
 

 

QuakeTM: Parallelizing a Complex Sequential Application 
Using Transactional Memory

 
Vladimir Gajinov†∗    Ferad Zyulkyarov†∗    Osman S. Unsal†     Adrian Cristal†     

Eduard Ayguade†     Tim Harris‡     Mateo Valero†∗ 
†Barcelona Supercomputing Center   ∗Universitat Politecnica de Catalunya   ‡Microsoft Research Cambridge 

vladimir.gajinov@bsc.es    ferad.zyulkyarov@bsc.es   osman.unsal@bsc.es   adrian.cristal@bsc.es   
eduard.ayguade@bsc.es   tharris@microsoft.com   mateo.valero@bsc.es 

  
ABSTRACT 
“Is transactional memory useful?” is the question that cannot be 
answered until we provide substantial applications that can 
evaluate its capabilities. While existing TM applications can 
partially answer the above question, and are useful in the sense 
that they provide a first-order TM experimentation framework, 
they serve only as a proof of concept and fail to make a 
conclusive case for wide adoption by the general computing 
community. 

This paper presents QuakeTM, a multiplayer game server; a 
complex real life TM application that was parallelized from the 
sequential version with TM-specific considerations in mind. 
QuakeTM consists of 27,600 lines of code spread across 49 files 
and exhibits irregular parallelism for which a task parallel model 
fits well. We provide a coarse-grained TM implementation 
characterized with eight large transactional blocks as well as a 
fine-grained implementation which consists of 58 different critical 
sections and compare these two approaches. In spite of the fact 
that QuakeTM scales, we show that more effort is needed to 
decrease the overhead and the abort rate of current software 
transactional memory systems to achieve a good performance. We 
give insights into development challenges, suggest techniques to 
solve them and provide extensive analysis of the transactional 
behavior of QuakeTM, with an emphasis and discussion of the 
TM promise of making parallel programming easier.  

Categories and Subject Descriptors:   D.1.3 
[Programming Techniques]: Concurrent Programming – Parallel 
Programming. 

General Terms: Design, Experimentation, Performance. 

Keywords: Game Server, Transactional Memory 

1. INTRODUCTION 
Recently, processor manufacturers have done a right-hand turn 

away from increasing single core frequency and complexity. Low 
returns from instruction level parallelism (ILP) and problems with 
power/heat density have led to the appearance of multi-core 
processors that leverage thread level parallelism (TLP). In this 
new era of multi-core architectures, the coordination of the work 
done by the multiple threads that cooperate in the parallel 
execution is one of the challenging issues both in terms of 
programming productivity and execution performance. 
Transactional memory (TM) is a technology that may help here, 
by aiming to provide the performance of fine-grained locking 
with the ease-of-programming of coarse-grained critical sections. 
In this paper we assess the extent to which this is true of current 
TM implementations, based on code descriptions and examples as 
well as through performance evaluation.  

As a case study we started from a sequential version of Quake, a 
complex multi-player game. Using OpenMP and software 
transactional memory (STM) we built QuakeTM, a parallel 
version which consists of  27,600 lines of code spread across 49 
files. Developed in 10 man-months, QuakeTM exhibits irregular 
parallelism and long transactions contained within eight different 
atomic blocks with large read and write sets. 

Our intention was not to pursue performance per se, but to 
examine whether or not it is possible to achieve good results with 
a coarse-grained parallelization approach. This decision was 
driven by one of the hopes for TM, to make parallel programming 
easier by abstracting away the complexities of using fine-grained 
locking, while still achieving good scalability. When parallelizing 
an application from scratch using TM, this kind of coarse-grained 
approach is likely to be popular with programmers. Consequently,  
this approach needs to be tested on a highly complex application 
in order to see how well it works in practice. 

This paper makes following contributions: 

• We describe how we developed QuakeTM and discuss the 
challenges we encountered. 

• We show that our implementation scales reasonably well, 
despite the use of coarse-grained transactions.  However, we 
show that this scalability is unable to compensate for the 
high overhead and abort rate of the software transactional 
memory system. 

