
Semantics of Transactional Memory
and Automatic Mutual Exclusion

Mart́ın Abadi†? Andrew Birrell† Tim Harris‡ Michael Isard†

Microsoft Research, Silicon Valley† University of California, Santa Cruz? Microsoft Research, Cambridge‡

abadi@microsoft.com birrell@microsoft.com tharris@microsoft.com misard@microsoft.com

Abstract
Software Transactional Memory (STM) is an attractive basis for
the development of language features for concurrent programming.
However, the semantics of these features can be delicate and prob-
lematic. In this paper we explore the tradeoffs between semantic
simplicity, the viability of efficient implementation strategies, and
the flexibility of language constructs. Specifically, we develop se-
mantics and type systems for the constructs of the Automatic Mu-
tual Exclusion (AME) programming model; our results apply also
to other constructs, such as atomic blocks. With this semantics as
a point of reference, we study several implementation strategies.
We model STM systems that use in-place update, optimistic con-
currency, lazy conflict detection, and roll-back. These strategies are
correct only under non-trivial assumptions that we identify and an-
alyze. One important source of errors is that some efficient imple-
mentations create dangerous “zombie” computations where a trans-
action keeps running after experiencing a conflict; the assumptions
confine the effects of these computations.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel programming

General Terms Languages, Theory

1. Introduction
The notorious difficulty of concurrent programming stems in part
from the challenges of expressing the intended program semantics
with the available constructs for synchronization and mutual ex-
clusion. For example, programs with threads and locks often suffer
from deadlocks and race conditions. Some recent type systems and
other program analyses aim to prevent these errors (e.g., (Sterling
1993; Abadi et al. 2006; Naik et al. 2006)). More radically, many
researchers have been exploring the use of Software Transactional
Memory (STM) (Shavit and Touitou 1995) as a basis for language
features that may make it easier to develop and analyze concur-
rent programs. In one approach, locks are replaced with block-
structured atomic sections, so a programmer may reason as if each
atomic section is executed as a single step, serialized with respect to
all other atomic sections (Harris and Fraser 2003; Harris et al. 2005;
Carlstrom et al. 2006). Several other related models have been pro-
posed; these include Safe Futures (Welc et al. 2005), Transactions

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’08, January 7–12, 2007, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

Everywhere (Kuszmaul and Leiserson 2003), and Automatic Mu-
tual Exclusion (AME) (Isard and Birrell 2007), described in Sec-
tion 2, on which this paper is based.

Intuitively, the semantics of STM is appealingly simple. How-
ever, as researchers are coming to discover, this simplicity is illu-
sory and the actual semantics offered by implementations are of-
ten counterintuitive—programs that look “obviously correct” may
behave in unexpected ways. The crux of the problem is that im-
plementations do not detect conflicts between a transaction run-
ning in one thread and non-transactional steps of another thread.
This property, sometimes termed “weak atomicity” (Blundell et al.
2005), is attractive from an implementation standpoint: it means
that non-transacted code does not incur a performance overhead,
and that existing libraries and operating system interfaces can be
used without recompilation in non-transacted code. In contrast,
“strong atomicity” requires the avoidance or detection of those con-
flicts. Strong atomicity appears to be the semantics expected by
programmers but, unfortunately, it does not appear to be practical
to implement using STM without restrictions and without recom-
piling non-transacted code.

This paper examines this problem and explores the tradeoffs
between semantic simplicity, the use of efficient implementation
strategies, and the flexibility of language constructs. We present
our results focusing on the AME programming model for two
reasons. First, while developing this new programming model, we
hope to avoid the pitfalls we have encountered with earlier work
on atomic blocks; we want to understand AME’s constructs and
which techniques we can use to implement them. Second, there is a
straightforward mechanical translation from a program with atomic
blocks into AME’s constructs, so the results that we establish will
apply more broadly; the translation in the other direction is less
obvious.

We present the AME calculus as a formalization of the AME
programming model (Section 3) and define a strong semantics for
this calculus that abstracts the underlying STM (Section 4). We
show that, without language restrictions, the techniques used by
practical STMs can lead to behavior that is incorrect under the
strong semantics (Section 5). Earlier work has provided some ex-
amples (Blundell et al. 2005; Shpeisman et al. 2007). We argue that
most of these are incorrectly synchronized programs; however, we
show a number of further examples which, informally, do not con-
tain race conditions. We focus, in particular, on the problems that
occur when using the Bartok-STM implementation (Harris et al.
2006) in which updates are made in-place to the heap (“eager ver-
sioning” (Moore et al. 2006)) so tentative work is visible before a
transaction commits, and conflicts may not be detected until com-
mit time (“lazy conflict detection”), allowing a transaction to con-
tinue running as a “zombie” (Dice et al. 2006) after becoming con-
flicted. Similar implementation choices have been made in other

STM systems such as McRT (Saha et al. 2006), because of their
efficiency on many practical workloads.

We then examine language restrictions that enable weaker
semantics—which model some of the techniques used by Bartok-
STM—to implement these examples correctly (Section 6). First,
we consider aviolation-freedomcondition, which formalizes the
sense in which our examples of Section 5 are race-free. For pro-
grams that satisfy this condition, we show that a lower-level se-
mantics with weak atomicity, in-place update, and roll-back imple-
ments the strong semantics (Section 7). In this semantics, at most
one transaction executes at a time. While this semantics is still
some way from an actual implementation, it resembles a practical
uni-processor STM (Manson et al. 2005a).

A further language restriction is a type system that statically
separates data according to whether or not it is accessed transac-
tionally. We show that, for well-typed programs, a weaker seman-
tics that models the concurrent execution of transactions and lazy
conflict detection between them implements the strong semantics
(Section 8). Violation-freedom does not suffice for this property.

We discuss related work in Section 9. We conclude in Section 10
by considering further work, and the implications of our results to
the implementation choices made within an STM and to the design
of language features based on it. Proofs and additional results
are available athttp://research.microsoft.com/research/
sv/ame/.

2. Automatic Mutual Exclusion
The AME programming model has been outlined in a workshop
paper (Isard and Birrell 2007). We summarize its constructs here,
and refer to that paper for supporting details and examples.

2.1 AME Basics

The motivation for AME is to encourage programmers to place
as much of the program text inside transactions as possible—we
refer to this as “protected” code—leaving non-transacted “unpro-
tected” code primarily for interactions with legacy code. We be-
lieve that this “protected by default” style will help programmers
write concurrent code whose semantics are clearer than is typical
with today’s languages; in particular, programs in this style should
be easier to understand and to maintain than those with lock-based
idioms, or with a straightforward translation of lock-based code to
use atomic blocks.

Running an AME program consists of executing a set of asyn-
chronous method calls. The AME system guarantees that the pro-
gram execution is equivalent to executing each of these calls (or
their fragments, defined below) in some serialized order. AME
achieves concurrency by overlapping the execution of the calls in
cases where they are non-conflicting. The program terminates when
all its asynchronous method calls have completed. Initially, the set
consists of a call ofmain() initiated by the AME system. As well
as ordinary method calls, code can create another asynchronous
method call by executing:

async MethodName(<method arguments>);

The calling code continues immediately after this call. In the con-
ceptual serialization of the program, the asynchronous callee will
be executed after the caller has completed.

In order to achieve the serialization guarantee, we envision that
each asynchronous method call will be executed by the AME sys-
tem as a transaction, in a thread provided by the system. If a trans-
action initiates other asynchronous method calls, their execution is
deferred until the initiating transaction commits. If the initiating
transaction aborts, they are discarded. When it commits, they are
made available for execution (in an indeterminate order). The set
of available asynchronous method calls will be executed concur-

rently, within the available resources and subject to strategies that
prevent excessive transaction aborts.

2.2 Blocking an Asynchronous Method

An asynchronous method may contain any number of calls to the
system-supplied method:

blockUntil(<predicate>);

From the programmer’s perspective, the code of an asynchronous
method executes to completion only if all the executed calls of
blockUntil within the method have predicates that evaluate to
true. blockUntil’s implementation does nothing if the predi-
cate holds, but otherwise it aborts the current transaction and re-
executes it later (at a time when it is likely to succeed). This behav-
ior is like that ofretry in some systems (Harris et al. 2005).

