel compiler is not open source, we can only speculate about the
reasons for such results. A possible explanation could be that
transactions are aborted early during the execution or that the
contention handler and the abort mechanism are efficient. On the
other hand, the instrumentation time may be high as a result of the
STM runtime operations associated with locks.

Figure 6: Comparative performance of parallel configurations

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 client 2 clients 4 clients 8 clients 16 clients
Number of threads

Ti
m

e
[m

s]

global_lock TM_coarse

Figure 7: Parallel servers running with 16 clients: (a) Speedup, (b) Scalability.
 (a) (b)

0.0

2.0

4.0

6.0

8.0

1 2 4 8Threads

A
ve

ra
ge

 fr
am

e
tim

e
[m

s]

global_lock TM_coarse

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

TM_coarse

Sp
ee

du
p

2 threads 4 threads 8 threads

Table 2: Transactional statistic of the QuakeTM server running with 8 threads.

Clients Transactions Aborts Abort rate [%] Mean [KB] Max [KB] Total [MB]

Reads 3.0 104 105
Writes 0.6 17 20
Reads 2.8 863 263
Writes 0.6 164 55
Reads 3.4 1413 570
Writes 0.6 269 108
Reads 4.2 1478 1207
Writes 0.8 251 216
Reads 5.1 1704 1725
Writes 0.9 262 296

16 524561 184992 35.3

8 364305 76560 21.0

4 179241 10820 6.0

0 0.0

2 95980 1970 2.1

1 34754

6.1 Comparison with Atomic Quake
The fact that QuakeTM and Atomic Quake had different starting
points leads to some differences between them. In QuakeTM we
started from the sequential version and were free to choose our
parallelization strategy which eventually resulted in the choice of
fork-join parallelism supported by OpenMP. Conversely, with
Atomic Quake, we inherited the base parallelization structure and
changed only the synchronization mechanism from locks to
transactions. Therefore, Atomic Quake uses the pthreads model
and implements manual thread control where the frame execution
logic is also changed to some extent. Moreover, the QuakeTM
client-server protocol was slightly changed to enable automatic
control of the TraceBot client (we added two control signals on
both sides to stop the currently running trace and start a new one
from the chosen point in the game world). These were the reasons
why we chose not to do a straightforward comparison, but to
reimplement fine-grained critical sections and locking techniques
the same way Atomic Quake does, with just a few modifications.
Therefore, the resulting implementation is equivalent to Atomic
Quake in the sense of sharing a fine-grain parallelization
approach.

We again start with the overhead graph shown in Figure 8. As
expected, in the fine-grained lock implementation of Atomic
Quake we see comparatively more overhead compared to the
sequential version than in the global lock case of QuakeTM. This
is partially due to data copying from global to private buffers and
vice versa, and partially due to the programming patterns
associated with the use of locks which are necessary to avoid lock
related problems like deadlock and livelock situations. This
overhead is approximately 50%. For the TM case we have the
overhead of 2.4x – 3x which is 50% decrease compared to what
we had in the QuakeTM case. This can be explained by the
smaller size of transactions, especially the read set sizes which are
an order of magnitude smaller in a fine-grained implementation.

The comparative performance of the fine-grained lock and
Atomic Quake TM implementations is shown in Figure 9, while
the speedup and scalability are presented in Figure 10. Speedup of
the fine-grained lock version is 1.63 while the speedup of a TM
implementation is 1.5. For completeness, Figure 10(b) also shows
the performance of the global lock and QuakeTM versions. The
fine-grained lock version performs the best followed by the global

lock version.The Atomic Quake transactional version comes close
to the global lock version while the coarse grained
implementation of QuakeTM falls behind. It is now clear that
both transactional versions pay a high performance cost
associated mainly with instrumentation overhead which is
supported by the fact that the abort rate of the Atomic Quake TM
server running with eight threads and sixteen clients is only 4.1%.
We give the summary TM statistics of 8-thread Atomic Quake in
Table 4.

7. FUTURE WORK
Besides the fact that negligible time is spent in execution of the
other two stages in the frame, we plan to parallelize them because
they exhibit different patterns and could be useful for testing TM
implementations. We also plan to modify certain structures,
especially the areanode lists, in order to decrease the abort rate
and hopefully enable the use of coarser transactions. The
QuakeTM source code will be publicly available at
http://www.bscmsrc.eu.We encourage other implementers
to download and use the application to test their TM systems.