• Further on, we have adapted the fine-grained TM 
implementation described in our previous work on Atomic 
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Quake [20] in order to compare these two different 
parallelization approaches. 

• In a pleasant side-effect during our performance optimization 
effort, we developed a simple mechanism, which we call 
ReachPoints, that could be useful to discover and isolate 
TM-related performance problems. 

The remainder of this paper is organized as follows: In Section 2, 
we comment on related work. In Section 3, we describe the 
structure of the sequential Quake application. In Section 4, we 
describe the parallelization process and the development of 
QuakeTM. Section 5, details the evaluation environment and 
Section 6 follows with the results. In Section 7 we discuss future 
work and we conclude in Section 8. 

2. RELATED WORK 
Early TM research used micro-benchmarks to demonstrate the 
potential of the new programming paradigm. Subsequently, sets 
of kernel applications have been developed, such as Lee-TM [5], 
Delaunay mesh refinement and/or agglomerative clustering 
[9][11][17] and STMBench7 [8]. The total code size of these 
kernels ranges from 800 lines for Lee-TM to 5000 lines for 
STMBench7, but the common fact is that the total size of critical 
sections doesn’t exceed a couple of hundred lines of code.  

There are several benchmark suites of programs using TM. The 
Haskell STM benchmark suite [15], consists of nine Haskell 
applications of different sizes, which target different aspects of an 
underlying TM system. While it is good for its domain, the 
Haskell STM benchmark suite is not directly applicable to other 
languages. The STAMP benchmark suite [13], consists of eight 
applications that cover a variety of domains and exhibit different 
characteristics in terms of transaction lengths, read and write set 
sizes and amounts of contention. The downside of these 
applications, when used with STM, is the fact that they were 
manually optimized, with an application level knowledge 
beforehand, which enabled authors to manually implement the 
optimal number of read/write barriers in the code. This doesn't 
help the effort to prove the primary goal of TM which is to make 
multithread programming easier. If programmers are required to 
manually instrument the code in order to achieve basic 
performance then TM is not the solution. As it was pointed out by 
Dalessandro et al. [6] library interfaces can remain a useful tool 
for systems researchers, but application programmers are going to 
need language and compiler support. 

In general, most previous TM applications and benchmarks were 
either derived automatically from lock-based parallel versions 
(this is, replacing lock-based critical sections with transactions), 
or if they were developed from sequential versions then the 
resulting code was somewhat limited in size and complexity 
(which limits the benefits of detailing the development challenges 
and the programmer effort). Therefore, there is a clear need to 
develop a substantial TM application from the ground up while 
extensively detailing the parallelization process and the 
challenges involved. This is one of the main contributions of this 
paper. 

In recent work [20], we developed a transactional version of 
Quake from an existing lock-based version [2][3]. We 

encountered a different set of challenges when parallelizing the 
sequential version of Quake with TM. Comparing that approach 
with the one in this paper gives us a new perspective on how the 
use of “atomic” blocks in new parallel code might compare with 
their use as a replacement for lock-based critical sections. We 
discuss these two issues further in Section 4. 

3. QUAKE DESCRIPTION 
Quakeworld is the multi-player mode of Quake I, the first person 
shooter game released under the GNU general public license by 
ID Software. It is a sequential application, built as a client-server 
architecture, where the server maintains the game world and 
handles coordination between clients, while the clients perform 
graphics update and implement user-interface operations. 

The server executes an infinite loop, where each iteration 
performs the calculation of a single frame. The frame execution 
algorithm is presented in Figure 1(a). The server blocks on the 
select system call waiting for client requests. If requests are 
present on the receiving port, it starts the execution of the new 
frame. It is possible to distinguish three stages of frame execution: 
world physics update (P), request receiving and processing (R) 
and reply stage (S). Upon the end of execution of all three stages 
the server frame ends and the process is repeated. Generally, the 
server will send replies only to clients which were active in the 
current frame, namely those who have sent a request. All replies 
are sent after all requests have been processed. This clear 
separation of the frame stages simplifies the parallelization, as we 
present later in the paper. 