2.3 Fragmenting an Asynchronous Method

A purely event-based model produces program structure that can be
unpleasant and unstable. For example, if a previously non-blocking
method call is modified to require a blocking action (e.g., a hash
table is modified to use disk storage instead of main memory),
the event-based style would require that the method, and all of
its callers, gets split into two separate methods (a request and
a response handler). This splitting is sometimes referred to as
“stack ripping” (Adya et al. 2002). AME’s solution is to allow an
asynchronous method call to contain one or more invocations of
the system methodyield(). A yield call breaks a method into
multiple atomic fragments. Importantly, these atomic fragments
are delimited dynamically by the calls ofyield, not statically
scoped like explicit atomic blocks. With this enhancement, the
overall execution of a program is guaranteed to be a serialization
of its atomic fragments. We implementyield by committing the
current transaction and starting a new one. AblockUntil call
blocks execution of only the current atomic fragment (the code that
follows the most recentyield), or equivalently, it retries only the
transaction begun after the most recentyield.

2.4 External Side Effects

Actions with external side effects, such as I/O, are performed by
asynchronous calls to an I/O library interface. The actual low-level
I/O operations take place outside of transactions, either inside the
AME runtime or in explicitly unprotected code. In order to support
this and other access to legacy non-transacted code, we allow the
following form:

unprotected { ... }

The unprotected code must use existing mechanisms for synchro-
nization. The current atomic fragment ends before the unprotected
statement, and a new one starts after it.

3. The AME Calculus
In our formal study, we focus on a small but expressive language.
The language includes constructs for AME, as discussed above; it
also includes higher-order functions and imperative features. We
call it the AME calculus, though undoubtedly other calculi with
AME are possible.

The syntax of the AME calculus is defined in Figure 1. This syn-
tax is untyped; we introduce a type system in Section 6.2. We also
give several formal semantics below. The syntax introduces syntac-
tic categories of values, constants, variables, and expressions. The
values are constants, variables, and lambda abstractions (λx. e).
In addition to values and to expressions of the formsasync e,
blockUntil e, andunprotected e, the expressions include no-
tations for function application (ef), allocation (ref e, which allo-
cates a new reference location and returns it after initializing it to

V ∈ Value = c | x | λx. e
c ∈ Const = unit | false | true

x, y ∈ Var
e, f ∈ Exp = V

| e f
| ref e | !e | e := f
| async e
| blockUntil e
| unprotected e

Figure 1. Syntax of the AME calculus.

the value ofe), dereferencing (!e, which returns the contents in the
reference location that is the value ofe), and assignment (e := f ,
which sets the reference location that is the value ofe to the value
of f).

The syntax allows arbitrary nestings ofasync, unprotected,
andblockUntil, and also allowsasync anywhere, not necessarily
attached to a function call. In unprotected contexts,blockUntil e
will behave roughly like “wait untile”—the precise meaning of this
is defined by the semantics of Section 4. Practical embodiments of
AME need not be as liberal in these respects.

As usual there is no difficulty in including other constructs.
Several are definable:

• We abbreviate(λx. e′) e tolet x = e in e′. We also abbreviate
let x = e in e′ to e; e′ whenx does not occur free ine′.

• We treatyield as syntactic sugar forunprotected unit.

• We can express “abort and retry” asblockUntil false.

• Traditional atomic blocks typically occur in the context of un-
protected expressions, and differ from asynchronous calls in
that they are supposed to be executed immediately, not in some
indefinite future. We can expressatomic e as:

let x = ref false in
async (e; unprotected (x := true));
blockUntil !x

wherex is a fresh variable that serves for signalinge’s termi-
nation. The use ofunprotected (x := true) rather than sim-
ply (x := true) ensures that, when this encoding is used in
unprotected contexts (as intended), all accesses tox are done
in unprotected contexts, thus conforming to the type system of
Section 6.2.

4. Strong Semantics
This section defines a semantics for the AME calculus, intended
to be a simple model of the constructs’s expected behavior rather
than of possible underlying implementation techniques. To this end,
the semantics provides strong atomicity between the execution of
transacted and non-transacted code, and it does not model roll-
back, optimistic concurrency, and other low-level features. In Sec-
tions 7 and 8 we consider richer and weaker semantics that add
these features.

4.1 States

As described in Figure 2, a state〈σ, T, e〉 consists of the following
components:

• a reference storeσ,

• a collection of expressionsT , which we call the pool,

• a distinguished active expressione.

S ∈ State = RefStore× ExpSeq× Exp
σ ∈ RefStore = RefLoc⇀ Value
r ∈ RefLoc ⊂ Var
T ∈ ExpSeq = Exp∗

Figure 2. State space.

A reference storeσ is a finite mapping of reference locations to
values. Reference locations are simply special kinds of variables
that can be bound only by a reference store. We writeRefLocfor
the set of reference locations. We assume thatRefLocis infinite,
soRefLoc− dom(σ) is never empty. For every state〈σ, T, e〉, we
require that ifr ∈ RefLococcurs free inσ(r′), in T , or in e, then
r ∈ dom(σ). This condition will be assumed for initial states and
will be preserved by computation steps.

Informally, we may imagine that a computer includes a single
special processor for performing “protected” work, occupied by the
active expression, and an unbounded set of additional processors
capable of doing “unprotected” work, dedicated to the pool. (This
informal model is somewhat independent of the details of the AME
calculus; indeed, we find it valuable in our work in the context
of richer languages.) If no “unprotected” work is available, then
expressions in the pool are simply waiting for the special processor.
We identify expressions with threads of computation; the semantics
does not describe stacks or other thread-specific data.

4.2 Steps

The evaluation of a program starts in an initial state〈σ, e, unit〉
with a single expression in the pool and withunit as the distin-
guished active expression.

Evaluation then takes place according to rules (given below) that
specify the behavior of the various constructs in the language. The
execution of threads is interleaved in a non-deterministic manner,
subject to atomicity constraints. Each evaluation step produces a
new state. Given a state, the next state is determined by the next
possible operation in the active expression or in one of the expres-
sions in the pool. We model strong atomicity by allowing expres-
sions in the pool to take steps only when the active expression is
unit, thus preventing the interleaving of steps of unprotected and
protected work.

In all cases, the next possible operation in an expression is found
by decomposing the expression into an evaluation context and a
subexpression that describes this operation. As usual, a context is
an expression with a hole[], and an evaluation context is a context
of a particular kind. Given a contextC and an expressione, we
write C[e] for the result of placinge in the hole inC. We use
several kinds of evaluation contexts, defined in Figure 3:

• P evaluation contexts are for the execution of protected frag-
ments: the position for evaluation is not underunprotected.

• U evaluation contexts are for the execution of unprotected frag-
ments: the position for evaluation is underunprotected.

• E evaluation contexts allow us to manipulateunprotected
values in the execution of unprotected fragments.

We also let some evaluation contexts be sequences of expressions
with a hole:

• F evaluation contexts are of the formT.U .T ′, unit or of the
form T,P.

Thus,F [e] is either of the formT.U [e].T ′, unit or of the
form T,P[e]. We write e0.F [e1] as an abbreviation for
e0.T.U [e1].T ′, unit or e0.T,P[e1], respectively.

P = [] | P e | V P | ref P | !P | P := e | r := P | blockUntil P

U = unprotected E | U e | V U | ref U | !U | U := e | r := U | blockUntil U

E = [] | E e | V E | ref E | !E | E := e | r := E | blockUntil E | unprotected E

F = T.U .T ′, unit | T,P

Figure 3. Evaluation contexts.

