
Exploring the Limits of Disjoint Access Parallelism

Amitabha Roy

University of Cambridge

amitabha.roy@cl.cam.ac.uk

Steven Hand

University of Cambridge

steven.hand@cl.cam.ac.uk

Tim Harris

Microsoft Research

tharris@microsoft.com

Abstract

The desire to extract parallelism has recently focused at-

tention on improving concurrency control mechanisms

in applications. However, programmers have few tools

to help them understand the synchronisation bottlenecks

that exist in their programs – for example to identify

which locks are heavily contended, and whether differ-

ent operations protected by the same lock are likely to

conflict in practice. This kind of profiling is valuable

to guide programmers in efforts towards optimising their

lock-based concurrent applications, as well as to aid the

design and tuning of advanced concurrency mechanisms

such as hardware and software transactional memory

systems. To this end, we describe the design and archi-

tecture of a prototype tool that provides insights about

critical sections. Our tool is based on the Pin binary

rewriting engine and works on unmodified x86 binaries.

It considers both the amount of contention for a particu-

lar lock as well as the potential amount of disjoint access

parallelism. We present the results of applying the tool to

a representative sample of applications and benchmarks.

1 Introduction

Lock-based programming has come in for recent criti-

cism on the grounds of scalability, robustness and ease

of use. A programmer is faced with many choices when

trying to tackle a program that does not scale: should the

locking be made more fine-grained, should some form of

optimistic concurrency control (OCC) be tried, should

lock-free solutions be implemented, or should experi-

mental language features like atomic blocks be ex-

plored ? It is also often not clear which lock or locks

are limiting scalability. Programmers currently have lit-

tle support in answering these questions.

There are some properties of a critical section, which

determine the possible speedups that might be obtained

by finer grained synchronisation. First, the amount of

contention for a lock is important: if there is no con-

tention for a lock then modifying it cannot improve scal-

ability. For example, Rossbach et al. showed only a

5% speedup when replacing locks in the Linux kernel

with an implementation based on hardware transactional

memory [9]. The second property is that even if wait-

ing time for a lock is significant, it is possible there is no

disjoint access parallelism [4] to be exploited. For ex-

ample, it is very hard to optimise a critical section that

increments a shared counter: all contending threads need

to access the same location.

A programmer faced with the task of making their ap-

plication more scalable must investigate these factors to

determine the best possible approach. These properties

would help decide whether it is sufficient to investigate

finer grained locking or transactional memory as “quick

fixes” — or whether the application or algorithm needs

to be rewritten.

In this paper we describe a new approach and its im-

plementation for trying to answer these questions (Sec-

tion 2). We do this by combining information from two

separate execution profiles of the program. The first

profile is coarse grained and only instruments the lock-

acquire/release operations that a process invokes. This

lets us run the program at near real-time speeds, rather

than incur the overhead of using a simulated machine [7].

For server applications this lets us subject the server to

real workloads (we discuss the Apache web server in

Section 3.2). We post-process the timings to adjust for

the overheads added by the instrumentation. The second

profile instruments the program in more detail, letting

us measure the quantitative properties of critical sections

– e.g. the number of read/write accesses, and the loca-

tions and cachelines accessed. This lets us build a data-

access model for each critical section, indicating the like-

lihood of conflicts between concurrent invocations. We

combine the results of these two profiles to get an over-

all indication of the best-case speedup for the whole ap-

plication through optimistic concurrency control, and to

pthread_rwlock_t lock;

volatile int shared = 0;

volatile int shared_array[MAX_THREADS];

void *work(void *v)

