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Abstract Everywhere (Kuszmaul and Leiserson 2003), and Automatic Mu-

Software Transactional Memory (STM) is an attractive basis for :.ual IZEchu3|I(1).n rEwE) (Isarq %nd B;ilrrell 2007), described in Sec-
the development of language features for concurrent programming |or: " aF‘VY lCth IS paptir IS fag'?'l\/l . inaly simole. H
However, the semantics of these features can be delicate and prob- nturively, the semantcs ol IS appealingly Simple. Fow-
lematic. In this paper we explore the tradeoffs between semantic V€T @S researchers are coming to discover, this simplicity is illu-
simplicity, the viability of efficient implementation strategies, and fory andtthg ta(.:tt.ual semantics (t);:fetrled Ey |rt;1[:.)lem|entat|on?“are of-
the flexibility of language constructs. Specifically, we develop se- benhcoun_ erintut |vet—grograms+h atloo fothwous glco”.ecth n;a_ly
mantics and type systems for the constructs of the Automatic Mu- ehave In uneéxpected ways. 1he crux ot the problem Is that im-
tual Exclusion (AME) programming model; our results apply also p!emc_entatlons do not detect confllct_s between a transaction run-
to other constructs, such as atomic blocks. With this semantics asning In one thread a_nd non-trans:':lctlonal ste_p_s c:f another thread.
a point of reference, we study several implementation strategies. ] NiS Property, sometimes termed “weak atomicity” (Blundell et al.
We model STM systems that use in-place update, optimistic con- 2005), is attractive from an implementation standpoint: it means
currency, lazy conflict detection, and roll-back. These strategies arethat non-transacted code does not incur a performance overhead,
correct only under non-trivial assumptions that we identify and an- and tha't existing Ilbra_r|e§ an_d operating system interfaces can be
alyze. One important source of errors is that some efficient imple- USed without recompilation in non-transacted code. In contrast,
mentations create dangerous “zombie” computations where a trans- strong atomicity” requires the avoidance or detection of those con-

action keeps running after experiencing a conflict; the assumptions 1Cts: Strong atomicity appears to be the semantics expected by
confine the effects of these computations. programmers but, unfortunately, it does not appear to be practical

to implement using STM without restrictions and without recom-
Categories and Subject Descriptors  D.1.3 [Programming Tech- piling non-transacted code.

nigueg: Concurrent Programming—Parallel programming This paper examines this problem and explores the tradeoffs
between semantic simplicity, the use of efficient implementation
strategies, and the flexibility of language constructs. We present
. our results focusing on the AME programming model for two
1. Introduction reasons. First, while developing this new programming model, we

The notorious difficulty of concurrent programming stems in part hope to avoid the pitfalls we have encountered with earlier work
from the challenges of expressing the intended program semanticson atomic blocks; we want to understand AME's constructs and
with the available constructs for synchronization and mutual ex- Which techniques we can use to implement them. Second, there is a
clusion. For example, programs with threads and locks often suffer stralght_forward mechanical translation from a program with atomic
from deadlocks and race conditions. Some recent type systems andlocks into AME’s constructs, so the results that we establish will
other program analyses aim to prevent these errors (e.g., (Sterling2PPly more broadly; the translation in the other direction is less
1993; Abadi et al. 2006; Naik et al. 2006)). More radically, many ©bvious. o

researchers have been exploring the use of Software Transactional We present the AME calculus as a formalization of the AME
Memory (STM) (Shavit and Touitou 1995) as a basis for language Programming model (Section 3) and define a strong semantics for
features that may make it easier to develop and analyze concur-this calculus that abstracts the underlying STM (Section 4). We
rent programs. In one approach, locks are replaced with block- Show that, without language restrictions, the techniques used by
structured atomic sections, so a programmer may reason as if eactpractical STMs can lead to behavior that is incorrect under the
atomic section is executed as a single step, serialized with respect tatrong semantics (Section 5). Earlier work has provided some ex-
all other atomic sections (Harris and Fraser 2003; Harris et al. 2005; @mples (Blundell et al. 2005; Shpeisman et al. 2007). We argue that
Carlstrom et al. 2006). Several other related models have been proinost of these are incorrectly synchronized programs; however, we

posed; these include Safe Futures (Welc et al. 2005), Transactionsshow a number of further examples which, informally, do not con-
tain race conditions. We focus, in particular, on the problems that

occur when using the Bartok-STM implementation (Harris et al.
2006) in which updates are made in-place to the heap (“eager ver-
. - . . sioning” (Moore et al. 2006)) so tentative work is visible before a
Permission to make digital or hard copies of all or part of this work for persmnal . . . .
classroom use is granted without fee provided that copies are not made outsstrib  transaction commits, and conflicts may not be detected until com-
for profit or commercial advantage and that copies bear this notice and the fubitati ~ mit time (“lazy conflict detection”), allowing a transaction to con-
on the first page. To copy otherwise, to republish, to post on servers or ttritedis tinue running as a “zombie” (Dice et al. 2006) after becoming con-

tolists, requires prior specific permission and/or a fee. flicted. Similar implementation choices have been made in other
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STM systems such as McRT (Saha et al. 2006), because of theirrently, within the available resources and subject to strategies that
efficiency on many practical workloads. prevent excessive transaction aborts.
We then examine language restrictions that enable weaker
semantics—which model some of the techniques used by Bartok-2.2  Blocking an Asynchronous Method
STM—to implement these examples correctly (Section 6). First, An asynchronous method may contain any number of calls to the
we consider aviolation-freedomcondition, which formalizes the  system-supplied method:
sense in which our examples of Section 5 are race-free. For pro-
grams that satisfy this condition, we show that a lower-level se-
mantics with weak atomicity, in-place update, and roll-back imple- From the programmer’s perspective, the code of an asynchronous
ments the strong semantics (Section 7). In this semantics, at mostmethod executes to completion only if all the executed calls of
one transaction executes at a time. While this semantics is still blockUntil within the method have predicates that evaluate to
some way from an actual implementation, it resembles a practical true. blockUntil’s implementation does nothing if the predi-
uni-processor STM (Manson et al. 2005a). cate holds, but otherwise it aborts the current transaction and re-
A further language restriction is a type system that statically executes it later (at a time when it is likely to succeed). This behav-
separates data according to whether or not it is accessed transador is like that ofretry in some systems (Harris et al. 2005).
tionally. We show that, for well-typed programs, a weaker seman-
tics that models the concurrent execution of transactions and lazy2.3 Fragmenting an Asynchronous Method

conflict detection between them implements the strong semantics A purely event-based model produces program structure that can be
(Section 8). Violation-freedom does not suffice for this property. ynpleasant and unstable. For example, if a previously non-blocking
We discuss related work in Section 9. We conclude in Section 10 method call is modified to require a blocking action (e.g., a hash
by considering further work, and the implications of our results to  taple is modified to use disk storage instead of main memory),
the implementation choices made within an STM and to the design the event-based style would require that the method, and all of
of Iangyage features based on it. Proofs and additional resultsits Ca”erS, gets Sp“t into two separate methods (a request and
are available aittp: //research.microsoft.com/research/ a response handler). This splitting is sometimes referred to as
sv/ame/. “stack ripping” (Adya et al. 2002). AME’s solution is to allow an
asynchronous method call to contain one or more invocations of
2. Automatic Mutual Exclusion the system methoglield (). A yield call breaks a method into
] ) ) multiple atomic fragments. Importantly, these atomic fragments
The AME programming model has been outlined in a workshop are delimited dynamically by the calls gfield, not statically
paper (Isard and Birrell 2007). We summarize its constructs here, scoped like explicit atomic blocks. With this enhancement, the

blockUntil (<predicate>);

and refer to that paper for supporting details and examples. overall execution of a program is guaranteed to be a serialization
] of its atomic fragments. We implemenield by committing the
2.1 AME Basics current transaction and starting a new onebXockUntil call