〈σ,F [(λx. e) V]〉 7−→s 〈σ,F [e[V/x]]〉 (Trans Appl)s

〈σ,F [ref V]〉 7−→s 〈σ[r 7→ V],F [r]〉 (Trans Ref)s
if r ∈ RefLoc− dom(σ)

〈σ,F [!r]〉 7−→s 〈σ,F [V]〉 (Trans Deref)s
if σ(r) = V

〈σ,F [r := V]〉 7−→s 〈σ[r 7→ V],F [unit]〉 (Trans Set)s

〈σ,F [async e]〉 7−→s 〈σ, e.F [unit]〉 (Trans Async)s

〈σ,F [blockUntil true]〉 7−→s 〈σ,F [unit]〉 (Trans Block)s

〈σ, T,P[unprotected e]〉 7−→s 〈σ, T.P[unprotected e], unit〉 (Trans Unprotect)s

〈σ, T.E[unprotected V].T ′, unit〉 7−→s 〈σ, T.E[V].T ′, unit〉 (Trans Close)s

〈σ, T.e.T ′, unit〉 7−→s 〈σ, T.T ′, e〉 (Trans Activate)s

Figure 4. Transition rules of the abstract machine (strong).

Figure 4 gives rules that specify the transition relation that takes
execution from one state to the next. The string “Trans” in the
names of the rules refers to “transition” rules, not to “transaction”.
In these rules, we writee[V/x] for the result of the capture-free
substitution ofV for x in e, and writeσ[r 7→ V] for the store that
agrees withσ except atr, which is mapped toV . The subscripts
in 7−→s indicates that this is a strong semantics.

Wereyield not syntactic sugar we could have the two extra
rules:

〈σ, T,P[yield]〉 7−→s 〈σ, T.P[yield], unit〉

〈σ, T.E [yield].T ′, e′〉 7−→s 〈σ, T.E [unit].T ′, e′〉

These rules are easily derived from those of Figure 4 and the
definition ofyield asunprotected unit.

5. Problems with Weak Atomicity
The strong semantics of Section 4 is intended to reflect a program-
mer’s intuition about the behavior of the AME constructs, but it is
unlikely to be practical to implement in software without language
restrictions. In particular, the main purpose of using unprotected re-
gions is to interact with the operating system and other legacy code
that cannot easily be changed; implementations that offer strong
atomicity by recompiling unprotected code do not support this pur-
pose.

In this section we discuss the ways in which different imple-
mentations of STM can give behavior that differs from the strong
semantics. For the purposes of this discussion, we write examples
informally (rather than in a calculus like that of Section 3) for con-
venience, and in order to emphasize the relevance of these exam-
ples to practical code. However, we use the strong semantics as a
point of reference.

5.1 Review of Examples from Shpeisman et al.

The first set of examples, in Figure 5, comes from work on
implementing strong atomicity (Shpeisman et al. 2007). In all
cases code is protected (i.e., runs transactionally) unless it is con-
tained in anunprotected block. Shpeisman et al. discuss how
these examples can cause unexpected behavior with existing STM
implementations—in particular, almost all of these problems oc-
cur with Bartok-STM because of its use of in-place update and
lazy conflict detection. Bartok-STM does not exhibit the GIR and
GLU problems; these occur in other STMs (e.g., (Harris and Fraser
2003)) which can buffer data at a coarser granularity than indi-
vidual fields: a transaction committing or being rolled back can
involve writes that spill over onto adjacent locations.

5.2 Are These Problems Data Races?

One may reasonably ask “Do these problems matter?” because
most of the examples in Figure 5 intuitively have data races. For
instance, in the Non-Repeatable Reads (NR) problem, there is
no synchronization between the non-transacted store tox and the
transacted read fromx. In fact, almost all the examples in the
figure involve two threads accessingx without any synchronization
between them. (The sole exception is GLU and this problem is
readily solved by making the STM buffer data on a per-field basis.
Bartok-STM already does this.)

Unfortunately, although these examples could be considered to
have data races, other examplesare free from data races at the
source level (both intuitively and with respect to formal definitions
below) but do not obey the strong semantics with many STM
systems. For concreteness, again we focus on how these problems
can occur with Bartok-STM; however, we believe that variants of
the problems of Sections 5.4–5.5 affect all extant STM systems that
allow data to be shared between protected and unprotected code.

(NR) Non-repeatable reads:r1!=r2
r1 = x; unprotected {
r2 = x; x = 1;

}

(ILU) Intermediate lost updates:x==1
r1 = x; unprotected {
x = r1 + 1; x = 10;

}

(IDR) Intermediate dirty reads:r1==1
x ++; unprotected {
x ++; r1 = x;

}

(SLU) Speculative lost updates:x==0
if (y==0) { unprotected {

x = 1; x = 2;
// Abort y = 1;

} }

(SDR) Speculative dirty reads:x==0, y==1
if (y == 0) { unprotected {

x = 1; if (x == 1) {
// Abort y = 1;

} } }

(OW) Overlapped writes:r1==0
o1.val = 1; unprotected {
x = o1; r1 = -1;

if (x != null) {
r1 = x.val;

} }

(BW) Buffered writes:r2!=r3 or r1.val!=0
// Initially x!=null, x.val==1
r1 = x; if (x != null) {
x = null; x.val++;
unprotected { }

r2 = r1.val;
r3 = r1.val;
r1.val = 0;

}

(GIR) Granular inconsistent reads:r==0
r = -1; unprotected {
atomic { y.g = 1;

y.f = ...; x = 1;
if (x==1) { }

r = y.g;
} }

(GLU) Granular lost update:x.g==0
x.f = 1; unprotected {

x.g = 1;
}

Figure 5. Example problems from Shpeisman et al. (2007). Unless
otherwise noted, all fields initially hold 0. Registersr, r1, r2, and
r3 are thread-local.

5.3 Zombie Transactions

The first example concernszombie transactionsthat access more
data than would be touched in any serialization. Consider the fol-
lowing two atomic actionsA1 andA2 that run concurrently with the
unprotected blockU1:

// A1 // A2 // U1
r1 = u; u++; unprotected {
r2 = v; v++; r1 = x;
if (r1 != r2) { }

x = 42;
}

Informally, one may reason that both serialization orders forA1
andA2 will maintain the invariantu==v, so the conditionr1!=r2
should never be satisfied,A1 will never write tox, and therefore
there is no data race withU1’s read fromx.

However, with Bartok-STM,A2 may run in its entirety in be-
tweenA1’s reads fromu andv, causingA1 to write tox before the
conflict is detected. Despite the conflict detection and any resulting
roll-back,U1 may see this write. This kind of example is particu-
larly problematic in native code. For instance, suppose that instead
of writing to x, A1 indexes an arrayx[r1-r2]: in a language with-
out bounds checking, it may actually write to any location depen-
dent on the number of increments performed inA2.

5.4 Privatization

A second example is theprivatization problemin which a piece
of data is sometimes accessed from protected code and sometimes
accessed directly. Consider these code fragments, with one thread
runningA1 and thenU1, and a second thread runningA2:

// Initially: x_shared=true, x=0

// A1 // A2
x_shared = false; if (x_shared) {
// U1 x = 42;
unprotected { }

x ++;
}

Informally, one may reason that this code has no data races:
x shared is always accessed transactionally and, by the timeU1
accessesx non-transactionally,A1 has already been executed and
eitherA2 is serialized beforeA1 (so the accesses tox cannot race)
or A2 is serialized afterA1 (so it will see thatx shared is false).

With Bartok-STM, it is possible forA1 to execute in its entirety
betweenA2’s read fromx shared and its write tox and then for
U1’s accesses tox to race withA2. In Bartok-STM the problem is
therefore similar to that of Section 5.3 in that it occurs becauseA2
continues to execute as a zombie. However, the same problem can
occur without zombies on STMs that buffer transactional updates
and write them back on commit (Harris and Fraser 2003):A2’s
write-back tox may race withU1’s accesses.

5.5 Publication

A final example is thepublication problemin which a piece of data
is initially thread-private and then becomes shared:

// Initially: x_shared=false, x=0

// U1 // A2
unprotected { r1 = -1;

x = 42; if (x_shared) {
} r1 = x;
// A1 }
x_shared = true;

Once again, one may reason informally that this code has no data
races:x shared is always accessed transactionally and, when it
is set byA1, the update tox has already been performed. IfA1 is
serialized beforeA2 thenA2 will see both updates.