The Quake game world  is a polygonal representation of the 3D 
virtual space in which all objects, including players, are referred 
to as entities. Each entity has its own specific characteristics and 
actions it can perform. During the update, the server will send 
information only for those entities which are of interest to the 
client. Nevertheless, the server has to simulate and model, not 
only the players’ actions, but also the effects induced by these 
actions. Thus, server processing is a complex, compute intensive 
task that increases superlinearly with the number of players [3]. 

3.1 Map Description 
A map of the Quake world is represented with a file which holds 
the binary space partition (BSP) implementation of the 3D world 
with all the details relevant to draw and position the objects in the 
world [7][12]. The level of details contained within theBSP tree is 
large; therefore BSP trees are hard to maintain for dynamic 
scenes. If the server wants to generate a quick list of the objects 
that an entity may interact with, traversing the BSP tree is 
inefficient, and since this is a common operation involved in each 
move command, the server constructs and maintains a secondary 
binary-tree structure, called an areanode tree. This is a 2D 
representation of the BSP tree, constructed during server 
initialization by dividing the 3D volume in the x-y plane. Figure 
1(b) demonstrates the building process. Each areanode has an 
associated list of objects contained within the space defined by 
that areanode. When an object is moved, it is necessary to update 
the areanode tree to reflect the new position of the object. This is 
done by removing the object from the original list, and inserting it 
into the list of the areanode that corresponds to the destination of 
the object. 



 

 

3.2 Move Execution 
Clients influence the gameplay by sending the move command, 
which specifies various parameters related to the player’s  state, 
actions and intentions. Using the data extracted from the 
command (motion indicators, origin of the player and time to run 
the command), the server constructs the bounding box of the 
player's motion, thus defining the region of the world it can affect. 
Then it traverses the areanode tree to find all the objects 
contained within this bounding box and associate them with the 
move command. It then simulates the move, and upon 
completion, removes the player's object from the old position in 
the game world and links it to the new one.  

4. PARALLELIZATION 
Parallelization of the Quake server has already been done using 
POSIX threads (pthreads) in [2]. It is the fine-grained lock-based 
implementation which, to the best of our knowledge, took about 
15 man-months of development. That version is the base for our 
previous work on Atomic Quake [20], whose main objective was 
to evaluate the effort of replacing locks with transactions. In that 
paper [20] we report that the process was not straightforward and 
that we encountered specific challenges which considerably 
increased the development effort. First, the lock parallelization is 
not block structured which required code reorganization to adapt 
to the TM model. The second problem was to avoid I/O 
operations which is not an issue in a lock based system. Finally, a 
big fraction of the development time was spent in understanding 
how locks are associated with the variables and to get a grip with 
the locking strategy. 

This paper doesn’t build on top of the pthreads version, but 
implements a different parallelization strategy. Our intention was 
to start from the sequential application and parallelize it using 
OpenMP and transactional memory. Further on, we deliberately 
decided to implement a coarse-grained parallelization approach 
driven by the desire to test one of the promises of transactional 
memory, which is to make multithreaded programming easier by 
providing good performance scaling coupled with a coarse-
grained parallelization effort. 

In order to give a complete overview of the parallelization of the 
Quake game server using transactional memory, we also adapted 
the fine grained implementation described in Atomic Quake. 
Later on, in the results section, we give a comparison between 
these two implementations and show that both of them suffer 
from the same problems associated with high transactional 
memory instrumentation overhead, though the extent in which the 
fine-grained version is affected is lower. 

Semantically comparing these two solutions, it is clear that 
QuakeTM, a coarse-grained implementation, is characterized with 
atomic blocks and read and write sets that are an order of 
magnitude bigger. Overall, there are only eight transactional 
blocks in QuakeTM compared to 58 in the fine-grained 
implementation of Atomic Quake. These facts lead to a noticeable 
difference in the abort rate which is 35.3% in the QuakeTM 
compared to only 4.1% in the Atomic Quake case. Nevertheless, 
the TM instrumentation overhead is still high in both 
implementations, but it does seem to be proportional to the read 
set size of transactions.  