The motivation for AME is to encourage programmers to place blocks execution of only the current atomic fragment (the code that

as much of the program text inside transactions as possible—wefollows the most recentield), or equivalently, it retries only the

refer to this as “protected” code—leaving non-transacted “unpro- transaction begun after the most recgfé1d.

tected” code primarily for interactions with legacy code. We be- .

lieve that this “protected by default” style will help programmers 2'4. Exte.rnal Side Effe.cts

write concurrent code whose semantics are clearer than is typicalActions with external side effects, such as I/O, are performed by

with today’s languages; in particular, programs in this style should asynchronous calls to an I/O library interface. The actual low-level

be easier to understand and to maintain than those with lock-based/O operations take place outside of transactions, either inside the

idioms, or with a straightforward translation of lock-based code to AME runtime or in explicitly unprotected code. In order to support

use atc;mic blocks this and other access to legacy non-transacted code, we allow the
Running an AME program consists of executing a set of asyn- following form:

chronous method calls. The AME system guarantees that the pro- unprotected { ... }

gram execution is equivalent to executing each of these calls (or - .
their fragments, defined below) in some serialized order. AME The unprotected code must use existing mechanisms for synchro-

achieves concurrency by overlapping the execution of the calls in nization. The current atomic fragment ends before the unprotected

cases where they are non-conflicting. The program terminates whenstatement, and a new one starts after it.

allits asyr}chror?logg me(t;u_)d_tc_:atlls(,:i hbav?hco’&n'\ﬁlléeted.tlnitizﬂy, th?I set

consists of a call ofiain() initiate e system. As we

as ordinary method calls, code car¥ create ano){her asynchronoué' The AME Calculus

method call by executing: In our formal study, we focus on a small but expressive language.

The language includes constructs for AME, as discussed above; it

also includes higher-order functions and imperative features. We

The calling code continues immediately after this call. In the con- call it the AME calculus, though undoubtedly other calculi with

ceptual serialization of the program, the asynchronous callee will AME are possible.

be executed after the caller has completed. The syntax of the AME calculus is defined in Figure 1. This syn-
In order to achieve the serialization guarantee, we envision that tax is untyped; we introduce a type system in Section 6.2. We also

each asynchronous method call will be executed by the AME sys- give several formal semantics below. The syntax introduces syntac-

tem as a transaction, in a thread provided by the system. If a trans-tic categories of values, constants, variables, and expressions. The

action initiates other asynchronous method calls, their execution is values are constants, variables, and lambda abstractlang)(

deferred until the initiating transaction commits. If the initiating In addition to values and to expressions of the formsgnc e,

transaction aborts, they are discarded. When it commits, they areblockUntil e, andunprotected e, the expressions include no-

made available for execution (in an indeterminate order). The set tations for function applicatiore(f), allocation gef e, which allo-

of available asynchronous method calls will be executed concur- cates a new reference location and returns it after initializing it to

async MethodName (<method arguments>);



blockUntil e
unprotected e

V. € Value = clz|Xxe S € State = RefStorex ExpSeqgx Exp
¢ € Const = wunit | false | true o € RefStore = RefLoc— Value
z,y € Var r € RefLoc C Var
e,f € Exp =V T € ExpSeq = Exp*
€
} reff elle|e:=f Figure 2. State space.
| asynce
\
\

A reference storer is a finite mapping of reference locations to
Figure 1. Syntax of the AME calculus. values. Reference locations are simply special kinds of variables
that can be bound only by a reference store. We vRiéLocfor

the set of reference locations. We assume Bwflocis infinite,

) ) ) soRefLoc— dom(o) is never empty. For every state, 7', e), we
the value ofe), dereferencing!é, which returns the contents in the require that ifr € RefLococcurs free ins(r'), in T, or in e, then

reference location that is the valuef and assignment(:= f, r € dom(o). This condition will be assumed for initial states and

which sets the reference location that is the value wf the value will be preserved by computation steps.

of f). ) ) Informally, we may imagine that a computer includes a single
The syntax allows arbitrary nestings afync, unprotected, special processor for performing “protected” work, occupied ley th

andblockUntil, and also allowasync anywhere, not necessarily  active expression, and an unbounded set of additional processors

attached to a function call. In unprotected conteisickUntil e capable of doing “unprotected” work, dedicated to the pool. (This

will behave roughly like “wait untit™—the precise meaning ofthis  jnformal model is somewhat independent of the details of the AME
is defined by the semantics of Section 4. Practical embodiments Ofca|cu|us; indeed’ we find it valuable in our work in the context

AME need not be as liberal in these respects. of richer languages.) If no “unprotected” work is available, then
As usual there is no difficulty in including other constructs. expressions in the pool are simply waiting for the special processor.
Several are definable: We identify expressions with threads of computation; the semantics

e We abbreviaté\z. ¢') ctolet z — e in¢’. We also abbreviate does not describe stacks or other thread-specific data.
let x = e in ¢’ to e; ¢/ whenz does not occur free idl.

4.2 Steps
* We treatyield as syntactic sugar famprotected unit. The evaluation of a program starts in an initial stétee, unit)
* We can express “abort and retry” BBockUntil false. with a single expression in the pool and withit as the distin-

Traditional atomic blocks typically occur in the context of un-  9uished active expression. ) _
protected expressions, and differ from asynchronous calls in Eyaluatlon then takes place.accordlng to rulgs (given below) that
that they are supposed to be executed immediately, not in somespecify the behavior of the various constructs in the language. The

indefinite future. We can expressonic e as: execution of threads is interleaved in a non-deterministic manner,
) subject to atomicity constraints. Each evaluation step produces a
let x = ref false in new state. Given a state, the next state is determined by the next
async (e; {mprotec'ﬁed (z := true)); possible operation in the active expression or in one of the expres-
blockUntil |z sions in the pool. We model strong atomicity by allowing expres-
wherez is a fresh variable that serves for signalirig termi- sions in the pool to take steps only when the active expression is
nation. The use oinprotected (z := true) rather than sim- unit, thus preventing the interleaving of steps of unprotected and
ply (z := true) ensures that, when this encoding is used in Protected work. _ o o
unprotected contexts (as intended), all accessesae done Inall cases, the next possple operatlon in an expression is found
in unprotected contexts, thus conforming to the type system of Py decomposing the expression into an evaluation context and a
Section 6.2. subexpression that describes this operation. As usual, a context is

an expression with a holg, and an evaluation context is a context

. of a particular kind. Given a context and an expression, we
4. Strong Semantics write C[ e | for the result of placing: in the hole inC. We use
This section defines a semantics for the AME calculus, intended Several kinds of evaluation contexts, defined in Figure 3:
to be a simple model of the constructs’s expected behavior rather o p eyajuation contexts are for the execution of protected frag-
than of possible underlying implementation techniques. Tothisend,  ments: the position for evaluation is not undeprotected.
the semantics provides strong atomicity between the execution of . .
transacted and non-transacted code, and it does not model roll- ® ¢ evaluation contexts are for the execution of unprotected frag-
back, optimistic concurrency, and other low-level features. In Sec- ~ Ments: the position for evaluation is undeiprotected.
tions 7 and 8 we consider richer and weaker semantics that add e £ evaluation contexts allow us to manipulateprotected

these features. values in the execution of unprotected fragments.
41 States We also let some evaluation contexts be sequences of expressions
with a hole:

As described in Figure 2, a stafe, 7', ¢) consists of the following )
components: e F evaluation contexts are of the forfAi/.7”,unit or of the
form T, P.

Thus, F[ e ] is either of the formT.U[ e |.T",unit or of the
form T,P[ e ]. We write eg.F[ e1 ] as an abbreviation for
e a distinguished active expressien eo.T.U[ e1 |.T' ,unit orey. T, P| e1 ], respectively.

¢ areference store,
¢ a collection of expressiorB, which we call the pool,



P = []|Pe|VP|refP|!P|P:=e]|r:=P|blockUntil P
U =  unprotected& |Ue|VU |refUd |U|U:=e€|r:=U|DblockUntil U
E = []l€e|VE|retE|E|E:=e|r:=E|DblockUntil £ | unprotected £
F = TUT' uit |T,P
Figure 3. Evaluation contexts.
(o, F[(Az.e) V]) —s (o, Fle[V/z]]) (Trans Appl),
(o, F[ref V]) —s (o[r—V],F[r]) (Trans Ref)
if r € RefLoc— dom(o)
(o, F['r]) —s (o, F[V]) (Trans Deref)
ifo(r)y=V
(o, F[r:=V]) s {o[r— V], Flunit]) (Trans Set)
(o, F|asyncel) —s (o,e.F[unit]) (Trans Async)
(o, F[ blockUntil true ]) —s (o, F[unit]) (Trans Block),
(o, T, P| unprotected e |) —s (o,T.P[unprotectede],unit) (Trans Unprotect)
(o, T.E[ unprotected V |.T",unit) +—s (o, T.E[V |.T',unit) (Trans Close)
(o,T.e.T', unit) —s (o, T.T€) (Trans Activate)

Figure 4. Transition rules of the abstract machine (strong).

Figure 4 gives rules that specify the transition relation that takes 5.1 Review of Examples from Shpeisman et al.
execution from one state to the next. The string “Trans” in the
names of the rules refers to “transition” rules, not to “transaction”.
In these rules, we write[V/z] for the result of the capture-free
substitution ofl” for x in e, and writeo[r — V] for the store that
agrees witho except atr, which is mapped td”. The subscrips
in — indicates that this is a strong semantics.

Were yield not syntactic sugar we could have the two extra

The first set of examples, in Figure 5, comes from work on
implementing strong atomicity (Shpeisman et al. 2007). In all
cases code is protected (i.e., runs transactionally) unless it is con-
tained in anunprotected block. Shpeisman et al. discuss how
these examples can cause unexpected behavior with existing STM
implementations—in particular, almost all of these problems oc-
cur with Bartok-STM because of its use of in-place update and

rules: lazy conflict detection. Bartok-STM does not exhibit the GIR and
(0, T, P[yield]) s {o,T.P|yield],unit) GLU problems; these occur in other STMs (e.qg., (Harris and Fraser
(0,T.€]yield|.T",¢') s (o, T.€[unit].T",¢') 2003)) which can buffer data at a coarser granularity than indi-

vidual fields: a transaction committing or being rolled back can
These rules are easily derived from those of Figure 4 and the involve writes that spill over onto adjacent locations.
definition ofyield asunprotected unit.

5.2 Are These Problems Data Races?

. - One may reasonably ask “Do these problems matter?” because
5. Problems with Weak Atomicity most of the examples in Figure 5 intuitively have data races. For
The strong semantics of Section 4 is intended to reflect a program-instance, in the Non-Repeatable Reads (NR) problem, there is
mer’s intuition about the behavior of the AME constructs, butitis no synchronization between the non-transacted stoxead the
unlikely to be practical to implement in software without language transacted read froms. In fact, almost all the examples in the
restrictions. In particular, the main purpose of using unprotected re- figure involve two threads accessingvithout any synchronization
gions is to interact with the operating system and other legacy codebetween them. (The sole exception is GLU and this problem is
that cannot easily be changed; implementations that offer strong readily solved by making the STM buffer data on a per-field basis.
atomicity by recompiling unprotected code do not support this pur- Bartok-STM already does this.)
pose. Unfortunately, although these examples could be considered to
In this section we discuss the ways in which different imple- have data races, other examphee free from data races at the
mentations of STM can give behavior that differs from the strong source level (both intuitively and with respect to formal definitions
semantics. For the purposes of this discussion, we write examplesbelow) butdo not obey the strong semantics with many STM
informally (rather than in a calculus like that of Section 3) for con- systems. For concreteness, again we focus on how these problems
venience, and in order to emphasize the relevance of these examean occur with Bartok-STM; however, we believe that variants of
ples to practical code. However, we use the strong semantics as ahe problems of Sections 5.4-5.5 affect all extant STM systems that
point of reference. allow data to be shared between protected and unprotected code.



(NR) Non-repeatable reads1!=r2
ri X; unprotected {

r2 X; x =1;
}
(ILU) Intermediate lost updates==1
rl = x; unprotected {
x=rl + 1; x = 10;
}
(IDR) Intermediate dirty reads:1==
X ++; unprotected {
X ++; rl = x;
}
(SLU) Speculative lost updates:=0
if (y==0) { unprotected {
x =1; X = 2;
// Abort y =1;
} }
(SDR) Speculative dirty readg==0, y==1
if (y == 0) { unprotected {
x = 1; if (x == 1) {
// Abort y = 1;
} } 3
(OW) Overlapped writes:1==0
ol.val = 1; unprotected {
X = ol; rl = -1;
if (x !'= null) {
rl = x.val;
} 3

(BW) Buffered writesr2!=r3 or ri.val!=0
// Initially x!=null, x.val==

rl = x; if (x !'= null) {
X = null; X.val++;
unprotected { }
r2 = rl.val;
r3 = rl.val;
rl.val = 0;
}
(GIR) Granular inconsistent reads==
r = -1; unprotected {
atomic { y.g = 1;
y.f=...; x = 1;
if (x==1) { }
r=y-8
+ 3}
(GLU) Granular lost updatex . g==
x.f = 1; unprotected {
x.g = 1;
}

Figure 5. Example problems from Shpeisman et al. (2007). Unless
otherwise noted, all fields initially hold 0. Registersr1, r2, and
r3 are thread-local.