The problem here is more subtle and relates to more of the
language than just the STM implementation: there is no indication
in the source code that the ordering betweenA2’s reads fromx and
x shared is important. If they are re-ordered during compilation
then the implementation ofA2 may read fromx beforeU1, and then
read fromx shared after A1, leavingA2 serialized afterA1, but
with r1==0. A similar lock-based program, placingA1 andA2 in
regions protected by the same lock, is correctly synchronized under
the Java memory model (Manson et al. 2005b). As with our strong
semantics, it would give eitherr1==-1 or r1==42.

6. Violation-freedom and Separation
In Section 5, we show example programs that are not executed
correctly by STM systems. In some cases, these are programs with
data races, while in others the problems arise because (despite the
absence of apparent data races) a variablex is accessed from both
protected and unprotected code in the implementations.

In this section we present two criteria that formalize the sep-
aration of protected and unprotected code, in the AME calculus.
The first criterion, violation-freedom, says that, dynamically, data
cannot be accessed with and without protection at the same time.
This criterion allows us to say, formally, that the examples of Sec-
tions 5.3–5.5 are correctly synchronized, while most of the exam-
ples of Section 5.1 are not. The second criterion, separation, is em-
bodied in a static discipline that guarantees that protected and un-
protected computations do not use the same reference locations.
As we prove, separation implies violation-freedom. In Sections 7
and 8, we show that, by restricting ourselves to programs that meet
these criteria, we can enable the use of efficient and correct lower-
level semantics.

6.1 Violation-free Executions

We define a condition according to which data cannot be accessed
with and without protection at the same time in different threads.

Given a state〈σ, e1. · · · .en, e〉, there is a violation on a loca-
tion r if ei = U [f] for somei = 1..n ande = P[f ′] wheref
andf ′ are reads or writes onr (that is, expressions!r or r := . . .),
and at least one of them is a write (r := . . .). A computation is
violation-free if none of its states have violations for any locations.
(Analogously, we could define races, in which we would also con-
sider conflicts withine1. · · · .en; every violation is a race but not
every race is a violation.)

A possible programming discipline is to require that programs
never generate violations in the strong semantics. Under this disci-
pline, a state〈σ, T, e〉 is good if all strong computations that start
from this state are violation-free. The use of the strong semantics
is significant: programmers should not have to understand lower-
level implementations. However, analogous criteria apply to lower-
level implementations, and might be of benefit in compiler opti-
mizations. Some of our lemmas say that the absence of violations
in the strong semantics implies the absence of violations in certain
lower-level implementations.

6.2 Separation

The type system described in this section embodies a discipline in
which protected and unprotected computations do not use the same
portions of the reference store. They may however communicate
via variables.

The type system is defined in Figure 6, using judgments and
rules for reasoning about the judgments. The core of the type
system is the set of rules for the judgmentE ; p ` e : t (read
“e is a well-typed expression of typet in typing environmentE
with effect p”). The intent is that, if this judgment holds, thene
yields values of typet with effectp, and the free variables ofe are
given bindings consistent with the typing environmentE. Whenp
is P, this means that the evaluation ofe accesses only the part of
the reference store for protected computations; whenp is U, this
means that the evaluation ofe accesses only the rest of the store.
The typing environmentE is organized as a sequence of bindings,
and we use∅ to denote the empty environment. Similarly,s →p t is
the type of function that take arguments of types and yield results
of typet with effectp.

The type system introduces a sharp distinction between “P
code” and “U code”. The type system is thus deliberately simple;
various elaborations are possible, mostly along standard lines, but
we do not need them for our present purposes.

Judgments

E ` � E is a well-formed typing environment
E ; p ` e : t e is a well-typed expression of typet

in E with effectp

Rules
∅ ` � (Env∅)

E ` � x 6∈ dom(E)

E, x : t ` �
(Envx)

E ` �

E ; p ` unit : Unit
(Exp Unit)

E ` �

E ; p ` false : Bool
(Exp Boolfalse)

E ` �

E ; p ` true : Bool
(Exp Booltrue)

E, x : t, E′ ` �

E, x : t, E′ ; p ` x : t
(Expx)

E, x : s ; p ` e : t

E ; q ` λx. e : s →p t
(Exp Fun)

E ; p ` e1 : s →p t E ; p ` e2 : s

E ; p ` e1 e2 : t
(Exp Appl)

E ; p ` e : t

E ; p ` ref e : Refp t
(Exp Ref)

E ; p ` e : Refp t

E ; p ` !e : t
(Exp Deref)

E ; p ` e1 : Refp t E ; p ` e2 : t

E ; p ` e1 := e2 : Unit
(Exp Set)

E ; P ` e : Unit

E ; q ` async e : Unit
(Exp Async)

E ; p ` e : Bool

E ; p ` blockUntil e : Unit
(Exp Block)

E ; U ` e : t

E ; p ` unprotected e : t
(Exp Unprotect)

Figure 6. The first-order type system for separation.

The following small example illustrates the restrictions that the
type system imposes:

let x = ref V in
let y = ref true in
async (y := false;

unprotected z := !x);
async (blockUntil !y;

x := V ′)

whereV and V ′ are distinct values. Intuitively, the contents of
the reference locationy indicates whetherx is shared; setting that
location to false amounts to a privatization. This program is
not permitted by the type system, because the reference location
that is the value ofx is used in both protected and unprotected
computations.

On the other hand, the following variant of the program is
permitted by the type system:

let x = ref V in
let y = ref true in
async (y := false;

let x′ = !x in (unprotected z := x′));
async (blockUntil !y;

x := V ′)

Here, the reference location in question is used only in protected
computations; its value is put into a local variablex′ for use in an
unprotected computation in the same thread.

In order to prove the soundness of the type system, we extend it
to states〈σ, T, e〉. We write

E ` 〈σ, e1. · · · .en, e〉

if

• dom(σ) = dom(E) ∩ RefLoc,

• for all r ∈ dom(σ), there existt andp such thatE(r) = Refp t
andE ; p ` σ(r) : t,

• E ; P ` ei : Unit for all i = 1..n,

• E ; P ` e : Unit.

We say that〈σ, e1. · · · .en, e〉 is well-typed if there existE such
that E ` 〈σ, e1. · · · .en, e〉. We write 7−→∗

s for the reflexive-
transitive closure of7−→s. We obtain that typability is preserved
by computation (that is, by7−→∗

s):

THEOREM 6.1 (Preservation of Typability).If 〈σ, T, e〉 is well-
typed and〈σ, T, e〉 7−→∗

s 〈σ
′, T ′, e′〉, then〈σ′, T ′, e′〉 is well-typed.

This theorem helps in relating the type system to the absence of
violations, and it serves as the basis for analogous results for lower-
level semantics, below.

We also obtain a progress result, which characterizes when a
computation may stop and implies that computations do not get
stuck in unexpected ways (for instance, by applying a boolean as
though it were a function). This progress result is partly a sanity
check; stronger ones are viable.

THEOREM 6.2 (Progress).If 〈σ, T, e〉 is well-typed, the only free
variables in〈σ, T, e〉 are reference locations, and〈σ, T, e〉 7−→∗

s

〈σ′, T ′, e′〉, then:

1. e′ is unit andT ′ is empty; or
2. e′ is of the formP[blockUntil false]; or
3. 〈σ′, T ′, e′〉 7−→s 〈σ

′′, T ′′, e′′〉 for some〈σ′′, T ′′, e′′〉.

6.3 Comparing Separation with Violation-freedom

Violation-freedom is a clear but undecidable dynamic criterion.
The type system for separation provides a sufficient condition for
violation-freedom. As a corollary to Theorem 6.1, we obtain:

COROLLARY 6.3. If 〈σ, T, e〉 is well-typed, then all strong compu-
tations that start from〈σ, T, e〉 are violation-free.

As suggested above, separation appears to be more robust than
violation-freedom (for instance, less fragile in the presence of com-
piler optimizations).