4.1 QuakeTM 
One of the main goals of this work was to test the primary 
objective of transactional memory [10], to make multithreaded 
programming easier. We had no prior knowledge of the 
application itself, so we took some time to understand the code. 
We have identified the parts of the application suitable for 
parallelization, using profile information and by studying the 
program structure. The process of adding OpenMP parallelization 
pragmas and transactional boundaries was then straightforward 
and simple, if we disregard occasional problems with the 
compiler. The real challenge was to identify which of the global 
data structures and variables must be shared and which can be re-
structured as thread-local data. From a performance perspective 
this is crucial, since a lot of sharing leads to bad performance. The 
development of QuakeTM, our coarse grained version, was done 
in ten man-months. Additional two months were spent on 
adapting the fine-grained solution described in our work on 
Atomic Quake [20]. In this section we describe our QuakeTM 
parallelization approach. 
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Figure 1: (a) Frame execution algorithm. (b) Constructing areanode tree from the BSP map volume. Adapted from [3] 



 

 

4.1.1 Shared Data 
During the gameplay, there are three types of shared data 
structures: message buffers, the areanode tree and game objects 
(entities). Among the buffers we further distinguish the global 
state buffer and per-player reply buffers. The global state buffer, 
updated in the physics update stage and the request stage, is used 
to hold the updates that reflect the actions of all players involved 
in the game session. 

Accesses to the areanode tree are in the form of linked list 
operations on the object lists associated with each areanode. The 
access pattern for the request stage has already been covered in 
the explanation of the move command. A similar pattern is 
observed in the physics update stage since physical influences, 
which may affect an object, can change its position and hence its 
areanode container. 

Game objects are updated in the physics update stage and the 
request processing stage. During the move execution, each object 
that is touched is updated in a global, shared part of the memory 
which is divided into a number of regions (strings, functions, 
statements, field definitions, global definitions, globals and 
entities). The fact is that only the entity part of the program 
memory has to be shared, while other parts should be thread-
private to achieve better concurrency. 

4.1.2 Parallelization Strategy 
An execution breakdown of the sequential Quake server is given 
in Table 1. It is clear that the majority of time is spent in the 
request processing phase, and even though physics update 
exhibits similar shared data access patterns, its operations seem to 

be significantly less involved. Therefore, we concentrate on the 
parallelization of the request processing stage. The algorithm for 
this stage is presented in Figure 2(a). Each iteration of the loop in 
Figure 2(a) performs the execution of a single client request. A 
tasking model is the most suitable for parallelization of this loop 
for two reasons: (i) given the diversity of the client requests, load 
balancing is an important factor to consider and (ii) we are not 
aware of the number of requests that are pending on the receiving 
port. The profiling information tells us that the time needed to 
receive all packets is negligible compared to the processing time. 
Therefore, to enable application of the tasking model, we separate 
the receiving phase from the processing phase, and receive all 
packets first, storing them into a temporary list. Afterwards, the 
list is traversed and a processing task created for each packet in 
the list. Figure 2(b) illustrates our approach. 

The QuakeTM coarse-grained approach consists of eight large 
atomic blocks, but here we describe only the four which are 
involved in synchronization of the client move command 
processing, the most common action performed by the Quake 
server. The client message is extracted from the packet and parsed 
into one or more commands. Each message can hold only one 
move command which is by far the most common type of 
commands. The execution of the move command is illustrated by 
the diagram in Figure 3 together with the transactional block 
markers. The execution begins with the client’s physics update 
(ClientPhysics) followed by the so called “think” function 
(ClientThink). This is a special feature of Quake to register 
an action that needs to be carried out, in regard to the client, in the 
future. This is not specific to the client entities, but overall this is 
the way to implement actions that exceed the duration of a single 

Figure 2: Pseudocode for the request processing stage: (a) sequential and (b) parallel implementation 

while (NET_GetPacket ()) { 
   // Filter packets 
   if (connection related packet) { 
      SV_ConnectionlessPacket (); 
      continue; 
   } 
 
   // game play packets 
   for (i=0 ; i<MAX_CLIENTS ; i++) { 
      // Do some checking here 
      SV_ExecuteClientMessage (); 
   } 
} 

