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Abstract
Implementations of language constructs over transactional
memory have typically provided unexpected semantics, re-
quired the re-compilation of non-transacted code, or as-
sumed new hardware. We introduce an alternative approach
founded on a contract between the programmer and the lan-
guage implementation in which strong semantics are pro-
vided to programs that are “correctly synchronized” in their
use of the language, even if the underlying TM implementa-
tion provides weaker guarantees.

Our approach is based on the dynamic separation of ob-
jects that can be updated in transactions, objects that can
be updated outside transactions, and read-only objects that
are accessible everywhere. We introduce explicit operations
that, at run-time, identify transitions between these modes of
access. Dynamic separation is more flexible than earlier no-
tions of static separation, while still permitting an extremely
wide range of hardware-based and software-based imple-
mentations. We define what it means for a program to obey
the dynamic-separation discipline, and we show how a run-
time checking tool—analogous to a data-race detector—can
test this property. We also describe our design and imple-
mentation of a system with dynamic separation, and exam-
ine the use of dynamic separation in an asynchronous IO
library.

1. Introduction
Recently there has been much work on implementing language-
level atomic blocks over software transactional memory
(STM). This approach provides an alternative to using locks
and condition variables for shared-memory concurrency.
Typical STM implementations allow threads to execute non-
conflicting transactions in parallel, enabling data structures
which scale with performance similar to that of complicated
fine-grained locking, with the programming simplicity of
coarse-grained locking.

Much recent transactional-memory research has focused
on the language constructs that are exposed to the program-
mer [9, 10, 13, 21, 22] and the semantics that an implemen-
tation of these constructs must obey [16, 1]. The interaction
between program fragments running inside transactions and
those running concurrently in non-transacted code has been
found to be particularly subtle [4, 22, 16, 1]. In this paper we
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Figure 1. System design: an AME application is structured
as atomic actions which execute over an asynchronous IO
library. The IO library interfaces between the atomic actions
used by the application and the ordinary direct execution of
the underlying layers.

address one aspect of this interaction that arises when an ob-
ject is accessible by both transacted and non-transacted code.
We are particularly motivated by the goal of portability: to
facilitate early adoption of transactional memory it is impor-
tant that programs run efficiently, with identical semantics,
over a range of current STM implementations, and that they
continue to run, with the same semantics and without un-
necessary overheads, once hardware transactional memory
becomes widely available.

We introduce a new technique called “dynamic separa-
tion” (DS) whereby each object has a “protection mode”
indicating whether it can be accessed inside or outside a
transaction, and the programmer explicitly indicates when
this mode should be changed. We show that this is more
flexible for the programmer than previous notions of static
separation [10, 1, 16], and permits more flexibility for the
language implementor than weaker notions like “violation-
freedom” [1]. We implement DS within the AME program-
ming model [13]. In this setting, where all code runs inside
a transaction by default and non-transacted code is explic-
itly delimited by the programmer, there is a natural symme-
try between the DS constructs and familiar existing notions
such as “pinning” a managed object before passing it to na-
tive code.

Figure 1 illustrates the structure of an application built
using AME [13]. Rather than using threading with occa-
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// Atomic action A1
if (status == Idle) {

<populate buffer b>

// IO library
status = Requested;
unprotected {

// Unprotected code U1
// unprotect(b); // DS1
pin(b);
unsafe {

syscall(&b[0]);
}
unpin(b);
// protect(b); // DS2

}
status = Complete;

}

// Atomic action A2
blockuntil(status == Complete);
<use results from buffer>

// Atomic action A3
if (status == Idle) {

<populate buffer b>
status = Requested;
...

}

Figure 2. Example (pseudo-code).

sionalatomic blocks, an application is structured as a set
of atomic actions. AME provides constructs for delimiting
the boundary between one atomic action and the next, for
blocking an atomic action until it is ready to run, and for
executing an asynchronous call as a new atomic action. We
call these atomic actions “protected” code and, inverting the
normal way of programming with transactions, an AME pro-
gram may contain explicitunprotected blocks which ex-
ecute directly, finishing the atomic action before them, and
starting a new atomic action after them. The atomic actions
in the application interact with the external world througha
layer built usingunprotected blocks that serve as an in-
terface with external libraries and resources. We review the
constructs involved in Section 1.1.