7. Weak Semantics with Roll-back
Having introduced the violation-freedom and separation criteria
in Section 6, we can examine their impact on the use of weaker
semantics that model some of the implementation techniques used
by actual STMs: if a program meets one or other of the criteria, then

S ∈ State = RefStore× ExpSeq×
Exp× Exp× Log× ExpSeq

σ ∈ RefStore = RefLoc⇀ Value
l ∈ Log = (RefLoc× Value)∗

r ∈ RefLoc ⊂ Var
T, P ∈ ExpSeq = Exp∗

Figure 7. State space, with roll-back.

which implementation techniques can be used while respecting the
strong semantics?

In this section we define a semantics that models weak atomic-
ity, allowing steps of unprotected code to be interleaved with steps
of protected code, and also models eager versioning, in which trans-
actions make in-place updates to the heap and are rolled back if they
abort for some reason. This semantics still serializes transactions:
only one piece of protected code can run at a time. We show that
this weak semantics is correct for violation-free programs. Even
without concurrency between transactions, this weak semantics is
still interesting from a practical point of view as well as a theo-
retical one—for instance to provide roll-back on a uni-processor
real-time system (Manson et al. 2005a). We consider concurrency
between transactions in Section 8.

7.1 States

Figure 7 defines states for the semantics with roll-back. A state
〈σ, T, e, f, l, P 〉 consists of the following components:

• σ, T , ande, which are as usual,

• f , an expression that, through computation, has yieldede (and
which we call the origin ofe),

• l, a list of memory locations and their values, to be used as a
log in undos,

• P , a list of “pending” threads to be forked upon commit.

Much as in Section 4.1, for every state〈σ, T, e, f, l, P 〉, we require
that if r ∈ RefLococcurs free inσ(r′), in T , in e, in f , in l, or inP ,
thenr ∈ dom(σ). This condition will be assumed for initial states
and will be preserved by computation steps.

We write each pair inl in the form[r 7→ V], we letdom(l) be
the set of locationsr for which l is defined, and whenr ∈ dom(l)
we writel(r) for the valueV to whichr is mapped.

7.2 Steps

Figure 8 gives the rules of this semantics. The intent is that, upon
a roll-back caused bye, the origin expressionf is added back to
T and the undos described inl are performed. The semantics has a
few subtleties.

• As in some practical STM implementations (Saha et al. 2006;
Harris et al. 2006), the undos described inl are performed
individually rather than as one atomic step. We pick an arbitrary
order.

• Allocations are not undone. If they were, we could cause dan-
gling pointers in programs with race conditions—and we be-
lieve that dangling pointers should be avoided even in programs
with synchronization errors. Again, this detail is inspired by
practical STMs (Harris et al. 2005).

• No undo facilities are provided for unprotected computations.

• Since this is a weak semantics, unprotected computations may
be interleaved with protected computations, and even with the
roll-backs of protected computations.

〈σ, T,P[(λx. e) V], f, l, P 〉 7−→rw 〈σ, T,P[e[V/x]], f, l, P 〉 (Trans Appl P)rw

〈σ, T.U [(λx. e) V].T ′, e′, f, l, P 〉 7−→rw 〈σ, T.U [e[V/x]].T ′, e′, f, l, P 〉 (Trans Appl U)rw

〈σ, T,P[ref V], f, l, P 〉 7−→rw 〈σ[r 7→ V], T,P[r], f, l, P 〉 (Trans Ref P)rw

if r ∈ RefLoc− dom(σ)

〈σ, T.U [ref V].T ′, e, f, l, P 〉 7−→rw 〈σ[r 7→ V], T.U [r].T ′, e, f, l, P 〉 (Trans Ref U)rw

if r ∈ RefLoc− dom(σ)

〈σ, T,P[!r], f, l, P 〉 7−→rw 〈σ, T,P[V], f, l, P 〉 (Trans Deref P)rw

if σ(r) = V

〈σ, T.U [!r].T ′, e, f, l, P 〉 7−→rw 〈σ, T.U [V].T ′, e, f, l, P 〉 (Trans Deref U)rw

if σ(r) = V

〈σ, T,P[r := V], f, l, P 〉 7−→rw 〈σ[r 7→ V], T,P[unit], f, l′, P 〉 (Trans Set P)rw

wherel′ = if r ∈ dom(l) thenl elsel.[r 7→ σ(r)]

〈σ, T.U [r := V].T ′, e, f, l, P 〉 7−→rw 〈σ[r 7→ V], T.U [unit].T ′, e, f, l, P 〉 (Trans Set U)rw

〈σ, T,P[async e], f, l, P 〉 7−→rw 〈σ, T,P[unit], f, l, e.P 〉 (Trans Async P)rw

〈σ, T.U [async e].T ′, e′, f, l, P 〉 7−→rw 〈σ, e.T.U [unit].T ′, e′, f, l, P 〉 (Trans Async U)rw

〈σ, T,P[blockUntil true], f, l, P 〉 7−→rw 〈σ, T,P[unit], f, l, P 〉 (Trans Blocktrue P)rw

〈σ, T.U [blockUntil true].T ′, e, f, l, P 〉 7−→rw 〈σ, T.U [unit].T ′, e, f, l, P 〉 (Trans Blocktrue U)rw

〈σ, T,P[blockUntil false], f, ∅, P 〉 7−→rw 〈σ, f.T, unit, unit, ∅, ∅〉 (Trans Blockfalse Restore)rw

〈σ, T,P[blockUntil false], f, l.[r 7→ V], P 〉 7−→rw 〈σ[r 7→ V], T,P[blockUntil false], f, l, P 〉 (Trans Blockfalse Undo)rw

〈σ, T,P[unprotected e], f, l, P 〉 7−→rw 〈σ, T.P.P[unprotected e], unit, unit, ∅, ∅〉 (Trans Unprotect)rw

〈σ, T, unit, f, l, P 〉 7−→rw 〈σ, T.P, unit, unit, ∅, ∅〉 (Trans Done)rw

〈σ, T.E[unprotected V].T ′, e, f, l, P 〉 7−→rw 〈σ, T.E[V].T ′, e, f, l, P 〉 (Trans Close)rw

〈σ, T.e.T ′, unit, unit, ∅, ∅〉 7−→rw 〈σ, T.T ′, e, e, ∅, ∅〉 (Trans Activate)rw

Figure 8. Transition rules of the abstract machine, with roll-back (weak).

• In the strong semantics of Section 4, there is no analogue for the
list of pending threadsP . Instead, the corresponding threads are
put intoT , but they cannot make immediate progress.

7.3 Correctness

The goal of this section is to establish the correctness of the weak
semantics with roll-back as an implementation of the simpler strong
semantics without roll-back, assuming the absence of violations.
As the examples of Section 5 suggest, the violation-freedom hy-
pothesis is needed. More specifically, we prove that an intermediate
strong semantics with roll-back implements the strong semantics
without roll-back; this result does not require violation-freedom.
On the other hand, the weak semantics with roll-back is a correct
implementation of the strong semantics with roll-back only under
some assumptions. We obtain the following theorem:

THEOREM 7.1 (Correctness).Assume that all strong computa-
tions that start from the state〈σ, T, unit〉 are violation-free. Con-
sider a weak computation with roll-back

〈σ, T, unit, unit, ∅, ∅〉 7−→∗
rw 〈σ′, T ′, unit, unit, ∅, ∅〉

Then there is a strong computation

〈σ, T, unit〉 7−→∗
s 〈σ′′, T ′′, unit〉

for someσ′′ andT ′′ such thatσ′ is an extension ofσ′′ andT ′′ = T
up to reordering.

This theorem is restricted to computations that lead to states of a
particular form, in particular with an active expressionunit. In
general, when the active expression is notunit, the intermediate
storeσ′ may be one that cannot be obtained by strong computa-
tions. Moreover, this theorem does not yield a strong computation
with exactly the same final store: intuitively, the computation with
roll-backs may allocate additional locations, and those are not de-
allocated. However, the two final stores coincide at all accessible
locations: our invariant on states implies that both stores are de-
fined (and equal) at all referenced locations.