5.3 Zombie Transactions

The first example concerrmmbie transactionthat access more
data than would be touched in any serialization. Consider the fol-
lowing two atomic actiona1 andA2 that run concurrently with the
unprotected blocki1:

// Al // A2 // U1
rl = u; ut+; unprotected {
r2 = v; V++; rl = x;
if (r1 '=1r2) { }
x = 42;
}

Informally, one may reason that both serialization ordersafor
and A2 will maintain the invariantai==v, so the conditiorr1!=r2
should never be satisfied1 will never write tox, and therefore
there is no data race witht's read fromx.

However, with Bartok-STMA2 may run in its entirety in be-
tweenA1’s reads fromu andv, causingA1 to write tox before the
conflict is detected. Despite the conflict detection and any resulting
roll-back, U1 may see this write. This kind of example is particu-
larly problematic in native code. For instance, suppose that instead
of writing to x, A1 indexes an array [r1-r2]: in a language with-
out bounds checking, it may actually write to any location depen-
dent on the number of increments performedn

5.4 Privatization

A second example is thprivatization problemin which a piece

of data is sometimes accessed from protected code and sometimes
accessed directly. Consider these code fragments, with one thread
runningA1 and thert1, and a second thread runniag:

// Initially: x_shared=true, x=0

// Al // A2
x_shared = false; if (x_shared) {
// U1 x = 42;
unprotected { }

X ++;
}

Informally, one may reason that this code has no data races:
x_shared is always accessed transactionally and, by the time
accesseg non-transactionallyA1 has already been executed and
eitherA2 is serialized befora 1 (so the accesses focannot race)

or A2 is serialized afteA1 (so it will see thatk_shared is false).

With Bartok-STM, it is possible fof1 to execute in its entirety
betweena2’s read fromx_shared and its write tox and then for
Ul's accesses t@ to race withA2. In Bartok-STM the problem is
therefore similar to that of Section 5.3 in that it occurs becaase
continues to execute as a zombie. However, the same problem can
occur without zombies on STMs that buffer transactional updates
and write them back on commit (Harris and Fraser 20Q@23)s
write-back tox may race wittu1’s accesses.

5.5 Publication

A final example is thg@ublication problemn which a piece of data
is initially thread-private and then becomes shared:

// Initially: x_shared=false, x=0

// U1 // A2
unprotected { ri = -1;

x = 42; if (x_shared) {
3 rl = x;
// Al }

x_shared = true;

Once again, one may reason informally that this code has no data
races:x_shared is always accessed transactionally and, when it
is set byA1, the update tax has already been performed.Af is
serialized befora2 thenA2 will see both updates.

The problem here is more subtle and relates to more of the
language than just the STM implementation: there is no indication
in the source code that the ordering betwaeis reads fromx and
x_shared is important. If they are re-ordered during compilation
then the implementation a2 may read fronx beforeu1, and then
read fromx_shared after A1, leavingA2 serialized afte1, but
with r1==0. A similar lock-based program, placing andA2 in
regions protected by the same lock, is correctly synchronized under
the Java memory model (Manson et al. 2005b). As with our strong
semantics, it would give eitherl==-1 or r1==42.



6. Violation-freedom and Separation Judgments

In Section 5, we show example programs that are not executed . . .
correctly by STM systems. In some cases, these are programs with gﬁ 0}_ o Eisa WTIIIEforn;ed typing env'f“t’nmem
data races, while in others the problems arise because (despite the =~ 7" ©° ienISE'aWV;ltﬁ é%gg expression of type
absence of apparent data races) a variatiteaccessed from both P
protected and unprotected code in the implementations. Rules

In this section we present two criteria that formalize the sep- Do (Env)
aration of protected and unprotected code, in the AME calculus. Fto ¢ domE)

The first criterion, violation-freedom, says that, dynamically, data (Envz)
cannot be accessed with and without protection at the same time. Ex:tho

This criterion allows us to say, formally, that the examples of Sec- EL

. . . < .
tions 5.3-5.5 are correctly synchronized, while most of the exam- —_— (Exp Unit)
ples of Section 5.1 are not. The second criterion, separation, is em- E;pF unit: Unit

bodied in a static discipline that guarantees that protected and un- EFo

protected computations do not use the same reference locations. (Exp Boolfalse)
As we prove, separation implies violation-freedom. In Sections 7
and 8, we show that, by restricting ourselves to programs that meet EFo
these criteria, we can enable the use of efficient and correct lower-

level semantics.

E;ptF false : Bool

—_ - Exp Boolt
E ;pt true : Bool (Exp rue)

6.1 Violation-free Executl Bt Bro (Exp2)
R X
. iolation-free Executions B B praii bz

We define a condition according to which data cannot be accessed

with and without protection at the same time in different threads. E,x:s;pke:t (Exp Fun)

Given a statdo, e1.- - - .en, €), there is a violation on a loca- EjqkXz.e:s —Pt P
tionr if e; = U[ f ] for somei = 1..n ande = P[ f' | wheref
andf' are reads or writes on(that is, expressions orr := ...), Eipbeiis =Pt Biphea:s o a0y
and at least one of them is a write (= ...). A computation is E;pkeiex:t
violation-free if none of its states have violations for any locations.

. . . E;pke:t

(Analogously, we could define races, in which we would also con- (Exp Ref)
sider conflicts withine; . - - - .e,,; every violation is a race but not E;ptrefe:Refpt

every race is a violation.)

A possible programming discipline is to require that programs Eiphe:Refpt

(Exp Deref)

never generate violations in the strong semantics. Under this disci- Eiptle:t

pline, a statdo, T, e) is good if all strong computations that start Eiphel:Refyt Eiphes:t

from this state are violation-free. The use of the strong semantics — - i (Exp Set)

is significant: programmers should not have to understand lower- Eipher:=ez:Unit

level implementations. However, analogous criteria apply to lower- E-PFe:Unit

level implementations, and might be of benefit in compiler opti- o8 }_ — (Exp Async)
. . . L ;q - async e : Unit

mizations. Some of our lemmas say that the absence of violations

in the strong semantics implies the absence of violations in certain E;:pht e:Bool

lower-level implementations. T pF blockUntil e Unit (Exp Block)

6.2 Separation EiUke:t

The type system described in this section embodies a discipline in E;pF unprotectede : ¢ (Exp Unprotect)

which protected and unprotected computations do not use the same - - -
portions of the reference store. They may however communicate Figure 6. The first-order type system for separation.
via variables.