8. CONCLUSION
In this paper, we have introduced QuakeTM, the first complex
real-world TM application that was developed directly from a
sequential version using transactional memory. We have made a
detailed description and commented on the challenges involved in
the process of doing this work. The emphasis was on testing the
TM programmability which led us to take a coarse-grained
parallelization approach. As a result, QuakeTM is characterized
with large atomic regions that put too much pressure on the
underlying STM system. Our evaluation clearly shows that the
transactional overhead which results in the 6x slowdown and the
abort rate that goes up to 35.3% are excessive and cannot be
compensated with the speedup from parallel execution. This leads
us to conclude that a coarse-grained approach is not a viable
option for the current STM systems. Moreover, we have shown
that the read and write set sizes are significant, which could
impose serious problems for hardware TM systems. Finally, we
were surprised by the amount of programmer time investment.

The overhead results we’ve seen here have been substantially
worse than in our recent work on supporting atomic blocks in

Table 3: QuakeTM transactional execution breakdown.

109

cycles
% 109

cycles
%

1 13.5 10.3 75.8 3.3 24.2 19.5

2 9.5 9.0 94.1 0.6 5.9 18.0

3 17.2 15.1 87.9 2.1 12.1 52.7

4 11.6 10.9 94.3 0.7 5.7 22.4

5 5.9 3.2 53.7 2.8 46.3 61.1

overall 57.9 48.5 83.8 9.4 16.2 35.2

TM
block

Multithread execution - 8 threads, 16 clients

Total
[109

cycles]

Instrumentation
overhead

Abort overhead
Abort

rate [%]

Figure 8: Normalized average frame execution times of
the AtomicQuake parallel implementations for the
single-thread case. The baseline is the sequential

0
0.5

1
1.5

2
2.5

3
3.5

1 2 4 8 16
Number of clients

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

serial lock_fine TM_fine

C# [1]. When running C# versions of the STAMP benchmarks
we typically saw the overhead of running inside an atomic block
as substantially less than 2x over unsynchronized sequential code,
and we typically saw that the TM implementation outperformed
the sequential version as soon as a second core was added.

It remains to be seen whether differences between C and C# mean
that similar performance is unlikely in C, or whether these
differences merely reflect the ongoing development of prototype
implementations which will improve over time. However, unless
the aforementioned problems are solved by the future STM
implementations in C, the only option left for a programmer is to

take a fine-grained parallelization approach. In that case, it
remains to be seen whether other characteristics of transactional
memory, such as composability and deadlock freedom, are going
to justify a switch to the TM programming model.

9. ACKNOWLEDGMENTS
Special thanks to Srdjan Stipic for his help during the work on
this paper. We would also like to thank Intel for making the
prototype C++ STM Compiler publicly available. This work is
supported by the cooperation agreement between the Barcelona

Table 4: Transactional statistic of the AtomicQuake server running with 8 threads

Clients Transactions Aborts Abort rate [%] Mean [B] Max [B] Total [MB]

Reads 65.1 58511 12
Writes 5.2 20102 1
Reads 66.0 62728 25
Writes 5.7 24397 2
Reads 83.7 80275 55
Writes 8.2 39726 5
Reads 102.5 102470 145
Writes 9.6 57552 14
Reads 133.3 231593 192
Writes 15.5 211651 22

16 3226759 131814 4.1

8 1439874 20593 1.4

4 655020 4165 0.6

2 367118 826 0.2

1 190206 0 0.0

Figure 9: Comparative performance of AtomicQuake parallel configurations

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

1 client 2 clients 4 clients 8 clients 16 clients
Number of threads

Ti
m

e
[m

s]

lock_fine TM_fine

Figure 10: Parallel servers running with 16 clients: (a) Speedup, (b) Scalability.
 (a) (b)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

lock_fine TM_fine

Sp
ee

du
p

2 threads 4 threads 8 threads

0.0

2.0

4.0

6.0

8.0

1 2 4 8Threads

A
ve

ra
ge

 fr
am

e
tim

e
[m

s]

global_lock lock_fine
TM_coarse TM_fine

Supercomputing Center – National Supercomputer Facility and
Microsoft Research, by the Ministry of Science and Technology
of Spain and the European Union (FEDER funds) under contract
TIN2007-60625, by the European Network of Excellence on
High-Performance Embedded Architecture and Compilation
(HiPEAC) and by the European Commission FP7 project VELOX
(216852). Vladimir Gajinov and Ferad Zyulkyarov are also
supported by a scholarship from the Government of Catalonia.

10. REFERENCES
[1] M. Abadi, T. Harris and M. Mehrara. Transactional memory

with strong atomicity using off-the-shelf memory protection
hardware. In PPoPP’09: Proc. 14th Symp. on Principles and
Practice of Parallel Programming, Feb. 2009, pp. 185-196

[2] A. Abdelkhalek and A. Bilas. Parallelization and
performance of interactive multiplayer game servers. In
IPDPS ’04: Proc. 18thIinternational Parallel and Distributed
Processing Symposium, Apr. 2004, pages 72–81.