We deduce a correctness theorem for well-typed programs:

COROLLARY 7.2. Assume that〈σ, T, unit〉 is well-typed. Con-
sider a weak computation with roll-back

〈σ, T, unit, unit, ∅, ∅〉 7−→∗
rw 〈σ′, T ′, unit, unit, ∅, ∅〉

Then there is a strong computation

〈σ, T, unit〉 7−→∗
s 〈σ′′, T ′′, unit〉

for someσ′′ andT ′′ such thatσ′ is an extension ofσ′′ andT ′′ = T
up to reordering.

S ∈ State = RefStore× ExpSeq× TrySeq× Log
σ ∈ RefStore = RefLoc⇀ Value
l ∈ Log = (RefLoc× Value)∗

r ∈ RefLoc ⊂ Var
T, P ∈ ExpSeq = Exp∗

O ∈ TrySeq = Try∗

d ∈ Try = Exp× Exp× Accesses× ExpSeq
a ∈ Accesses = RefLoc∗

Figure 9. State space, with optimistic concurrency.

8. Weak Semantics with Optimistic Concurrency
Building on the study of roll-back, we treat a difficult extension of
the operational semantics in which multiple active expressions are
evaluated simultaneously, with roll-backs in case of conflict. We
ground our work on important aspects of Bartok-STM, as above,
by making in-place updates to the reference store and using lazy
conflict detection—although alternative strategies might be easier
to analyze.

Like roll-back, optimistic concurrency raises correctness issues.
Interestingly, and unlike for our semantics of Section 7, violation-
freedom isnota sufficient condition for correctness in this case. As
in our examples of Section 5.3–5.4, a program can be violation-
free under the strong semantics but have lower-level violations
because of zombie transactions. Nevertheless, we show that if a
program is well-typed in the type system of Section 6.2 then its
weak semantics is correct with respect to the strong semantics.

8.1 States

As described in Figure 9, states become more complex for this
semantics. In addition to the componentsσ, T , andl that appear in
the semantics with roll-back, here we have a list of tuples instead
of a single active expressionse and its origin expressionf . Each of
the tuples is called a try, and consists of the following components:

• an active expressione,

• its origin expressionf , as in the semantics with roll-back,

• a description of the accesses thate has performed, which are
used for conflict detection and which here is simply a list of
reference locations,

• a listP of threads to be forked upon commit.

Clearly these components could be refined further in more elabo-
rate, realistic schemes. For instance, conflict detection could dis-
tinguish reads and writes, possibly with timestamps; moreover, the
log used for undos could contain additional information in order to
support more selective undos. (Actual STM implementations typi-
cally resolve conflicts by aborting some transactions and commit-
ting others.) We prefer to avoid this tedious book-keeping since it
might obscure the presentation. Even in the present form, the se-
mantics exhibits challenging features.

8.2 Steps

Figure 10 gives the rules of this semantics. They rely on the follow-
ing definitions:

• (ei, fi, ai, Pi) and(ej , fj , aj , Pj) conflict if ai andaj have at
least one element in common.

• (e, f, a, P) conflicts withO if (e, f, a, P) conflicts with some
try in O.

• O conflicts if it contains two distinct tries that conflict.

• Given a logl and a list of reference locationsa, l − a is the log
obtained froml by restricting to reference locations not ina.

• If O is (e1, f1, a1, P1). · · · .(en, fn, an, Pn) thenorigin(O) is
the listf1. · · · .fn.

• σl is the result of applying all elements ofl to σ.

The rules allow for conflicts to be detected as soon as they occur,
but they do not require it. For simplicity, the rules do not include
some secondary features sufficiently explored in the semantics with
roll-back of Section 7. In particular, undos are atomic. Moreover,
there is no special treatment forblockUntil false; the rules
simply allow undo to happen at any point (possibly because of
conflicts, but also possibly because ofblockUntil false).

In this semantics, each transition has the form

〈σ, T, O, l〉 7−→ow 〈σ′, T ′, O′, l′〉

In many cases, a transition is defined in terms of a context that has
a hole either inT and inT ′, or in O and inO′. We say that the
transition is protected if the hole is inO and inO′, and say that the
transition is unprotected if the hole is inT and inT ′. By definition,
we have:

• transitions that are instances of (Trans . . . P)ow are always pro-
tected;

• transitions that are instances of (Trans . . . U)ow or of (Trans
Close)ow are always unprotected;

• transitions that are instances of (Trans Undo)ow, (Trans Un-
protect)ow, (Trans Done)ow, or (Trans Activate)ow are neither
protected nor unprotected.

8.3 Correctness

As explained above, the absence of high-level violations does not
in general suffice for correctness. It is plausible that the absence
of lower-level violations would suffice for correctness. This result
could be adequate as a basis for compiler optimizations, but would
not be fully satisfactory—programmers should not be aware of the
details of this lower-level semantics. Instead, we rely on the type
system for separation.

We do not modify the source typing rules of Section 6.2, but we
do extend them to the states defined in this section. We write:

E ` 〈σ, T, O, l〉

if

• dom(σ) = dom(E) ∩ RefLoc,

• for all r ∈ dom(σ), there existt andp such thatE(r) = Refp t
andE ; p ` σ(r) : t,

• for eache′ in T , E ; P ` e′ : Unit,

• for each(e, f, a, P) in O, E ; P ` e : Unit andE ; P ` f :
Unit, and for eache′ in P , E ; P ` e′ : Unit,

• for eachr ∈ dom(l), there existst such thatE(r) = RefP t
andE ; P ` l(r) : t.

In the special case whereO andl are empty, we may omit them and
simply say that〈σ, T 〉 is well-typed. This condition is equivalent
to 〈σ, T, unit〉 being well-typed according to the definition of
Section 6.2. Thus, whether〈σ, T 〉 is well-typed can be understood
and proved entirely in terms of the higher-level definitions, without
any regard for optimistic concurrency.

We obtain that typability is preserved by computation (7−→∗
ow):

THEOREM 8.1 (Preservation of Typability).If 〈σ, T, O, l〉 is well-
typed and〈σ, T, O, l〉 7−→∗

ow 〈σ′, T ′, O′, l′〉 then〈σ′, T ′, O′, l′〉 is
well-typed.

〈σ, T, O.(P[(λx. e) V], f, a, P).O′, l〉 7−→ow 〈σ, T, O.(P[e[V/x]], f, a, P).O′, l〉 (Trans Appl P)ow

〈σ, T.U [(λx. e) V].T ′, O, l〉 7−→ow 〈σ, T.U [e[V/x]].T ′, O, l〉 (Trans Appl U)ow

〈σ, T, O.(P[ref V], f, a, P).O′, l〉 7−→ow 〈σ[r 7→ V], T, O.(P[r], f, a, P).O′, l〉 (Trans Ref P)ow

if r ∈ RefLoc− dom(σ)

〈σ, T.U [ref V].T ′, O, l〉 7−→ow 〈σ[r 7→ V], T.U [r].T ′, O, l〉 (Trans Ref U)ow

if r ∈ RefLoc− dom(σ)

〈σ, T, O.(P[!r], f, a, P).O′, l〉 7−→ow 〈σ, T, O.(P[V], f, r.a, P).O′, l〉 (Trans Deref P)ow

if σ(r) = V

〈σ, T.U [!r].T ′, O, l〉 7−→ow 〈σ, T.U [V].T ′, O, l〉 (Trans Deref U)ow

if σ(r) = V

〈σ, T, O.(P[r := V], f, a, P).O′, l〉 7−→ow 〈σ[r 7→ V], T, O.(P[unit], f, r.a, P).O′, l′〉 (Trans Set P)ow

wherel′ = if r ∈ dom(l) thenl elsel.[r 7→ σ(r)]

〈σ, T.U [r := V].T ′, O, l〉 7−→ow 〈σ[r 7→ V], T.U [unit].T ′, O, l〉 (Trans Set U)ow

〈σ, T, O.(P[async e], f, a, P).O′, l〉 7−→ow 〈σ, T, O.(P[unit], f, a, e.P).O′, l〉 (Trans Async P)ow