The type system is defined in Figure 6, using judgments and
rules for reasoning about the judgments. The core of the type
system is the set of rules for the judgmditp + e : ¢ (read
“e is a well-typed expression of typein typing environment®
with effect p”). The intent is that, if this judgment holds, then

The following small example illustrates the restrictions that the
type system imposes:

yields values of type with effectp, and the free variables efare let x = ref V in

given bindings consistent with the typing environmé&htWhenp let y = ref true in

is P, this means that the evaluation @fccesses only the part of async (y := false;

the reference store for protected computations; whénU, this unprotected z := !z);
means that the evaluation efaccesses only the rest of the store. async (blockUntil ly;

The typing environmenk is organized as a sequence of bindings, z:=V')

and we us@ to denote the empty environment. Similady—? ¢ is

the type of function that take arguments of typand yield results whereV and V' are distinct values. Intuitively, the contents of

of typet with effectp. the reference location indicates whethet. is shared; setting that
The type system introduces a sharp distinction between “ location to false amounts to a privatization. This program is

code” and U code”. The type system is thus deliberately simple; not permitted by the type system, because the reference location

various elaborations are possible, mostly along standard lines, butthat is the value ofc is used in both protected and unprotected

we do not need them for our present purposes. computations.



On the other hand, the following variant of the program is

permitted by the type system: S € State = RefStorex ExpSeogx
. Exp x Exp x Log x ExpSe
letz =ref Vin o € RefStore = I?eﬁ‘)LOt:J)V<':1Iueg Poe
let y = ref true in I € Log = (RefLocx Valug*
async (y := false; r € RefLoc C Var
let 2’ = !z in (unprotected z := z')); T,P € ExpSeq = Exp
async (blockUntil ly;
x:=V') Figure 7. State space, with roll-back.
Here, the reference location in question is used only in protected
computations; its value is put into a local variabfefor use in an
unprotected computation in the same thread. which implementation techniques can be used while respecting the
In order to prove the soundness of the type system, we extend itstrong semantics?
to stateso, T', e). We write In this section we define a semantics that models weak atomic-

ity, allowing steps of unprotected code to be interleaved with steps
EF (o,e1. - .en,e€) LU X
of protected code, and also models eager versioning, in which trans-
if actions make in-place updates to the heap and are rolled back if they
. d — dom(E) A RefL abort for some reason. This semantics still serializes transactions:
om(o) = dom(E) etLoe only one piece of protected code can run at a time. We show that
e forall » € dom(o), there exist andp such thatE/(r) = Ref, ¢ this weak semantics is correct for violation-free programs. Even
andE;pto(r):t, without concurrency between transactions, this weak semantics is
e E:Pte; :Unitforalli=1.n, st|I_I interesting fr_om a practical point of view as well as a theo-
retical one—for instance to provide roll-back on a uni-processor

® E;PI e:Unit. real-time system (Manson et al. 2005a). We consider concurrency
We say that(o, e;. - - - .en, e) is well-typed if there exist such between transactions in Section 8.
that E + (o,e1.--- .en,e). We write —} for the reflexive- 71 States
transitive closure of—;. We obtain that typability is preserved )
by computation (that is, by—7}): Figure 7 defines states for the semantics with roll-back. A state

(0,T,e, f,l, P) consists of the following components:

THEOREM®6.1 (Preservation of Typability)f (o, T,¢e) is well- .
typed and(o, T, e) —% (o', T", €'}, then(c’, T", €'} is well-typed. * 0, T, ande, which are as usual,

) ) ) e f, an expression that, through computation, has yietdghd
This theorem helps in relating the type system to the absence of  \yhich we call the origin of),
violations, and it serves as the basis for analogous results for lower- . . .
level semantics, below. LA a.|ISt of memory locations and their values, to be used as a

We also obtain a progress result, which characterizes when a 09 in undos,
computation may stop and implies that computations do not get e P, alist of “pending” threads to be forked upon commit.
stuck in unexpected ways (for instance, by applying a boolean as
though it were a function). This progress result is partly a sanity
check; stronger ones are viable.

Much as in Section 4.1, for every stdig T', e, f, [, P), we require
thatifr € RefLococcurs free inr(r'), in T, ine, in f,inl, orin P,
thenr € dom(o). This condition will be assumed for initial states
THEOREM6.2 (Progress)lif (o, T, e) is well-typed, the only free  and will be preserved by computation steps.

variables in{c, T, e) are reference locations, anflr, T, e) —} We write each pair id in the form[r — V], we letdom(l) be
(o', T, ¢y, then: the set of locations for which [ is defined, and when € dom(l)

1. ¢ isunit and T’ is empty; or we writel(r) for the valueV' to whichr is mapped.

2. €' is of the formP[ blockUntil false |; or 7.2 Steps

/ / / " 1 " " ! 1"
3. (0,1, €) s {0, T7, €7) for some{c™, T", €7). Figure 8 gives the rules of this semantics. The intent is that, upon

6.3 Combarina Separation with Violation-freedom a roll-back caused by, the origin expressioif is added back to
o paring ) P . . T and the undos describediimre performed. The semantics has a
Violation-freedom is a clear but undecidable dynamic criterion. few subtleties.

The type system for separation provides a sufficient condition for

violation-freedom. As a corollary to Theorem 6.1, we obtain: * As in some practical STM implementations (Saha et al. 2006;
) Harris et al. 2006), the undos described!imre performed
COROLLARY 6.3. If (0, T, ) is well-typed, then all strong compu- individually rather than as one atomic step. We pick an arbitrary
tations that start from(o, T', ¢) are violation-free. order.
As suggested above, separation appears to be more robust thane Allocations are not undone. If they were, we could cause dan-
violation-freedom (for instance, less fragile in the presence of com-  gling pointers in programs with race conditions—and we be-
piler optimizations). lieve that dangling pointers should be avoided even in programs
with synchronization errors. Again, this detail is inspired by
7. Weak Semantics with Roll-back practical STMs (Harris et al. 2005).

Having introduced the violation-freedom and separation criteria * NO undo facilities are provided for unprotected computations.

in Section 6, we can examine their impact on the use of weaker e Since this is a weak semantics, unprotected computations may
semantics that model some of the implementation techniques used be interleaved with protected computations, and even with the
by actual STMs: if a program meets one or other of the criteria, then roll-backs of protected computations.



(o,T, Pl (Ax.e) V], f,1, P) —rw  (0,T,Ple[V/x]], f,1, P) (Trans Appl P).,,

(o, TU[ (Az.e) V ].T', €, f,1, P) —rw (o, TUle[V/x]].T', €, f,1, P) (Trans Appl U).,,
(o,T,Plref V], f,1, P) —rw  (o[r— V], T,P[r], [, P) (Trans Ref P),,
if r € RefLoc— dom(o)
(o, TU[ref V . T e, f,1, P) —rw  (o[r— V], TU[r].T e, f,1, P) (Trans Ref U),,,,
if r € RefLoc— dom(o)
<O’,T,'P[!T’},f,l,P> —rw <U7T7P[V]7fvlvp> (Trans Derefp’r)w
ifo(r)y=V
(o, TU[!r]. T e, f,1, P) —rw (o, TU[V T e, f,1,P) (Trans Deref U),,
it o(r) =V
(o, T, P[r:=V],f,1,P) —rw  (o[r— V]|,T,Plunit |, f,I’, P) (Trans Set B),,
wherel’ =if r € dom(l) theni elsel.[r — o()]
(o, TU[r:=V]T' e, f,l,P) —rw  (olr— V], TU[unit ].T e, f,1, P) (Trans Set U),,
(0,T,P[asyncel, f,1, P) —rw (0, T,Plunit], f,l,e.P) (Trans Async P),,
(o,TU[asynce].T’,¢, f,1, P) —rw  (o,e.TU[unit |.T7,¢€, f,1, P) (Trans Async U),,
(o, T, P[blockUntil true], f,l, P) —rw (o, T,Plunit ], f,I, P) (Trans Blocktrue P),.,,
(o, T.U[blockUntil true |.T7" €, f,1, P) —rw (o, T.U[unit |.T e, f,1, P) (Trans Blocktrue U),.,,
(o, T, P[blockUntil false |, f, 0, P) —rw (o, f.T,unit, unit, 0, 0) (Trans Blockfalse Restore),,