We aim to run programs with “strong semantics” mean-
ing that (i) atomic actions appear genuinely atomic, without
interleaving other atomic actions or ordinary code (“strong
atomicity” [4]), and (ii) operations appear to execute in the
same order as specified in the source code, without impact
from compiler transformations or relaxed memory models.
This semantics is notoriously difficult in settings like that of
Figure 1: existing solutions either require hardware exten-
sions, or they require the implementation of non-atomic code
to be aware of the transactional machinery (a non-starter
when DMA transfers from devices are considered in mod-
ern IO libraries).

Figure 2 shows an example to illustrate the problems
we have in mind. An atomic actionA1 sets up a buffer
of data to be output. The IO library finishes the atomic
action by entering anunprotected block. The buffer is
then “pinned” in memory—that is, the garbage collector is
prevented from relocating or reclaiming it, letting the object
be accessed within the system call. Concurrently, a second
atomic actionA2 blocks until a status flag shows that the
request is complete whereupon it accesses results from the
buffer. A third atomic actionA3 conflicts withA1; it changes
a flag thatA1’s control flow depends on, and it tries to use
the bufferb for its own purpose.

In this example we must make sure that accesses inU1

see the preceding updates made fromA1 and that, onceA2 is

allowed to run, it sees any updates made tob by the system
call. We must also consider concurrency introduced by the
implementation of atomic actions over STM. For example,
suppose thatA3 executes concurrently withA1 and tries to
prepare an alternative request using the buffer. With some
STMs A3 may continue to make updates tob before the
conflict withA1 is detected. This could corrupt the data while
it is being accessed by the system call.

The basic idea of DS is to extend the programming model
with explicit operations for indicating, at run-time, which
data should be accessed by atomic actions, which data
should be accessed directly, and which data is immutable
and can be shared between those access modes. The only
changes needed to use DS in our example are to uncomment
the lines DS1 and DS2: the buffer is marked “unprotected”
during the time that it is accessed directly. We introduce
theseprotect/unprotect/share operations and their se-
mantics in Section 2, and discuss how we apply this notion
to C# in Section 3.

DS can be seen as a contract between the programmer and
the language implementor. So long as the program is correct
in its use of DS—accessing only protected data in atomic
actions, and accessing only unprotected data outside atomic
actions, then the implementation must run the program with
strong semantics. Crucially, the question of whether or not
the program uses DS correctly is based on its hypothetical
execution under strong semantics.

This form of contract benefits programmers by insulating
them from implementation details like exactly which kind of
TM implementation is used: correct programs run on all cor-
rect implementations. This is convenient in the short term,
since it simplifies the task of learning to use transactional
constructs; it may prove essential for long-term adoption of
transactional memory, since without such a contract to sup-
port portability, code re-use and maintenance becomes very
problematic. Such a contract also benefits the language im-
plementor by providing a clear definition of which program
transformations and implementation techniques are correct.

We have implemented AME with DS as an extension to
the Bartok-STM system [11]. We discuss the implementa-
tion in detail in Section 4. However, the issues raised by
the example of Figure 2 serve to illustrate the approach: we
constrain the STM to make updates only to protected ob-
jects. This prevents it from trampling over data that has been
passed to non-transacted code. There is an analogy here with
using “pinning” to enable objects to be passed to native code:
while pinned, an object will not be relocated in memory or
reclaimed by the GC. Similarly, while unprotected, an ob-
ject will not be modified by the TM implementation. In each
case this isolates the non-GC or non-transacted code from
the details of the GC or TM implementation.

We discuss how the programming language’s memory
model can incorporate DS (Section 4.2). We focus on the
.NET 2.0 memory model, but briefly discuss aspects of the
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Java memory model which allows a larger set of program
transformations.

We sketch alternative implementations for different TMs
(Section 4.3). In particular, our design for the semantics of
DS avoids the overhead of tracking objects’ protection status
when building on an HTM with native support for strong
atomicity. So long as it uses DS correctly, the same source
program can run over this wide range of systems.

To help programmers use DS correctly, we support a
debugging mode that adds run-time checks that all of a
program’s memory accesses are correct (Section 5).

As a case study, we examine DS in the context of appli-
cations built over the AME asynchronous IO library (Sec-
tion 6). We show where DS operations are used in the li-
brary and how their implementation adds an imperceptible
overhead in the applications. It adds less than 1% in a CPU-
bound workload with comparable synchronization patterns.
In contrast, if we require transacted and non-transacted ap-
plications to access statically-disjoint data, marshaling be-
tween these copies adds an order-of-magnitude slowdown.