 

while (NET_GetPacket ()) { 
   // Filter packets 
   if (connection related packet){ 
      SV_ConnectionlessPacket (); 
      continue; 
   } 
   AddPacketToList(); 
   CopyBuffer(); 
} 
 
#pragma omp parallel shared(packetlist, ...){ 
   #pragma omp single 
   while (packetlist != NULL) { 
      #pragma omp task firstprivate(packetlist){ 
         NET_Message_Init(..); 
         // Do some checking here 
         for (i=0 ; i<MAX_CLIENTS ; i++){  
            // Do some checking here 
            SV_ExecuteClientMessage (); 
         } 
      } 
      packetlist = packetlist->next; 
   } 
} 

(b) (a) 



 

 

frame. Along with the pmove (player move) structure 
initialization (PmoveInit), these actions form the preparation 
for the actual move execution, and can be contained inside a 
single transactional block. 

The next phase in the execution – AddLinksToPmove, 
determines which entities could be affected by the current move 
command. Starting from the origin of the player the maximum 
affected area is determined. Next, the areanode tree is traversed 
and the corresponding areanode entity lists checked to discover 
those objects whose position falls into this area. Links to all 
affected objects are added to the pmove structure entity list. 

Further processing is carried on with the execution of the 
PlayerMove function. First, a model box is assigned to the 
player’s entity and each entity from the pmove entity list. Then, 
using the parameters from the move command extracted from the 
received message, a trajectory is followed from the player's 
original position to its potential destination. If the player's model 
box clips a model box of the other entity moving along the 
trajectory line, there is a collision between them. Depending on 
the various parameters of the collided objects and the 
environment that surrounds them (air, water, solid area, etc.) the 
player’s final position is calculated. 

The last phase of the move execution is LinkEntity function 
which re-links the player’s entity to the new position in the 
areanode tree. In the end, the player’s influence during its 
movement is applied to each entity that was “touched” along the 
trajectory. This action is denoted as PlayerTouch in Figure 3. 

4.2 Parallelization Issues and ReachPoints 
Even though we dedicated significant time to manually identify 
global data that could be thread-private, for unmanaged code 
written in a sequential programming style, where a vast amount of 
data is global, as in the Quake case, it is not enough. During our 
attempt to boost performance we came up with a solution, which 
we call ReachPoints, that helped us identify the rest of the global 
variables that could be thread private and discover the problems 
that arose from TM cache-line granularity conflict detection 
implementation. 

The ReachPoints solution, shown in Figure 4, consists of 
allocating an array of counters for each thread, taking cache line 
granularity into account (x*16 integers for each thread where 
x=1,2,... and cache line size of 64 bytes). At the end of execution, 
when we print the state of counters, the difference between two 
counters pinpoints the region of the code where transactions 
abort. Analyzing that region, it is possible to discover causes for 
the aborts. Simple as it may be, we found ReachPoints very 
valuable and useful. As already stated, it even helped us discover 
sources of false conflicts referred to as false sharing [21], which 
occur mostly within structured data and are the consequence of 
the fact that two different variables or structure fields reside in the 
same cache line. Assuming that only one of them is written, say 
variable X, under the cache line granularity conflict detection 
system, a read-only variable Y is also causing conflicts, since the 
writes to X are treated as writes to Y. When we applied cache 
padding for such cases, we noticed a significant performance 
improvement due to a decrease in the number of aborts. This 
solution is specific for eager conflict detection, since in TM 
systems with lazy conflict detection transactions can be aborted 
anytime, regardless of the read or write issued in the moment of 

the abort. It should be said that one could think of better 
mechanisms to detect which data access is causing conflicts, and 
one of them is certainly debugger support. 

 

 

 

int reachpoints[NumThreads][x*16]
 
TM_PURE 
void PointReached(int check) { 
   reachpoints[ThreadId][check]++; 
} 
 
int main () { 
   . . . 
   TRANSACTION 
      PointReached (1); 
      statement_1; 
      PointReached (2); 
   TRANSACTION_END 
   . . . 
}

Figure 4: ReachPoints: Simple solution for discovering 
conflicting regionsof the transactional code. 
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Figure 3: Diagram of the move command execution          
with transactional block markers. 