[3] A. Abdelkhalek, A. Bilas and A. Moshovos. Behavior and
performance of interactive multi-player game servers. In
ISPASS’01: Proc. of the 2001 International IEEE
Symposium on Performance Analysis of Systems and
Software, Nov. 2001, pages 355-366.

[4] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha and T. Shpeisman. Compiler and runtime support for
efficient software transactional memory. In PLDI ’06: Proc.
2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 2006, pp. 26-37

[5] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham
and I. Watson. Lee-TM: A Non-trivial Benchmark for
Transactional Memory. In ICA3PP’08: Proc. 8th
International Conference on Algorithms and Architectures
for Parallel Processing, June 2008, pages 196-207.

[6] L. Dalessandro, V. J. Marathe, M. F. Spear and M. L. Scott.
Capabilities and Limitations of Library-Based Software
Transactional Memory in C++. In TRANSACT’07: Proc. 2nd
ACM SIGPLAN Workshop on Transactional Computing,
Aug 2007.

[7] H. Fuchs, G. D. Abram and E. D. Grant. Near Real-Time
Shaded Display of Rigid Objects. In Proceedings of the 10th
Annual Conference on Computer Graphics and Interactive
Techniques, 1983, pages 65-72.

[8] R. Guerraoui, M. Kapalka and J. Vitek. STMBench7: A
benchmark for software transactional memory. In
EuroSys’07: Proc. 2nd European Systems Conference, Mar.
2007, pages 315-324.

[9] M. Herlihy and E. Koskinen. Transactional boosting: a
methodology for highly-concurrent transactional objects. In
PPoPP ’08: Proc. 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Feb.
2008, pages 207–216.

[10] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In ISCA

’93: Proc. 20th Annual International Symposium on
Computer Architecture, May 1993, pages 289–300.

[11] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K.
Bala and L. P. Chew. Optimistic parallelism requires
abstractions. In PLDI’07: Proc. ACM SIGPLAN 2007
Conference on Programming Language Design and
Implementation, June 2007, pages 211-222.

[12] M. McGuire. Quake 2 BSP File Format. http://www.flip
code.com/archives/Quake_2_BSP_File_Format.shtml

[13] C. C. Minh, J. Chung, C. Kozyrakis and K. Olukotun.
STAMP: Stanford transactional applications for multi-
processing. In IISWC’08: Proc. 11th IEEE International
Symp. on Workload Characterization, Sep. 2008, pp. 35-46.

[14] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S.
Berkowits, J. Cownie, R. Geva, S. Kozhukow, R.
Narayanaswamy, J. Olivier, S. Preis, B. Saha, A. Tal and X.
Tian. Design and implementation of transactional constructs
for C/C++. In OOPSLA ’08: Proc. 23rd ACM SIGPLAN
Conference on Object Oriented Programming Systems
Languages and Applications, Oct. 2008, pages 195–212.

[15] C. Perfumo, N. Sonmez, S. Stipic, A. Cristal, O. Unsal, T.
Harris and M. Valero. The limits of software transactional
memory (STM): Dissecting Haskell STM applications on a
many-core environment. In CF’08: Proc. ACM International
Conference on Computing Frontiers, May 2008, pp. 67–78.

[16] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh and
B. Hertzberg. McRT-STM: a high performance software
transactional memory system for a multi-core runtime. In
PPoPP’06: Proc. 11th Symposium on Principles and
Practice of Parallel Programming, Mar. 2006, pp. 187-197.

[17] M. L. Scott, M. F. Spear, L. Dalessandro and V. J. Marathe.
Delaunay Triangulation with Transactions and Barriers. In
IISWC '07: Proc. 10th IEEE International Symposium on
Workload Characterization, Sep. 2007, pages 107-113.

[18] C.Wang,W.-Y. Chen, Y.Wu, B. Saha and A.-R. Adl-
Tabatabai. Code generation and optimization for
transactional memory constructs in an unmanaged language.
In CGO ’07: Proc. 2007 International Symposium on Code
Generation and Optimization, Mar. 2007, pages 34–48.

[19] A. Welc, , B. Saha and A.-R. Adl-Tabatabi. Irrevocable
transactions and their applications. In SPAA ’08: Proc. 20th
Annual Symposium on Parallelism in Algorithms and
Architectures, June 2008, pages 285–296.

[20] F. Zyulkyarov, V. Gajinov, O. Unsal, A. Cristal, E.
Ayguade, T. Harris and M. Valero. Atomic Quake: Use Case
of Transactional Memory in an Interactive Multiplayer Game
Server. In PPoPP’09: Proc. 14th Symp. on Principles and
Practice of Parallel Programming, Feb. 2009, pages 25-34.

[21] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai
and H.-H. S. Lee. Kicking the tires of software transactional
memory: why the going gets tough. In SPAA’08: Proc. 20th
ACM Symposium on Parallelism in Algorithms and
Architectures, June 2008, pages 265-274.