We discuss related work in Section 7, contrasting DS with
other disciplines such as notions of violation-freedom [1]or
single global lock atomicity [15].

Finally, in Section 8, we conclude by discussing how DS
could apply to languages like C# or Java augmented with
atomic blocks.

In a companion paper [2], we develop a formal model
of DS. We compare DS to other programming disciplines,
formally, and study two models of implementations. In par-
ticular, we prove the correctness of a model based on our
Bartok-STM approach.

1.1 Background: Automatic Mutual Exclusion

In this section we review the AME programming model [13,
1].

AME distinguishes “protected” code, which executes
within transactions, from ordinary “unprotected” code. Im-
portantly, the default is protected code. Unprotected code
is supported primarily in order to permit interactions with
legacy code, much as systems like the Java Virtual Machine
(JVM) support native methods to interface between appli-
cation code and system calls. Design choices that simplify
protected code, or allow faster implementations of it, are of-
ten preferable even if they make writing unprotected code
more complicated.

Running an AME program consists of executing a set of
asynchronous method calls. The implementation guarantees
that the program execution is equivalent to executing each of
these calls (or their fragments, defined below) in some serial
order. An asynchronous call is created by the invocation:

async MethodName(<method arguments>);

The caller continues immediately and, in the conceptual seri-
alization of the program, the asynchronous callee will be ex-
ecuted after the caller has completed. AME achieves concur-

rency by executing asynchronous calls in transactions, over-
lapping the execution of multiple calls, with roll-backs when
conflicts occur. If a transaction initiates other asynchronous
method calls, their execution is deferred until the initiating
transaction commits, and they are discarded if the initiating
transaction aborts.

An asynchronous call may also make any number of calls
to the system methodblockuntil(<predicate>). From
the programmer’s perspective, an asynchronous method can
only complete if all these predicates evaluate to true. This
behavior is like that ofretry in some systems [10].

An asynchronous call may also invoke the system method
yield(). A yield call breaks a method into multiple
atomic fragments, implemented by committing one trans-
action and starting a new one. These atomic fragments are
delimited dynamically by the calls ofyield, not statically
scoped like explicit atomic blocks. AME thus avoids some
of the pitfalls of pure event-based programming models (in
particular, “stack ripping”). With this addition, the overall
execution of a program is a serialization of its atomic frag-
ments.

To allow the use of legacy non-transacted code, AME
provides block-structuredunprotected sections. These
must use existing mechanisms for synchronization. AME
terminates the current atomic fragment before the code, and
starts a new one after.

Many aspects of AME appear in other models. Transac-
tional Coherence and Consistency (TCC) provides a pro-
gramming model where all execution is divided into trans-
actional units [8]. By construction this avoids the interac-
tions between transacted and non-transacted code that we
are concerned with here. Smaragdakis et al.’s Transactions
with Isolation and Cooperation (TIC) model [21] provides
non-block-structured atomic actions, several constructsfor
expressing roll-back operations, and different forms of trans-
actional nesting. We focus on AME because it provides a
smaller number of core constructs and because of the exist-
ing AME calculus [1]. DS readily applies to TIC and could
be valuable in the scenarios Smaragdakis et al. have consid-
ered.

2. Dynamic Separation
In overview, DS works as follows:

• We distinguish dynamically between transacted (“pro-
tected”) data, non-transacted (“unprotected”) data, and
read-only data. By default, data allocated inside a trans-
action is created in “protected” mode and data allocated
outside a transaction is created in “unprotected” mode.

• We provide explicit operations to move data between
these modes.

• We require that programs access data in the correct mode:
read-only data may be read anywhere but not updated,
protected data may be accessed freely inside transac-
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tions, and unprotected data may be accessed freely out-
side transactions.

If the program obeys the dynamic-separation discipline, the
language implementation is required to run it with strong se-
mantics even if the underlying STM provides weaker guar-
antees.

This section develops this approach, exposing and resolv-
ing some subtleties in the details. We follow three goals
which we use to motivate many of the design decisions:

• The “fundamental property”. We want DS to be de-
fined in terms of a program’s execution under strong se-
mantics and, if DS is used correctly, to require an imple-
mentation to run the program with strong semantics. This
provides portability across TM implementations. This is
analogous to the “fundamental property” of Saraswat et
al. [19] in defining programming language memory mod-
els.