{

volatile int private = 0;

int i, inc_shared, thd_id = (int)v;

for(i=0;i<1000;i++) {

inc_shared = ((toss_coin(thd_id) == HEADS));

pthread_rwlock_wrlock(&lock);

private++;

if(inc_shared)

shared++;

shared_array[thd_id]++;

think(1000000);

pthread_rwlock_unlock(&lock);

think(10); }}

--

lock 0x68c8a0 [@/home/ar481/fun/hotpar.c:15]

rdops 1.490000 wrops 1.490000

rdwr locs 1.490000 rd locs 0.000000

rdwr cachelines 1.490000 rd cachelines 0.000000

waits 1.626667 conflict prob 0.187379

intersect locs 1.000000 cachelines 1.239510

thread 0: s_acq 0 x_acq 1000 frac_wait 0.373387

frac_cs 0.289591 occ_speedup 1.442194

thread 1: s_acq 0 x_acq 1000 frac_wait 0.557235

frac_cs 0.289591 occ_speedup 1.920979

thread 2: s_acq 0 x_acq 1000 frac_wait 0.591705

frac_cs 0.363006 occ_speedup 2.032524

Max OCC efficiency is 0.419515,

Best case speedup is 1.722697

Figure 1: Example program fragment and tool output

identify the “hot” locks that should be the focus of the

programmer’s attention.

Underlying this approach is the assumption that the

data-access model captured with the detailed level of

instrumentation is also true of the program’s behaviour

when running at speed. To validate this assumption we

compare the predictions made by our approach to results

for synthetic workloads and for the SPLASH-2 bench-

mark suite (Section 3). Finally, in Section 4, we contrast

our approach with alternatives such as syncchar [7].

2 PinCS

In this section we introduce our PinCS tool for profil-

ing critical section usage. We first provide a practical

example of its use, then describe the profiling methods,

and finally explain our technique for analysing profiling

data.

2.1 Example

Consider the program fragment of Figure 1. Three

threads execute the work function, performing 1000 it-

erations of the loop, each time acquiring and releasing

lock. The critical section increments a thread-private

counter in a global array and — once every 2 iterations

on the average — also increments a shared variable. Fi-

nally it does private computation (“think”) while hold-

ing the lock.

The final output from PinCS is also shown in Figure 1.

The tool prints the lock address (0x68c8a0) and, since

debug symbols are available, the line number(s) where

the lock is acquired. Next it prints attributes of the crit-

ical section: the number of read and write operations to

shared data, the number of unique shared addresses seen

(classified as read-write and read-only) and then the same

attribute in terms of cachelines. The cache line size is de-

termined automatically on the system where the program

is run. The next output item is the amount of contention

for the lock. The lock is heavily contented in this exam-

ple and each thread needs to wait for 1.6 other lock hold-

ers on the average (there are two other threads contend-

ing for the lock). Next comes the conflict probability,

which is the estimated probability that the critical section

would have encountered a conflict if run under optimistic

concurrency control. We also print the average size of the

intersection (in terms of unique addresses seen) causing

a conflict. Note that in the example program the size

of the intersection in terms of cachelines is larger than

the number of locations; this is simply because the inter-

section size is always one location (the global variable

shared) but there are false conflicts between entries in

the shared array. Finally for each thread we print the

number of times the critical section is acquired in exclu-

sive and shared modes, the fraction of thread time spent

waiting for the critical section, the fraction of thread time

spent in the critical section, and the expected speedup for

this critical section in this thread with an ideal optimistic

concurrency control implementation. We also print es-

timated benefits for the application as a whole that we

term the maximum occ efficiency and best case speedup,

described in more detail in Section 2.3.

2.2 Profiling

Figure 2 illustrates the operation of PinCS. We execute

the program twice, once in order to generate a timing pro-

file for the application, and a second time in order to gen-

erate a data-access model for each critical section. Both

are collected by using the Pin binary instrumentation en-

gine [5]. However, when collecting the timing model,

Pin is only used to instrument lock acquire/release opera-

tions, with most of the program running uninstrumented.

In contrast, when generating the data-access model, we

instrument all the reads and writes within a critical sec-

tion (excluding those to the lock variable), substantially

perturbing execution. We then combine this detailed in-

formation from the slower memory access trace with the

timing information in a post processing step, to generate

the final output.

We have been careful to reduce the profiling overhead

when collecting the timing model — on a Pentium 4,

with Pin v24110, we pay around 350 cycles for each lock

2

Figure 2: Tool flow

or unlock operation we record, chiefly for saving appli-

cation state when calling the instrumentation routine. As

this cost may still be significant with fine-grained critical

sections, we correct for it as follows:

Let Ac,t be the number of entries into a critical section

c on thread t. Also let wc be the average number of other

threads that a thread entering that critical section needs to

wait for. We denote as O as the overhead cost of instru-

menting a lock or unlock call, which can be measured on

the target system; O is paid once per thread we must wait

for, and once each for the actual lock acquire and release.