(o, T, P[blockUntil false ], f,l.[r — V], P) +——yyw (o|r+— V],T,P[blockUntil false |, f,I, P) (Trans Blockfalse Undo),,,

(o, T, P|unprotected e ], f, 1, P) —rw (o,T.P/P[unprotectede],unit,unit,®, @) (Trans Unprotecy),
(o, T,unit, f,1, P) —rw (o,T.P,unit,unit, 0, 0) (Trans Done),,

(o, T.E[ unprotected V 1.7 ¢, f,1, P) —rw (o, T.E[V )T e f,1,P) (Trans Close),,

(o, T.e.T',unit,unit, @, §) —rw (0, T.T,e,e,0,0) (Trans Activate),,

Figure 8. Transition rules of the abstract machine, with roll-back (weak).

* In the strong semantics of Section 4, there is no analogue for the for somes”” andT"” such that’ is an extension af” andT” = T
list of pending thread®. Instead, the corresponding threads are up to reordering.

putintoT’, but they cannot make immediate progress. This theorem is restricted to computations that lead to states of a

7.3 Correctness particular form, in par.ticular with.an active expre.ssitmit. _In

) o ] general, when the active expression is anit, the intermediate
The goal of this section is to establish the correctness of the weakstore s’ may be one that cannot be obtained by strong computa-
semantics with roll-back as an implementation of the simpler strong tions. Moreover, this theorem does not yield a strong computation
semantics without roll-back, assuming the absence of violations. \yith exactly the same final store: intuitively, the computation with
As the examples of Section 5 suggest, the violation-freedom hy- ro||-hacks may allocate additional locations, and those are not de-
pothesis is needed. More specifically, we prove that an intermediatea|iocated. However, the two final stores coincide at all accessible
strong semantics with roll-back implements the strong semantics |gcations: our invariant on states implies that both stores are de-
without roll-back; this result does not require violation-freedom. fined (and equal) at all referenced locations.
implementation of the strong semantics with roll-back only under
some assumptions. We obtain the following theorem: COROLLARY 7.2. Assume thafc, T, unit) is well-typed. Con-

sider a weak computation with roll-back
THEOREM 7.1 (Correctness)Assume that all strong computa- P

tions that start from the statgr, T, unit) are violation-free. Con- (o, T,unit,unit, 9, @) —r,, (o', T’ unit, unit, (), 0)

sider a weak computation with roll-back Then there is a strong computation

(o, T,unit,unit, 0, @) — <O’l, T/, unit,unit, ), @) (0, T, unit) s <U//7 T,//7 unit)

Then there is a strong computation for somes”” and7” such thatr’ is an extension of’ and7” = T

(o, T,unit) —: (¢”, T" unit) up to reordering.



S € State = RefStorex ExpSegx TrySeqx Log
o € RefStore = RefLoc— Value
VNS Log = (RefLocx Valug*
r € RefLoc C Var
T,P € ExpSeq = Exp*
O € TrySeq = Try*
d € Try = Expx Expx Accessex EzpSeq
a € Accesses = ReflLoc¢

Figure 9. State space, with optimistic concurrency.

8. Weak Semantics with Optimistic Concurrency

Building on the study of roll-back, we treat a difficult extension of
the operational semantics in which multiple active expressions are
evaluated simultaneously, with roll-backs in case of conflict. We
ground our work on important aspects of Bartok-STM, as above,
by making in-place updates to the reference store and using lazy
conflict detection—although alternative strategies might be easier
to analyze.

Like roll-back, optimistic concurrency raises correctness issues.
Interestingly, and unlike for our semantics of Section 7, violation-
freedom isnota sufficient condition for correctness in this case. As
in our examples of Section 5.3-5.4, a program can be violation-
free under the strong semantics but have lower-level violations

¢ Given a logl and a list of reference locations! — a is the log
obtained from by restricting to reference locations notdn

e If Ois(e1, f1,a1,P1). -+ (€n, fn,an, Py) thenorigin(O) is
the listfi.--- . fn.
¢ ol is the result of applying all elements bfo o.
The rules allow for conflicts to be detected as soon as they occur,
but they do not require it. For simplicity, the rules do not include

some secondary features sufficiently explored in the semantics with
roll-back of Section 7. In particular, undos are atomic. Moreover,

there is no special treatment follockUntil false; the rules

simply allow undo to happen at any point (possibly because of
conflicts, but also possibly becauseb@bckUntil false).
In this semantics, each transition has the form

<O’, 717 O, l> —ow <0_/7 le 0/7 l/>

In many cases, a transition is defined in terms of a context that has
a hole either inl" and inT”, or in O and inO’. We say that the
transition is protected if the hole is @ and inO’, and say that the
transition is unprotected if the hole isThand inT”. By definition,

we have:

e transitions that are instances of (Trans . ,.Pare always pro-
tected;

e transitions that are instances of (Trans
Close),,, are always unprotected,;

..o)r of (Trans

because of zombie transactions. Nevertheless, we show that if a ® transitions that are instances of (Trans Undo)(Trans Un-

program is well-typed in the type system of Section 6.2 then its
weak semantics is correct with respect to the strong semantics.

8.1 States

As described in Figure 9, states become more complex for this
semantics. In addition to the componesits’, and! that appear in
the semantics with roll-back, here we have a list of tuples instea
of a single active expressioasnd its origin expressiofi. Each of
the tuples is called a try, and consists of the following components:

d

e an active expressiofn
e its origin expressiorf, as in the semantics with roll-back,

e a description of the accesses thdbas performed, which are
used for conflict detection and which here is simply a list of
reference locations,

e alist P of threads to be forked upon commit.

Clearly these components could be refined further in more elabo-
rate, realistic schemes. For instance, conflict detection could dis-
tinguish reads and writes, possibly with timestamps; moreover, the
log used for undos could contain additional information in order to
support more selective undos. (Actual STM implementations typi-
cally resolve conflicts by aborting some transactions and commit-
ting others.) We prefer to avoid this tedious book-keeping since it
might obscure the presentation. Even in the present form, the se-
mantics exhibits challenging features.

8.2 Steps
Figure 10 gives the rules of this semantics. They rely on the follow-
ing definitions:
* (es, fi,as, P;) and(ej, f;, a5, P;) conflict if a; anda; have at
least one element in common.

e (e, f,a, P) conflicts withO if (e, f, a, P) conflicts with some
try in O.

¢ O conflicts if it contains two distinct tries that conflict.

protect),,, (Trans Done),, or (Trans Activate),, are neither
protected nor unprotected.