〈σ, T.U [async e].T ′, O, l〉 7−→ow 〈σ, e.T.U [unit].T ′, O, l〉 (Trans Async U)ow

〈σ, T, O.(P[blockUntil true], f, a, P).O′, l〉 7−→ow 〈σ, T, O.(P[unit], f, a, P).O′, l〉 (Trans Block P)ow

〈σ, T.U [blockUntil true].T ′, O, l〉 7−→ow 〈σ, T.U [unit].T ′, O, l〉 (Trans Block U)ow

〈σ, T, O, l〉 7−→ow 〈σl, origin(O).T, ∅, ∅〉 (Trans Undo)ow

〈σ, T, O.(P[unprotected e], f, a, P).O′, l〉 7−→ow 〈σ, T.P[unprotected e].P, O.O′, l − a〉 (Trans Unprotect)ow

if (P[unprotected e], f, a, P) does not conflict withO.O′

〈σ, T, O.(unit, f, a, P).O′, l〉 7−→ow 〈σ, T.P, O.O′, l − a〉 (Trans Done)ow

if (unit, f, a, P) does not conflict withO.O′

〈σ, T.E[unprotected V].T ′, O, l〉 7−→ow 〈σ, T.E[V].T ′, O, l〉 (Trans Close)ow

〈σ, T.e.T ′, O, l〉 7−→ow 〈σ, T.T ′, (e, e, ∅, ∅).O, l〉 (Trans Activate)ow

Figure 10. Transition rules of the abstract machine, with optimistic concurrency (weak).

In fact, we prove that if〈σ, T, O, l〉 is well-typed with respect to an
environmentE, then〈σ′, T ′, O′, l′〉 is well-typed with respect to
an extension ofE. In the cases of (Trans Ref . . .)ow, (Trans Deref
. . .)ow, and (Trans Set . . .)ow, which deal with a reference location
of typeRefp0

t0, if the transition is protected, thenp0 must beP,
and if the transition is unprotected, thenp0 must beU. It follows
that, if 〈σ, T, O, l〉 7−→∗

ow 〈σ′, T ′, O′, l′〉 and〈σ, T, O, l〉 is well-
typed, then there exist subsetsP andU of dom(σ′) such that the
protected transitions in〈σ, T, O, l〉 7−→∗

ow 〈σ′, T ′, O′, l′〉 allocate,
read, or write only reference locations inP, and the unprotected
transitions in〈σ, T, O, l〉 7−→∗

ow 〈σ′, T ′, O′, l′〉 allocate, read, or
write only reference locations inU. Moreover, reference locations
reset by (Trans Undo)ow are inP. The subsets in question consist of
the reference locations declared with effectsP andU, respectively,
in the environment.

Using Theorem 8.1, we establish the correctness for the weak
semantics with optimistic concurrency with respect to the high-
level, strong semantics.

THEOREM 8.2 (Correctness).Assume that〈σ, T 〉 is well-typed.
Consider a computation

〈σ, T, ∅, ∅〉 7−→∗
ow 〈σ′, T ′, ∅, ∅〉

Then there is a strong computation

〈σ, T, unit〉 7−→∗
s 〈σ′′, T ′′, unit〉

for someσ′′ andT ′′ such thatσ′ is an extension ofσ′′ andT ′′ = T
up to reordering.

More generally, in the proof of this result we establish that if
〈σ, T, ∅, ∅〉7−→∗

ow〈σ′, T ′, O′, l′〉 then there is a strong computation
〈σ, T, unit〉7−→∗

s 〈σ
′′, T ′′, unit〉 whereσ′l′ is an extension ofσ′′,

and T ′′ = T ′.origin(O′) up to reordering. We also add some
further conditions in order to permit an inductive proof.

9. Related Work
This paper is related to work in several areas. There have been
informal definitions about how STM or atomic blocks should be
used by programmers (Section 9.1); Section 6 is our formaliza-
tion of these criteria. There have also been several formal semantics
for atomic blocks (Section 9.2); our strong semantics is similar to
existing definitions, but our weaker semantics go further towards
the details of actual implementations. We believe that they are the
first to expose problems like those of Section 5. Finally, work on
defining weak memory models inspired the approach of consider-
ing violation-free programs (Section 9.3).

9.1 Informal Definitions

Several papers propose adding atomic blocks to Java, C#, and
similar languages, relying on STM implementations that offer weak
atomicity. The criteria for using atomic blocks correctly are usually
treated informally (Harris and Fraser 2003; Adl-Tabatabai et al.
2006; Allen et al. 2007). For example, Harris and Fraser (2003)
provide a form of separation rule, saying that each shared location
should either be protected by a given mutex, or be accessed in
atomic blocks, or be markedvolatile. Our zombie example of
Section 5.3 shows the problem with this style of definition: the
locations accessed by a zombie transaction depend on the STM
implementation, not just on the source language.

Our violation-freedom criterion tries to formalize this defini-
tion. This approach may also be applicable to the Fortress language,
where Allen et al. (2007) require that “updates to shared locations
should always be performed using an atomic expression”, or to the
extensions to Java in Adl-Tabatabai et al. (2006) that require that
“all potentially concurrent accesses to shared memory are properly
guarded by atomic regions”. Of course, both languages include fea-
tures not present in the AME calculus, so there may be further sub-
tleties.

The Atomos language notably provides atomic blocks with
strong atomicity (Carlstrom et al. 2006). It employs a hardware
implementation of transactions.

9.2 Formal Definitions

Jagannathan et al. (2005) define TFJ, an extension to Featherweight
Java (Igarashi et al. 2001). They model a source language where
transactions include internal fork-join parallelism, and they explore
two implementations based on optimistic concurrency control and
on two-phase locking. Although steps of the executions of transac-
tions can be interleaved, all TFJ memory accesses are made trans-
actionally so the problems we are studying do not occur.

Liblit (2006) defines a detailed operational semantics for the
LogTM hardware. This semantics models the creation and termina-
tion of threads, the execution of transactional and non-transactional
memory accesses, the interleaving of memory accesses within
transactions, and the use of open-nested and closed-nested trans-
actions. The semantics implements strong atomicity. A memory
access is not permitted to execute if it would conflict with a concur-
rent transaction; non-transacted operations are “stalled” until they
may run without conflict. Commit and roll-back are both modeled
as single transitions. Like Jagannathan et al.’s semantics, Liblit’s
semantics does not expose the problems that we are studying.

Harris et al. (2005) provide an operational semantics for atomic
blocks in Haskell. The semantics is split into three layers: acore
layer that contains transitions for the evaluation of pure functional
code, atransactionallayer that contains STM operations and pure
functional code, and anI/O layer that contains input/output oper-
ations, pure functional code, and atomic blocks of transactional
code. In this semantics, complete transactions execute as single
steps in the I/O layer, without interleaving between transactions or
between transacted and non-transacted code.

Scott (2006) tackles another aspect of the subject: what is the
sequential specificationof transactional memory as a shared object
in Herlihy and Wing’s formalism: e.g., what values may a transac-
tional read return, and under what circumstances must a particular
transaction commit successfully? Extending Scott’s model to con-
sider non-transacted accesses to the same memory would provide
another way of approaching the problems of Section 5.

In current work, Moore and Grossman (2008) are studying the
operational semantics of transactions. Our studies were started in-
dependently, but we have had the opportunity to compare notes.
While it appears that our high-level goals and our techniques are
similar, there are a number of differences in our results. In par-

ticular, Moore and Grossman focus on traditional atomic blocks,
with internal concurrency but with no yielding and no provision for
unprotected fragments except at the top level; they have yet to ana-
lyze schemes with optimistic concurrency. Despite these and other
differences, the works are consistent in their demonstrating the via-
bility and value of precise operational semantics for the constructs
considered.

9.3 Memory Models

Adve and Hill (1990) introduced the idea of providing strong se-
mantics to programs that obey a set of formally specified con-
straints; our definition and use of violation-freedom is partly in-
spired by their approach. Spear et al. (2007) independently identi-
fied the link between this work and transactional memory, propos-
ing a hierarchy of models for sharing data between transactional
and non-transactional code.