Let E(t) be the execution time of thread t and Waitc,t

be the total time that thread t spends waiting for critical

section c. Then the adjusted (primed) values are:

Wait ′c,t = Wait c,t − Ac,t(wc + 2)O

E′(t) = E(t) −
∑

c∈C

Ac,t(wc + 2)O

We use these adjusted values for the rest of the compu-

tations. One possible problem with this approach is that

the perturbation can increase the average number of con-

tenders for the lock, since it is now held for around 350

cycles longer than before. However, as we show in Sec-

tion 3.1, the results gathered with this model agree well

with previously reported speedups.

2.3 Analysis

The results from the two runs are correlated by a post

processing tool using virtual addresses. We associate

critical sections either with a lock (where locks are not

dynamically allocated) or with the program point where

a lock is acquired (if dynamically allocated locks are

used). When reconciling the timing and memory access

profiles, we associate measured properties with these

critical sections. We do not need an acquisition-by-

acquisition comparison between the two profiles and thus

can tolerate differences due to non-determinism between

the two runs. Most of the work in the tool is bookkeeping

related and includes effort to merge critical sections that

acquire the same lock as well as to take into account the

fact that there can be multiple program-counter values

for the same line of code.

The most challenging analysis phase is making predic-

tions for OCC. We use a conflict model that is similar to

von Praun’s dependence analysis [11]. Given two traces

from the same critical section, say B and A, A would

have seen a conflict from a concurrent execution of B if

B writes to a location accessed by A. This is a difference

from von Praun’s model where a dependence only occurs

when A would read from a location written to by B. Our

model of computation assumes no global entity such as a

scheduler. Instead critical sections are retried under op-

timistic concurrency control until they succeed. Thus we

must track both read-write and write-write conflicts. We

ignore the conflict case where A writes to a location read

by B since this is not seen as a conflict by the execution

of A (assuming invisible readers). Also, no conflict is

seen if A finishes before B. Assuming symmetry, we use

a 50% probability for the event that A finishes before B.

Thus, given traces A and B, we can compute the proba-

bility that A sees a conflict from a concurrent execution

of B: C(A, B) ∈ {0, 0.5}.

Let Tracec,t be the set of traces for a critical section on

thread t. We use the notation Thread(tr) for the thread

that the trace tr belongs to. For any particular trace tr ,

define S(tr , t) to be a set of traces of the same critical

section on thread t which are closest in execution time to

this trace (we have a total order on critical section entries

in the log file); we discuss the sizing of this set later.

Using S(tr , t), we can compute the probability ptr

that this trace will see a conflict from another simulta-

neously running copy of the critical section.

ptr =
∑

t∈threads−Thread(tr)

∑

tr ′∈S(tr,t)

C(tr , tr ′)

We then average this over all traces for that critical sec-

tion, and over all threads, to compute the final pairwise

probability of conflict for the critical section c:

pc =

∑

t∈threads

∑

tr∈Tracec,t

ptr

∑

t∈threads

|Tracec,t|

3

Since wc other copies will run simultaneously when the

measured contention for the critical section is wc, the

probability of seeing a conflict in critical section c is:

pconflict(c) = 1 − (1 − pc)
wc

The intersection between traces is computed using a

Bloom filter (with a false positive setting of 0.001).

The final results are sensitive to the size of the win-

dow |S(tr , t)| only when memory addresses accessed by

different dynamic executions of the critical section vary

over time, particularly when dynamic data structures are

accessed. We set it to 2 to take into account the trace

interleaved before and after the current one and use this

value throughout the rest of this paper.