8.3 Correctness
As explained above, the absence of high-level violations does not

in general suffice for correctness. It is plausible that the absence
of lower-level violations would suffice for correctness. This result
could be adequate as a basis for compiler optimizations, but would
not be fully satisfactory—programmers should not be aware of the
details of this lower-level semantics. Instead, we rely on the type
system for separation.

We do not modify the source typing rules of Section 6.2, but we

do extend them to the states defined in this section. We write:
EF (0,T,0,l)
if
e dom(o) = dom E) N RefLog
e forall » € dom(o), there exist andp such thatE/(r) = Ref, ¢
andE;pk o(r) : ¢,
e foreache’ inT, E;PF € : Unit,
e for each(e, f,a,P)in O, E;P e : Unit andE;P F f :
Unit, and for eaclk’ in P, E ;P F ¢’ : Unit,
e for eachr € dom(l), there existg such thatE(r) = Refp ¢
andE;P+I(r) : t.
In the special case wheand! are empty, we may omit them and
simply say that(o, T') is well-typed. This condition is equivalent
to (o, T,unit) being well-typed according to the definition of
Section 6.2. Thus, whethés, T') is well-typed can be understood
and proved entirely in terms of the higher-level definitions, without

any regard for optimistic concurrency.
We obtain that typability is preserved by computatien-;,,,):

THEOREM8.1 (Preservation of Typability)f (o, T, O, 1) is well-
typed ando, T, O, 1) —3,, (o', T', 0",y then{c’, T", O, ') is
well-typed.



(o, T,0.(P[(Az.e) V], f,a,P).O",1) —ow (0,T,0.(Ple[V/z]], f,a, P).O',1) (Trans Appl P),,

(o, TU[ (Az.e) V ].T,0,1) —ow (o, TU[e[V/z]].T',O,l) (Trans Appl U),,,
(O’,T,O.(’P[I‘GfV],f,a, P)Ol7l> —ow (U[TH V],T,O-(’P[’/‘},f,a, P)O/7l> (Trans Ref Pgw
if r € RefLoc— dom(o)
(o, TU[ref V |.T',0,1) —ow (o[r— V], TU[r].T,0,l) (Trans Ref U),,,,
if r € RefLoc— dom(o)
(Uv T,O(P['T],f7 a, P)Ol7l> —ow <Uv T7O.(73[V],f,r.a,P).O’7l> (Trans Deref P()u)
ifo(ry=V
(o, TU[!r].T",0,1) —ow (o, TU[V].T',O,l) (Trans Deref U),,
ifo(r)=V
(o, T,0.(P[r:=V], f,a,P).O1) —ow (olr+— V], T,0.(P[unit], f,r.a, P).O’,l") (Trans Set P),,
wherel’ = if r € dom(l) thenl elsel.[r — o ()]
(o, TU[r:=V].T',0,l) —ow (o[r— V], TU[unit ].T",0,1) (Trans Set U),,
(0,T,0.(P[asynce], f,a, P).0',1) —ow {0,T,0.(P[unit], f,a,e.P).0’,1) (Trans Async P),,
(o,TU[ async e].T’,O,1) —ow (o,e.TU[unit].T",0,l) (Trans Async U),,
(0,T,O.(P[blockUntil true ], f,a, P).O',l) +—ow {(o,T,0.(P[unit], f,a,P).0’,1) (Trans Block P),,
(o, T.U[ blockUntil true .77, O, 1) —ow (o, TU[unit].T’,0,1) (Trans Block U),,,,
(o, T,0,1) —ow (ol,origin(0).T,0,0) (Trans Undoy),,
(0, T,0.(P| unprotected ¢, f,a, P).O’,1) —ow (0, T.P[unprotectede].P,0.0’,l — a) (Trans Unprotect),,
if (P[unprotected €], f,a, P) does not conflict withD.O’
(0,T,0O.(unit, f,a, P).0O’,1) —ow (o, T.P,O0.0',1—a) (Trans Done),,
if (unit, f, a, P) does not conflict wittD.O’
(o, T.E[ unprotected V |.T7, 0, 1) —ow (o, T.E[V].T',0,l) (Trans Close),,
(0,T.eT’,0,l) —ow (0, T.T',(e,e,0,0).0,1) (Trans Activate),,,

Figure 10. Transition rules of the abstract machine, with optimistic concurrencykvea

In fact, we prove that ifo, T', O, 1) is well-typed with respecttoan ~ Then there is a strong computation
environmentE, then (o', T', 0’1"} is well-typed with respect to
an extension of2. In the cases of (Trans Ref . ,.), (Trans Deref
... )ow, and (Trans Set . .,),, which deal with a reference location  for somes’" andT”’ such that’ is an extension af” andT” = T

(o, T,unit) — (¢", T, unit)

of typeRef,, to, if the transition is protected, ther must bep, up to reordering.

and if the transition is unprotected, then must beu. It follows . . . .
that, if (o, T, O, 1) —%, (o, T',0', 1) and (s, T, O, 1) is well- More generall*y, |nlth(? pr/oolf of this res_ult we establish that if
typed, then there exist subsetsandu of dom(o’) such that the (0 1,0,0)—73,, (o', T", O',I') then there is a strong computation
protected transitions itv, T, O, 1) —%,, (o', T',0’,l’) allocate, (G }}nlt>'_/’s (o vT,7m1t> whereo'l’ is an extension of”,
read, or write only reference locations iy and the unprotected ~ and 7" = T".origin(O") up to reordering. We also add some

transitions in(a, T, 0, 1) —%, (o/,T",0',') allocate, read, or further conditions in order to permit an inductive proof.
write only reference locations . Moreover, reference locations
reset by (Trans Undg), are inP. The subsets in question consistof 9. Related Work
the reference locations declared with effeetsndu, respectively,
in the environment.

Using Theorem 8.1, we establish the correctness for the weak
semantics with optimistic concurrency with respect to the high-
level, strong semantics.

This paper is related to work in several areas. There have been
informal definitions about how STM or atomic blocks should be
used by programmers (Section 9.1); Section 6 is our formaliza-
tion of these criteria. There have also been several formal semantics
for atomic blocks (Section 9.2); our strong semantics is similar to
existing definitions, but our weaker semantics go further towards
THEOREM 8.2 (Correctness)Assume thato, T) is well-typed. the details of actual implementations. We believe that they are the
Consider a computation first to expose problems like those of Section 5. Finally, work on

defining weak memory models inspired the approach of consider-

(0, T,0,0) —by, (', T, 0,0) ing violation-free programs (Section 9.3).



9.1 Informal Definitions ticular, Moore and Grossman focus on traditional atomic blocks,
dwith internal concurrency but with no yielding and no provision for
unprotected fragments except at the top level; they have yet to ana-
atomicity. The criteria for using atomic blocks correctly are usually :ﬁfe schemeti with (?(pllmlSth cqntcurtr_entcg/ : _Dssplte thteste_: ant(:] other
treated informally (Harris and Fraser 2003; Adl-Tabatabai et al. ierences, the works are consistent in their aemonstrating the via-

2006: Allen et al. 2007). For example, Harris and Fraser (2003) bility_and value of precise operational semantics for the constructs
provide a form of separation rule, saying that each shared location considered.

should either be protected by a given mutex, or be accessed ing 3  Memory Models

atomic blocks, or be markegblatile. Our zombie example of
Section 5.3 shows the problem with this style of definition: the
locations accessed by a zombie transaction depend on the ST
implementation, not just on the source language.