Table 1: Execution breakdown of the sequential server 

Stage Time [%]
Request Processing 87.8
Reply 3.1
Physics Update 2.1
Measuring and Info 5.3
Other 1.7



 

 

5. EVALUATION 
For testing purposes, we used the existing Quake client code to 
build an automatic trace client called TraceBot, whose behavior is 
controlled by a finite state machine. We also had to implement 
certain changes on the server side to be able to synchronize the 
client’s actions with the server response. Essentially, TraceBot is 
simply sending messages at the server frame rate until it dies, as a 
result of actions of the other connected players, or until the end of 
the trace, when it commits suicide. After TraceBot dies, it sends 
another special string command which function is to respawn the 
client into the game world and the process is repeated. The traces 
are recorded using VideoClient, which is similar to TraceBot with 
the addition of graphics. To record traces we use the original, 
sequential Quake server, and connect VideoClient to play the 
game, producing traces that represent recorded human actions. 

We run the server on one machine and the clients on another, to 
simulate the real game environment, given that network latency 
and bandwidth are not critical [2]. The server and client frame 
rates are synchronized and set to 100ms which is enough time for 
the worst case transactional frame length. Both machines are 
PowerEdge 6850, with four dual-core 64-bit Intel® Xeon™ 
processors running at 3.2 GHz, with 16MB L3 cache memory per 
processor unit, running SUSE LINUX 10.1. 

In this work we are using the prototype version 3.0 of the Intel 
STM C/C++ compiler [4][14][19] with level O3 optimizations 
enabled. The underlying STM implementation is an extended 
version of the McRT-STM system [16]. The compiler implements 
both optimistic and pessimistic concurrency control, and provides 
single lock atomicity semantics and weak atomicity guarantees. 
Serial execution mode is provided to support system calls and I/O 
operations inside transactions. To optimize function calls within 
transactions the compiler introduces function annotations: 
tm_callable, tm_pure  and tm_unknown. Nesting is 
supported in a closed nesting fashion via flattening; a data conflict 
rolls back to the outermost level and re-executes the transaction. It 
uses cache-line granularity conflict detection and implements 
strict two-phase locking for writes. Writes update values in place 
and generate undo log entries. Transactions validate the read set at 
commit time, and if necessary during the read operation, which 
means that transaction can abort any time during the execution 
when it encounters a conflict. 

6. RESULTS 
To test the performance of QuakeTM, we compare the results 
with the sequential and global lock versions. For the parallel 
setups we vary the number of threads from one to eight. We also 
vary the number of clients from one to sixteen and take the mean 
of five runs. Each run executes for 2000 frames (about 200s of 
real time). The results are collected for the last 1000 frames in 
order to avoid effects from server initialization and client 
connection times. It should be noted that in our evaluation system 
it is not necessary to stress the server by running a large number 
of clients; if the server is able to service given number of clients 
faster, it is able to service more clients in a desired frame length. 

We use the rdtsc instruction to measure the number of cycles 
between two events and then translate that value into 
milliseconds. Even though only the request processing stage is 
parallelized, we present results and for the entire frame execution. 

 
Figure 5  presents normalized average frame execution times of 
the parallel implementations for the single-thread case. The 
baseline is always the average frame execution time of the 
sequential server for a given number of clients. Since there is no 
contention, the lock version introduces almost no overhead. On 
the other hand, the overhead for the transactional version goes 
from 3.5 times for a single client to 6 times for sixteen clients. 
These results exceed the findings of Wang et al. [18] for non 
optimized version of STM. For microbenchmarks the authors 
report an overhead of non-optimized STM code from 2.4 to 4.5 
times over a fine-grained locking implementation. For the 
SPLASH-2 benchmarks the reported overhead doesn't exceed 
20%, but it is a measure across the entire execution, which hides 
the fact that little time is spent in critical sections. In our case 
more than 85% of the time is spent in critical sections. 