Given the fraction of thread execution time spent wait-

ing for a critical section c by a thread t, fwait (c, t), and

the fraction of time actually spent in the critical section,

fexec(c, t), we obtain a bound on the speedup using Am-

dahl’s law. We assume that OCC is an optimisation that

can be applied to remove the wait and instead replace it

with repeated executions of the critical section, until suc-

cessful execution without conflict. The number of such

attempts is a function of the conflict probability and is

given by (1 − pconflict(c))
−1. We thus arrive at our esti-

mated speedup for this critical section and thread when

using OCC.

speedup(c, t) =
1

1 + fexec(c, t)
pconflict (c)

1−pconflict(c)
− fwait

Note that speedup(c, t) is smaller than 1 when a high

conflict rate causes the cost of retrying the critical section

to outweigh the benefits of eliding the wait.

We also try to estimate the overall benefit to the ap-

plication from an ideal OCC. This is difficult, since

threads are rarely balanced in an application (in partic-

ular, pthread mutexes favour convoying-avoidance over

fairness leading to threads being favoured if they repeat-

edly acquire a lock). Also, in many applications, threads

wait for each other at points like barriers. OCC would

reduce this wait, but the potential impact is very hard

to compute. However our objective is not to accurately

estimate the speedup of a particular OCC based imple-

mentation. Instead, we merely aim to give the program-

mer a sense of the overall benefit for the application.

The metric should tell the programmer whether it is at

all worthwhile to apply finer grained locking or transac-

tional memory to the application or whether an algorithm

redesign should be considered for greater concurrency.

Since OCC can actually hurt performance in some cases,

we consider only those critical section where the benefit

is positive, thus assuming intelligent application of OCC.

To enable this we define the benefit from OCC for a

critical section c and a thread t as the fraction of time

that could be saved using OCC, or 0 otherwise.

benefit(c, t) =

max{fwait − fexec(c, t)
pconflict (c)

1 − pconflict(c)
, 0}

Next, we define occeff , which is the fraction of saved

cpu time (considered across all threads) that would be

saved by applying OCC (or finer grained locking). This

is referred to as maximum occ efficiency in the tool output

of Figure 1.

occeff =

∑

t∈threads

∑

c∈C

benefit(c, t)E(t)

∑

t∈threads

E(t)

Finally we assume that this occeff fraction applies to the

application time as a whole and estimate the application

speedup, referred to as best case speedup in the tool out-

put of Figure 1.

occspeedup =
1

1 − occeff

3 Results

In this section we present two sets of results using PinCS.

First, we study a red-black tree micro benchmark and

the SPLASH-2 benchmark suite to validate the measure-

ments taken by PinCS (Section 3.1). Second, we study

the Apache web server as a larger example of a complex

program with an external workload (Section 3.2). All of

our results use an x86 platform with 16 threads (4 pro-

cessors x 2 cores x 2 hyperthreads, 8GB RAM).

3.1 Validation

Red-black trees. We used PinCS to profile two red-

black tree implementations. The first implementation

uses an MCS fair lock [6] for protecting concurrent ac-

cesses to the tree. We confirmed that the number of data

accesses recorded by PinCS agreed with the number per-

formed by the application; these are well known analyt-

ical properties of red black trees. Next, we aimed to

validate the speedup numbers computed by PinCS. For

this we used two variants of the red-black tree imple-

mentation using Object Software Transactional Memory

(OSTM) [3]: one just using STM (so we could measure

an actual speedup), and the other using locks around the

transactions (which we would profile with PinCS). Fig-

ure 3 shows the speedup for increasing number of threads

and Figure 4 the speedup for increasing tree sizes; as is

well known, more threads and deeper trees both mean

more available speedup. The predicted speedups agree

4

Figure 3: Red-black tree speedup: variable threads

Figure 4: Red-black tree speedup: variable size

reasonably well with experiment. This gives us confi-

dence in the model as well as the tool.

SPLASH-2. We profiled five applications from

SPLASH-2 [12], still popular in the computer architec-

ture community for hardware transactional memory re-

search. We replicate Rajwar’s [8] benchmark config-

uration in order to be able to compare our predicted

speedups with those reported for transactional lock re-

moval in their simulated 16-way CMP machine. Al-

though there are many differences between their simu-

lated system and our native execution environment, we

expect our predicted speedups to broadly agree.