Our violation-freedom criterion tries to formalize this defini-
tion. This approach may also be applicable to the Fortress language
where Allen et al. (2007) require that “updates to shared locations .
should always be performed using an atomic expression”, or to the &"d non-transactional code. .
extensions o Java in Adl-Tabatabai et al. (2006) that require that !N many languages the memory model must also consider pro-

“all potentially concurrent accesses to shared memory are properly9rams that areot correctly synchronized so that, for example, a
guarded by atomic regions”. Of course, both languages include fea-Programmer cannot use data races to violate safety and security

tures not present in the AME calculus, so there may be further sub- Properties of a virtual machine. Grossman et al. (2006) have started
tleties. to examine some of the questions that arise when extending this
The Atomos language notably provides atomic blocks with aspect of a memory model to programs written with atomic blocks.

strong atomicity (Carlstrom et al. 2006). It employs a hardware B'U”‘_je” et al. (2005_) iIIus;rate how a program may run to
implementation of transactions. completion under a particular implementation of transactions, but

will always deadlock under strong atomicity. Their example is

9.2 Formal Definitions not violation-free and not well-typed under a type system like
hat of Section 6.2. Furthermore, with some implementations of
eak atomicity (Harris and Fraser 2003), the example will never
un to completion. This point is yet another illustration of how

semantics with weak atomicity are tied to the details of particular
implementations.

Several papers propose adding atomic blocks to Java, C#, an
similar languages, relying on STM implementations that offer weak

Adve and Hill (1990) introduced the idea of providing strong se-
yfmantics to programs that obey a set of formally specified con-
straints; our definition and use of violation-freedom is partly in-
spired by their approach. Spear et al. (2007) independently identi-
fied the link between this work and transactional memory, propos-
ing a hierarchy of models for sharing data between transactional

Jagannathan et al. (2005) define TFJ, an extension to Featherweig
Java (lgarashi et al. 2001). They model a source language Wherer
transactions include internal fork-join parallelism, and they explore
two implementations based on optimistic concurrency control and
on two-phase locking. Although steps of the executions of transac-
tions can be interleaved, all TFJ memory accesses are made trans; .
actionally so the problems we are studyi)rllg do not occur. 10.  Conclusion and Further Work

Liblit (2006) defines a detailed operational semantics for the The present exploration of language constructs represents the foun-
LogTM hardware. This semantics models the creation and termina- dation for ongoing work on programming with transactional mem-
tion of threads, the execution of transactional and non-transactionalory. Understanding the semantics of the constructs and the related
memory accesses, the interleaving of memory accesses withintradeoffs has proven both challenging and worthwhile. In partic-
transactions, and the use of open-nested and closed-nested trangdar, the realization that weak semantics like that of Sectialo 8
actions. The semantics implements strong atomicity. A memory notcorrectly execute all violation-free programs indicates that im-
access is not permitted to execute if it would conflict with a concur- plementation techniques employed in Bartok-S¢ahnotbe used
rent transaction; non-transacted operations are “stalled” until they without further language restrictions or other precautions.
may run without conflict. Commit and roll-back are both modeled We have demonstrated that imposing a strong language restric-
as single transitions. Like Jagannathan et al.'s semantics, Liblit’s tion, static separation of mutable state, lets us give the programmer
semantics does not expose the problems that we are studying. the attractive behavior of the strong semantics even with a very

Harris et al. (2005) provide an operational semantics for atomic permissive implementation. In hindsight, this fact may not appear
blocks in Haskell. The semantics is split into three layersoge surprising, but it is worth noting that several definitions of separa-
layer that contains transitions for the evaluation of pure functional tion are possible (e.g., (Harris and Fraser 2003; Harris et al. 2005;
code, aransactionallayer that contains STM operations and pure Moore and Grossman 2008)), and that they have substantially dif-
functional code, and alO layer that contains input/output oper-  ferent consequences; for instance, some definitions do not suffice
ations, pure functional code, and atomic blocks of transactional in the presence of zombies (see Section 9). Although separation
code. In this semantics, complete transactions execute as singlds appealing in a functional setting, it is probably less palatable in
steps in the 1/O layer, without interleaving between transactions or an imperative language where most data is considered mutable, and
between transacted and non-transacted code. would therefore require marshaling across the separation boundary.

Scott (2006) tackles another aspect of the subject: what is the These results suggest a number of directions for future work—by
sequential specificatioof transactional memory as a shared object developing the type system (to allow more programs to be correctly
in Herlihy and Wing's formalism: e.g., what values may a transac- typed), the language constructs (perhaps to describe data transfer
tional read return, and under what circumstances must a particularbetween protected and unprotected modes), or the STM implemen-
transaction commit successfully? Extending Scott's model to con- tation (perhaps to support more programs with the strong seman-
sider non-transacted accesses to the same memory would provideics). This exploration highlights the benefits of co-design of these
another way of approaching the problems of Section 5. three aspects of the language and its implementation.

In current work, Moore and Grossman (2008) are studying the ~ We have also explored several alternative semantics. Clearly
operational semantics of transactions. Our studies were started in-there are many others. Some of those that capture appealing imple-
dependently, but we have had the opportunity to compare notes.mentation strategies may be worth studying further. Moreover, in-
While it appears that our high-level goals and our techniques are corporating some of the subtleties of relaxed memory models may
similar, there are a number of differences in our results. In par- lead to further problems and assumptions.



In addition to the type system in this paper, we have developed ference on Programming Language Design and Implementapiages
and analyzed a type system that characterizes “yielding” behavior. ~ 14-25, 2006.

With this type system, the caller of a function obtains static infor- Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. tffeaveight
mation on whether the function may yield and therefore commit. = Java: a minimal core calculus for Java and @M Trans. Program.
Combining the two type systems is straightforward, and may be at-  Lang. Syst.23(3):396-450, 2001.

tractive if yielding and separation are generalized (so, for example, Michael Isard and Andrew Birrell. Automatic mutual exclusidn Proc.

yielding may commit only a part of the heap). 11th Workshop on Hot Topics in Operating Syste2097.

Our initial exploration of AME includes writing example pro-  syresh Jagannathan, Jan Vitek, Adam Welc, and Antony Hgskif
grams. At this point, we have confidence that the constructs are transactional object calculusScience of Computer Programming7
interesting and useful, and in any case we expect that some of the (2):164-186, 2005.
ideas and results of our work will be of value whether or not par- gradley C. Kuszmaul and Charles E. Leiserson. Transactizeryehere.
ticular constructs are widely adopted. Designing constructs and de-  Technical report, 2003. http://hdl.handle.net/172698
signing languages are distinct activities; further research should in- gep, | jpjit. An operational semantics for LogTM. Technicalpet 1571,
form a language design based on AME. U. Wisconsin—Madison, 2006. Version 1.0.
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