Figure 6 shows the comparative performance of the QuakeTM 
and the global lock version for different numbers of connected 
clients. As expected, the global lock version doesn't scale, while 
the transactional version starts to scale only when the workload 
becomes sufficient, which happens with eight connected clients. 
We can see that the transaction overhead remains approximately 
4x-6x. When we run the application with sixteen clients, then we 
start to notice a considerable speedup. Figure 7(a) gives a better 
view of this case. The values are normalized to a single thread 
execution time. The speedup for eight threads is 1.62 which is a 
good initial result, considering that this is the first real application 
to test TM capabilities, but it is still not enough to cover the costs 
of running transactions. Figure 7(b) shows the scalability of the 
transactional Quake server running with sixteen clients. It is 
obvious that the TM version scales, but it still performs worse 
than the global lock version, even though it was able to 
compensate for more than 50% of the transactional overhead.  

To discover the reasons why the transactional version doesn't 
perform better, it is necessary to look at the statistical data which 
is provided by the Intel compiler. Table 2  presents these statistics 
for the TM configuration running with eight threads. All 
statistical values increase when we increase the number of clients 
connected simultaneously, but the most important, from a 
performance perspective, is the transaction abort rate. In the case 
of sixteen connected clients 35.3% of transactions abort, causing a 
high amount of wasted work. There are examples when a 
transaction aborted 136 times before it eventually committed. 

Figure 5: Normalized average frame execution times of 
the QuakeTM parallel implementations for the single-
thread case. The baseline is the sequential execution. 
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This leads to a significant waste of processor cycles to re-execute 
the transactional code. Table 2 also shows that although the mean 
value of the data read is about 5.1 KB there are cases when it 
grew up to 1.7 MB. This is an important factor which could stress 
the design of any hardware transactional memory system. 

Table 3 presents the execution breakdown of the TM server 
running with eight threads and sixteen clients. Out of eight atomic 
blocks implemented in QuakeTM only the five presented in the 
table contribute considerably to the overall performance. It can be 

seen that the abort overhead is not significant even for the atomic 
blocks which have a high abort rate. Since we are not in the 
position to gain an insight from the profiling due to the fact that 
Intel compiler is not open source, we can only speculate about the 
reasons for such results. A possible explanation could be that 
transactions are aborted early during the execution or that the 
contention handler and the abort mechanism are efficient. On the 
other hand, the instrumentation time may be high as a result of the 
STM runtime operations associated with locks. 

 

 

Figure 6: Comparative performance of parallel configurations 
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Figure 7: Parallel servers running with 16 clients: (a) Speedup, (b) Scalability. 
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Table 2: Transactional statistic of the QuakeTM server  running with 8 threads. 

Clients Transactions Aborts Abort rate [%] Mean [KB] Max [KB] Total [MB]

Reads 3.0 104 105
Writes 0.6 17 20
Reads 2.8 863 263
Writes 0.6 164 55
Reads 3.4 1413 570
Writes 0.6 269 108
Reads 4.2 1478 1207
Writes 0.8 251 216
Reads 5.1 1704 1725
Writes 0.9 262 296

16 524561 184992 35.3

8 364305 76560 21.0

4 179241 10820 6.0

0 0.0

2 95980 1970 2.1

1 34754



 

 

6.1 Comparison with Atomic Quake 
The fact that QuakeTM and Atomic Quake had different starting 
points leads to some differences between them. In  QuakeTM we 
started from the sequential version and were free to choose our 
parallelization strategy which eventually resulted in the choice of 
fork-join parallelism supported by OpenMP. Conversely, with 
Atomic Quake, we inherited the base parallelization structure and 
changed only the synchronization mechanism from locks to 
transactions. Therefore, Atomic Quake uses the pthreads model 
and implements manual thread control where the frame execution 
logic is also changed to some extent. Moreover, the QuakeTM 
client-server protocol was slightly changed to enable automatic 
control of the TraceBot client (we added  two control signals on 
both sides to stop the currently running trace and start a new one 
from the chosen point in the game world). These were the reasons 
why we chose not to do a straightforward comparison, but to 
reimplement fine-grained critical sections and locking techniques 
the same way  Atomic Quake does, with just a few modifications. 
Therefore, the resulting implementation is equivalent to Atomic 
Quake in the sense of sharing a fine-grain parallelization 
approach. 