Application Parameters Speedup (PinCS) Speedup [8]

Barnes 4k bodies 1.22 1.16

Cholesky tk14.O 1.00 1.05

Ocean-cont x1026 1.00 1.02

Radiosity -room batch 1.35 1.47

Water-nsq 512 mols,3 iters 1.02 1.01

As the table shows, the results are in broad agreement.

Barnes is reported as having significantly higher speedup

than in Rajwar’s work. On closer examination we found

that this was due to contention on an external table of

locks protecting nodes in a tree. In turns out that this is a

known problem with Barnes, and that Rajwar specifically

avoided this by using a different version of the program

with in-situ locks in his work; unfortunately this version

is not present in the publicly available SPLASH-2 suite.

For Radiosity, PinCS identified the code manipulating

the task queue (the enqueue task and dequeue task func-

tions in taskman.C, Figure 5) as having the most po-

tential for optimisation. As the tool output in Figure 6

shows, threads spend as much as 20% of their time wait-

ing for the lock while there is only a 10% probability of

conflict. This is because the thread owning a particular

task queue tries to enqueue work at the head while other

threads stealing work try to dequeue work from the tail.

void enqueue_task(long qid, Task *task, long mode)

{

Task_Queue *tq ;

tq = &global->task_queue[qid] ;

/* Lock the task queue */

/* Line 385 */

LOCK(tq->q_lock);

.... }

Task *dequeue_task(long qid, long max_visit,

long process_id)

{

...

/* Lock the task queue */

/* Line 449 */

LOCK(tq->q_lock);

... }

Figure 5: Potential Radiosity Optimisation

eip 0x409d2e [@apps/radiosity/taskman.C:385]

eip 0x40a4a7 [@apps/radiosity/taskman.C:449]

rdops 3.523174 wrops 1.986633

rdwr locs 1.986600 rd locs 2.066770

rdwr cachelines 1.205510 rd cachelines 1.489872

waits 3.392539 conflict prob 0.138535

intersect locs 1.568067 cachelines 1.039737

thread 0: s_acq 0 x_acq 22926 frac_wait 0.238925

frac_cs 0.014010 occ_speedup 1.308812

thread 1: s_acq 0 x_acq 23545 frac_wait 0.254773

frac_cs 0.010531 occ_speedup 1.338831

...

thread 15: s_acq 0 x_acq 23553 frac_wait 0.210774

frac_cs 0.012389 occ_speedup 1.263874

Figure 6: Radiosity Output (Partial)

3.2 Apache Web Server

Apache is a widely used webserver with a complex

source base of more than 338000 lines spread over 829

files. We profiled an unmodified binary of apache on our

testbed. We exercised the webserver with the httperf

tool, doing 150000 requests over 15 simultaneous con-

nections (we reserved one of the 16 hardware threads for

the software thread accepting connections). Even when

running with memory access tracing for the critical sec-

tions enabled, the test took just under a minute to run,

meaning larger workloads are well within reach. We pro-

filed the binary for pthread locks, which form the basis

5

for concurrency in the webserver. Not surprisingly we

found that the tool reported no available speedup. Ap-

plications such as apache are extremely well tuned for

concurrency. Most of the threads only need locks to ac-

quire resources during startup and run almost indepen-

dently after that. The only lock showing some contention

(about 2 threads contending) is the lock that protects the

fdqueue. This queue is used to transfer incoming re-

quests to threads for service. However the fraction of

time spent waiting for the lock is negligible, making it

an unsuitable candidate for optimisation.

4 Related Work

There have been a number of similar efforts to pro-

file critical sections and lock performance. Tools

such as syncchar [7] and methods such as dependence-

analysis [11] have been used to measure conflicts and

dependence between dynamic instances of critical sec-

tions. The former uses a simulator while the latter uses

Pin. There have been efforts to profile critical sections

of userspace applications with regard to suitability for

transactional memory [2]. On the flip side there are tools

that measure timing and contention related properties of

a critical section, an example being the lockstat utility

in the linux kernel. Only von Praun [11] uses conflict

probability measurements to predict parallelism in appli-

cations. However von Praun’s work does not take into ac-

count lock contention. We believe that this is important

since uncontended critical sections cannot be exploited

regardless of how much disjoint access parallelism lies

behind them. To the best of our knowledge PinCS is the

the only tool that combines timing information together

with traces collected on applications running natively at

near full speed to predict speedups under optimistic con-

currency control.