In many languages the memory model must also consider pro-
grams that arenot correctly synchronized so that, for example, a
programmer cannot use data races to violate safety and security
properties of a virtual machine. Grossman et al. (2006) have started
to examine some of the questions that arise when extending this
aspect of a memory model to programs written with atomic blocks.

Blundell et al. (2005) illustrate how a program may run to
completion under a particular implementation of transactions, but
will always deadlock under strong atomicity. Their example is
not violation-free and not well-typed under a type system like
that of Section 6.2. Furthermore, with some implementations of
weak atomicity (Harris and Fraser 2003), the example will never
run to completion. This point is yet another illustration of how
semantics with weak atomicity are tied to the details of particular
implementations.

10. Conclusion and Further Work
The present exploration of language constructs represents the foun-
dation for ongoing work on programming with transactional mem-
ory. Understanding the semantics of the constructs and the related
tradeoffs has proven both challenging and worthwhile. In partic-
ular, the realization that weak semantics like that of Section 8do
not correctly execute all violation-free programs indicates that im-
plementation techniques employed in Bartok-STMcannotbe used
without further language restrictions or other precautions.

We have demonstrated that imposing a strong language restric-
tion, static separation of mutable state, lets us give the programmer
the attractive behavior of the strong semantics even with a very
permissive implementation. In hindsight, this fact may not appear
surprising, but it is worth noting that several definitions of separa-
tion are possible (e.g., (Harris and Fraser 2003; Harris et al. 2005;
Moore and Grossman 2008)), and that they have substantially dif-
ferent consequences; for instance, some definitions do not suffice
in the presence of zombies (see Section 9). Although separation
is appealing in a functional setting, it is probably less palatable in
an imperative language where most data is considered mutable, and
would therefore require marshaling across the separation boundary.
These results suggest a number of directions for future work—by
developing the type system (to allow more programs to be correctly
typed), the language constructs (perhaps to describe data transfer
between protected and unprotected modes), or the STM implemen-
tation (perhaps to support more programs with the strong seman-
tics). This exploration highlights the benefits of co-design of these
three aspects of the language and its implementation.

We have also explored several alternative semantics. Clearly
there are many others. Some of those that capture appealing imple-
mentation strategies may be worth studying further. Moreover, in-
corporating some of the subtleties of relaxed memory models may
lead to further problems and assumptions.

In addition to the type system in this paper, we have developed
and analyzed a type system that characterizes “yielding” behavior.
With this type system, the caller of a function obtains static infor-
mation on whether the function may yield and therefore commit.
Combining the two type systems is straightforward, and may be at-
tractive if yielding and separation are generalized (so, for example,
yielding may commit only a part of the heap).

Our initial exploration of AME includes writing example pro-
grams. At this point, we have confidence that the constructs are
interesting and useful, and in any case we expect that some of the
ideas and results of our work will be of value whether or not par-
ticular constructs are widely adopted. Designing constructs and de-
signing languages are distinct activities; further research should in-
form a language design based on AME.

Acknowledgements
We would like to thank Dan Grossman for interesting discussions
on our work, Virendra Marathe for identifying the original form of
the “privatization” problem during an internship at Microsoft, Dave
Detlefs for encouraging us to study it, and Simon Peyton-Jones and
Jean-Philippe Martin for comments on earlier drafts of this paper.

References
Martin Abadi, Cormac Flanagan, and Stephen N. Freund. Types for safe

locking: Static race detection for Java.ACM Trans. Program. Lang.
Syst., 28(2):207–255, 2006.

Ali-Reza Adl-Tabatabai, Brian T. Lewis, Vijay Menon, BrianR. Murphy,
Bratin Saha, and Tatiana Shpeisman. Compiler and runtime support
for efficient software transactional memory. InPLDI ’06: Proc. 2006
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 26–37, 2006.

Sarita V. Adve and Mark D. Hill. Weak ordering – a new definition.
SIGARCH Comput. Archit. News, 18(3a):2–14, 1990.

Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and John R.
Douceur. Cooperative task management without manual stack manage-
ment. InProc. 2002 USENIX Annual Technical Conference (USENIX-
02), pages 289–302, 2002.

Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt.
The Fortress language specification, v1.0β. Technical report, 2007.

Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin.Deconstruct-
ing transactional semantics: The subtleties of atomicity. InProc. 2005
Workshop on Duplicating, Deconstructing and Debunking, 2005.

Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung,
Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun. The Atomos
transactional programming language. InPLDI ’06: Proc. 2006 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, pages 1–13, 2006.

David Dice, Ori Shalev, and Nir Shavit. Transactional locking II. In Proc.
of the 20th International Symposium on Distributed Computing (DISC
2006), pages 194–208, 2006.

Dan Grossman, Jeremy Manson, and William Pugh. What do high-level
memory models mean for transactions? InMSPC ’06: Proc. 2006
Workshop on Memory System Performance and Correctness, pages 62–
69, 2006.

Tim Harris and Keir Fraser. Language support for lightweight transactions.
In OOPSLA ’03: Proc. 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pages 388–402, 2003.

Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable memory transactions. InPPoPP ’05: Proc. 10th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
pages 48–60, 2005.

Tim Harris, Mark Plesko, Avraham Shinnar, and David Tarditi. Optimizing
memory transactions. InPLDI ’06: Proc. 2006 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pages
14–25, 2006.

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: a minimal core calculus for Java and GJ.ACM Trans. Program.
Lang. Syst., 23(3):396–450, 2001.

Michael Isard and Andrew Birrell. Automatic mutual exclusion. In Proc.
11th Workshop on Hot Topics in Operating Systems, 2007.

Suresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hosking. A
transactional object calculus.Science of Computer Programming, 57
(2):164–186, 2005.

Bradley C. Kuszmaul and Charles E. Leiserson. Transactions everywhere.
Technical report, 2003. http://hdl.handle.net/1721.1/3692.

Ben Liblit. An operational semantics for LogTM. Technical Report 1571,
U. Wisconsin–Madison, 2006. Version 1.0.

Jeremy Manson, Jason Baker, Antonio Cunei, Suresh Jagannathan, Marek
Prochazka, Bin Xin, and Jan Vitek. Preemptible atomic regionsfor
real-time Java. InProceedings of the 26th IEEE Real-Time Systems
Symposium (RTSS), 2005a.

Jeremy Manson, William Pugh, and Sarita V. Adve. The Java memory
model. InPOPL ’05: Proc. 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 378–391, 2005b.

Katherine F. Moore and Dan Grossman. High-level small-step opera-
tional semantics for transactions. To appear,POPL ’08: Proc. 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2008.

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill,
and David A. Wood. LogTM: Log-based transactional memory. In
Proc. 12th International Symposium on High-Performance Computer
Architecture, pages 254–265. 2006.

Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection
for Java. InPLDI ’06: Proc. 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 308–319,
2006.

Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh,
and Benjamin Hertzberg. McRT-STM: a high performance software
transactional memory system for a multi-core runtime. InPPoPP ’06:
Proc. Eleventh ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, pages 187–197, 2006.

Michael L. Scott. Sequential specification of transactional memory seman-
tics. In Proc. 1st ACM SIGPLAN Workshop on Languages, Compilers,
and Hardware Support for Transactional Computing. 2006.

Nir Shavit and Dan Touitou. Software transactional memory. InProc. 14th
Annual ACM Symposium on Principles of Distributed Computing, pages
204–213, 1995.

Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balen-
siefer, Dan Grossman, Richard L. Hudson, Katherine F. Moore,and
Bratin Saha. Enforcing isolation and ordering in STM. InPLDI ’07:
Proc. 2007 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 78–88, 2007.

Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L.
Scott. Privatization techniques for software transactional memory.
Technical Report #915, Computer Science Department, University of
Rochester, 2007.

Nicholas Sterling. Warlock: A static data race analysis tool. In Proc.
USENIX Winter Technical Conference, 1993.

Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for
Java. InOOPSLA ’05: Proc. 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
pages 439–453, 2005.