• Compatibility with non-transacted memory accesses.
We want to avoid memory-access barriers outside atomic
actions. Accordingly, we wish to assume only “weak
atomicity” [4]. This makes transactions “pay-to-use”.
However, even with optimizations to remove redundant
barriers (such as in [20]), we do not want to instrument
the memory accesses within system calls like that in Fig-
ure 2, and we cannot instrument memory accesses made
by devices.

• TM implementation flexibility and parallelism. We
want to support a wide range of TM implementations—
for example STMs which make in-place updates (e.g. [18,
11]), STMs which defer updates until transactions com-
mit (e.g. [5]) as well as HTMs. We want to avoid intro-
ducing contention between non-conflicting transactions
and to avoid adding costs to implementations with strong
native guarantees (e.g. we want to avoid HTMs needing
to track whether or not an object is protected).

2.1 Examples

Our first example uses DS in a simple sequential setting:

b = new Buffer();
<populate buffer b>

unprotected {
unprotect(b);
<use b directly>
protect(b);

}

<use buffer>

It is clear that this program is correctly synchronized: the
buffer is created in protected mode in the first atomic action,
it is unprotected before the direct accesses to it, and it is then
re-protected. Note that DS restricts where data is actually
accessed by a program, not how the data is reachable through
references. This lets a protected data structure be used as a
conduit between pieces of unprotected code or vice-versa.

Our second example is modeled on the “privatization”
idioms that have been studied in STM (e.g. [22, 15, 1]):

// Initially b_shared=true, b_shared protected, b protected

// Atomic action A1 // Atomic action A2
b_shared = false; if (b_shared) {

<use b atomically>
// Unprotected code U1 }
unprotected {

unprotect(b);
<use b directly>

}

This example is correctly synchronized and illustrates how
we define the criteria for using DS based on execution under
strong semantics: IfA1 executes first thenA2 will not ac-
cessb, whereas ifA2 executes first then it will run beforeA1
setsb shared to false andU1 unprotectsb. The language
implementation must prevent (e.g.)A2 accessingb concur-
rently withU1.

Similarly, the following example is correctly synchro-
nized:

// Initially x=y=0, x protected, y protected, z unprotected

// Atomic action A1 // Atomic action A2
x = 10; if (x != y) {
y = 10; z = 42;

}
// Unprotected code U1
unprotected {

<read z>
}

Even though the source code ofA2 contains a store toz
this is never executed under strong semantics and so store
z=42 should never be seen. This must be true even when
the example is run over an STM that does not provide this
guarantee natively; the extensions we make to support DS
must preventA2’s implementation from trampling onz.

2.2 Semantics

The semantics of DS requires several subtle design choices.
For example, what ifprotect is called on a location that is
already protected? What ifunprotect is called on a loca-
tion that, under strong semantics, is currently being manip-
ulated by protected code; should it block until the protected
code is finished (providing a new synchronization mecha-
nism for programmers to use), or is this an error? Can DS
operations be called anywhere? Are the rules the same for
all three operations? What happens if a transaction attempts
to access unprotected data: should it abort with an excep-
tion, be rolled-back and re-executed, or continue regardless?
What if code tries to write to read-only data?

Our goal of supporting DS over many different TM im-
plementations provides a methodical way of selecting be-
tween different options. Conversely, other decisions would
be possible if we restricted attention to particular TM imple-
mentations. Many design choices follow from considering
two extreme kinds of TM:

HTM with strong atomicity. If the underlying TM pro-
vides strong atomicity then we want to use it directly without
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imposing overheads (e.g. of tracking per-object protection
states). This means we avoid design choices that require this
information to be available at run time: we cannot require
DS operations to block or fail if called on the wrong kind of
data. Similarly, we cannot require data accesses to block or
fail if made on the wrong kind of data.

STM with in-place updates and optimistic concur-
rency control. This set of STM design choices lets us ex-
amine whether or not DS operations can be used in transac-
tions. A permissive design is simple under strong semantics:
a transaction may protect and then access a location, or it
may unprotect a location that it will no longer access.