We again start with the overhead graph shown in Figure 8. As 
expected, in the fine-grained lock implementation of Atomic 
Quake we see comparatively more  overhead compared to the 
sequential version than in the global lock case of QuakeTM. This 
is partially due to data copying from global to private buffers and 
vice versa, and partially due to the programming patterns 
associated with the use of locks which are necessary to avoid lock 
related problems like deadlock and livelock situations. This 
overhead is approximately 50%. For the TM case we have the 
overhead of 2.4x – 3x which is 50% decrease compared to what 
we had in the QuakeTM case.  This can be explained by the 
smaller size of transactions, especially the read set sizes which are 
an order of magnitude smaller in a fine-grained implementation. 

The comparative performance of the fine-grained lock and 
Atomic Quake TM implementations is shown in Figure 9, while 
the speedup and scalability are presented in Figure 10. Speedup of 
the fine-grained lock version is 1.63 while the speedup of a TM 
implementation is 1.5. For completeness, Figure 10(b) also shows 
the performance of the global lock and QuakeTM versions. The 
fine-grained lock version performs the best followed by the global 

lock version.The Atomic Quake transactional version comes close 
to the global lock version while the coarse grained 
implementation of QuakeTM falls behind. It is now clear that 
both transactional versions pay a high performance cost 
associated mainly with instrumentation overhead which is 
supported by the fact that the abort rate of the Atomic Quake TM 
server running with eight threads and sixteen clients is only 4.1%. 
We give the summary TM statistics of 8-thread Atomic Quake in 
Table 4. 

7. FUTURE WORK 
Besides the fact that negligible time is spent in execution of the 
other two stages in the frame, we plan to parallelize them because 
they exhibit different patterns and could be useful for testing TM 
implementations. We also plan to modify certain structures, 
especially the areanode lists, in order to decrease the abort rate 
and hopefully enable the use of coarser transactions. The 
QuakeTM  source code will be publicly available at 
http://www.bscmsrc.eu.We encourage other implementers 
to download and use the application to test their TM systems. 

8. CONCLUSION 
In this paper, we have introduced QuakeTM, the first complex 
real-world TM application that was developed directly from a 
sequential version using transactional memory. We have made a 
detailed description and commented on the challenges involved in 
the process of doing this work. The emphasis was on testing the 
TM programmability which led us to take a coarse-grained 
parallelization approach. As a result, QuakeTM is characterized 
with large atomic regions that put too much pressure on the 
underlying STM system. Our evaluation clearly shows that the 
transactional overhead which results in the 6x slowdown and the 
abort rate that goes up to 35.3% are excessive and cannot be 
compensated with the speedup from parallel execution. This leads 
us to conclude that a coarse-grained approach is not a viable 
option for the current STM systems. Moreover, we have shown 
that the read and write set sizes are significant, which could 
impose serious problems for hardware TM systems. Finally, we 
were surprised by the amount of programmer time investment.  

The overhead results we’ve seen here have been substantially 
worse than in our recent work on supporting atomic blocks in 

Table 3: QuakeTM transactional execution breakdown. 
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Figure 8: Normalized average frame execution times of 
the AtomicQuake parallel implementations for the 
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C# [1].  When running C# versions of the STAMP benchmarks 
we typically saw the overhead of running inside an atomic block 
as substantially less than 2x over unsynchronized sequential code, 
and we typically saw that the TM implementation outperformed 
the sequential version as soon as a second core was added. 

It remains to be seen whether differences between C and C# mean 
that similar performance is unlikely in C, or whether these 
differences merely reflect the ongoing development of prototype 
implementations which will improve over time.  However, unless 
the aforementioned problems are solved by the future STM 
implementations in C, the only option left for a programmer is to 

take a fine-grained parallelization approach. In that case, it 
remains to be seen whether other characteristics of transactional 
memory, such as composability and deadlock freedom, are going 
to justify a switch to the TM programming model. 
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Figure 9: Comparative performance of AtomicQuake parallel configurations 
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