5 Conclusion

We have presented a tool that provides information about

critical sections in unmodified userspace binaries, while

running them natively. It also predicts benefits from opti-

mistic concurrency control providing a quantitative view

to the programmer about which locks are most likely

to benefit from finer grained locking or transactional

memory. A clear direction for future work is to profile

a larger variety of application to provide useful infor-

mation to transactional memory researchers as well as

guide benchmark construction. While we currently tar-

get userspace applications, it is possible to use PinOS [1]

to profile the kernel also.

Finally, PinCS is complementary to our research into

adaptive concurrency control mechanisms. It can act as

a stage in profile guided optimisation by choosing locks

that should be elided using mechanisms such as software

lock elision [10], while leaving locks that would show

little benefit unchanged.

References

[1] BUNGALE, P. P., AND LUK, C.-K. PinOS: A programmable

framework for whole-system dynamic instrumentation. In VEE

’07: Proceedings of the 3rd International Conference on Virtual

Execution Environments (2007), pp. 137–147.

[2] CHUNG, J., CHAFI, H., MINH, C. C., MCDONALD, A., CARL-

STROM, B. D., KOZYRAKIS, C., AND OLUKOTUN, K. The

common case transactional behavior of multithreaded programs.

In HPCA’06: Proceedings of the 12th International Conference

on High-Performance Computer Architecture (2006).

[3] FRASER, K. Practical lock freedom. PhD thesis, Cambridge Uni-

versity Computer Laboratory, 2003. Also available as Technical

Report UCAM-CL-TR-579.

[4] ISRAELI, A., AND RAPPOPORT, L. Disjoint-access-parallel im-

plementations of strong shared memory primitives. In PODC

’94: Proceedings of the Thirteenth Annual ACM Symposium on

Principles of Distributed Computing (1994), pp. 151–160.

[5] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,

LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,

K. Pin: Building customized program analysis tools with dy-

namic instrumentation. In PLDI ’05: Proceedings of the 2005

ACM SIGPLAN Conference on Programming Language Design

and Implementation (2005), pp. 190–200.

[6] MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. Scalable

reader-writer synchronization for shared-memory multiproces-

sors. In PPOPP ’91: Proceedings of the Third ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming

(1991), pp. 106–113.

[7] PORTER, D. E., HOFMANN, O. S., AND WITCHEL, E. Is the

optimism in optimistic concurrency warranted? In HOTOS’07:

Proceedings of the 11th USENIX Workshop on Hot Topics in Op-

erating Systems (2007), pp. 1–6.

[8] RAJWAR, R. Speculation-Based Techniques for Transactional

Lock-Free Execution of Lock-Based Programs. PhD thesis, Uni-

versity of Wisconsin-Madison, 2002. ISBN:0-493-92677-1.

[9] ROSSBACH, C. J., HOFMANN, O. S., PORTER, D. E., RA-

MADAN, H. E., ADITYA, B., AND WITCHEL, E. TxLinux: us-

ing and managing hardware transactional memory in an operating

system. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS

Symposium on Operating Systems Principles (2007), pp. 87–102.

[10] ROY, A., HAND, S., AND HARRIS, T. A Runtime System for

Software Lock Elision. In Proceedings of Eurosys ’09: (to ap-

pear) (2009).

[11] VON PRAUN, C., BORDAWEKAR, R., AND CASCAVAL, C.

Modeling optimistic concurrency using quantitative dependence

analysis. In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming

(2008), pp. 185–196.

[12] WOO, S. C., OHARA, M., TORRIE, E., SINGH, J. P., AND

GUPTA, A. The SPLASH-2 programs: Characterization and

methodological considerations. In ISCA ’95: Proceedings of the

22nd Annual International Symposium on Computer Architecture

(1995), pp. 24–36.

6