However, this permissive design is problematic for STMs
that use in-place updates and optimistic concurrency control.
The problem occurs when a transaction protects data, experi-
ences an undetected conflict, and then proceeds to update the
data in-place. For example, consider the following variantof
the privatization idiom:

// Initially b_shared=true, b_shared protected, b unprotected

// Atomic action A1 // Atomic action A2
b_shared = false; // 3 if (!b_shared) { // 1
unprotected { protect(b); // 2

<update b>; // 5 <update b>; // 4
} unprotect(b);

}

If we were to allow DS operations within atomic actions
then this example would be correctly synchronized (either
A1 runs first, in which caseA2 does not accessb, or A2 runs
first andA1 seesA2’s updates). However, with optimistic
concurrency control, the steps could execute in the order
shown:A2 is doomed to roll back but, with lazy detection,
the conflict has not yet been identified and the memory
updates at 4 and 5 will race. It is insufficient to validateA2 as
part of step 2 because the conflict does not occur until step
3.

Following our goal of implementation flexibility, we
therefore decide that DS operations can be invoked only
in unprotected code. Again, one could take other decisions
if interest were restricted to particular TM implementations.

3. Dynamic Separation in C#
In this section we consider how to apply dynamic separation
to AME in C#. There are three general questions.

First, at what granularity do we associate protection status
with data? We chose to dynamically associate a protection
mode with each C# object. We considered alternatives: per-
class settings would hinder code re-use (e.g., allHashtable

objects would have to be protected or all unprotected), and
per-field settings would require repeated DS operations (e.g.,
on each element of an array, introducing similar asymptotic
costs to marshaling the data by copying). We do not asso-
ciate a protection mode with variables because they remain
thread-local. We chose to statically declare the protection
mode of static fields rather than letting them change dy-
namically. Our reasoning is that static fields often represent

read-only state that’s accessed by many threads in different
protection modes: the field and the data reachable from it re-
main read-only (we discuss static initializers below). This is
an engineering choice and could readily be revisited.

The second design question is how to express the DS op-
erations themselves. Rather than adding explicit keywords
we make the operations virtual methods on theObject su-
perclass. By default these change the protection mode of the
object itself. This lets the programmer override the meth-
ods to provide class-specific functionality (e.g. to changethe
protection mode of a whole object graph).

The final question is exactly which operations constitute
“accesses” to data for the purpose of defining correct syn-
chronization. Following our approach in Section 2.2 our de-
sign is motivated by considering a range of STM implemen-
tations and where problems or overheads would be incurred.
This led us to the general principle that we only consider
accesses to the normal fields of objects (or, in the case of
arrays, their elements). Applying this principle to different
constructs in turn:

Method calls. We do not place restrictions on method
calls themselves. Protected code can call a method on an
unprotected object and vice-versa.

Array lengths, type information. As with method defi-
nitions these are immutable data maintained by the runtime
system rather than fields of the object concerned.

Delegates.C# delegates are roughly similar to function
pointers in C++; a delegate encapsulates a reference to a
particular static method or an instance method on an object.
A delegate itself is a C# object with fields that represent the
target. We treat delegates as C# objects, initializing their
protection mode in the usual way and requiring correctly
synchronized programs to access delegates in the correct
mode.

Boxed values.C# provides mechanisms for “boxing” a
primitive value to create a heap object that can be referred to
by an ordinary object reference. As with delegates, we treat
boxed values as ordinary objects.

Indirect data accesses.C# allows the creation of refer-
ences to individual fields, array elements, and the like. Cre-
ating a reference does not access the underlying data, so we
allow references to be created and passed freely, but require
that the target’s protection mode be correct when attempting
an access.

Access from native code.C# provides for calls into na-
tive code by a mechanism calledp/Invoke: a method signa-
ture is given, but the code is imported from a native library.
Rules define defaults for marshaling parameters (e.g. be-
tween different string representations). There are two cases
to consider for DS: (i) data accessed during marshaling, (ii)
data accessed from native code. Regarding (i), native calls
can occur only in unprotected code, so we treat the mar-
shaling code as any other: a correctly synchronized program
must ensure that the data being marshaled is unprotected.
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Regarding (ii), if native code accesses an object’s fields di-
rectly then it must “pin” the object before the call is made.
Native code accessing other objects is seriously incorrect;
the GC could move the objects in memory. We chose to re-
quire correctly synchronized programs to ensure all pinned
objects are unprotected. This lets us express the correctness
criteria in terms of C#; consequently we can check it without
instrumenting the native code.

Locks, volatile fields.Lock operations and all accesses
to volatile fields are not permitted in protected code, so these
are always unprotected and need no special treatment.

Static initializers. Each C# class contains code to ini-
tialize its static fields. The runtime system executes this
code in unprotected mode upon the first access to the class.
We permit this code to initialize read-only fields; this is con-
sistent with the language’s existing loop-hole for initializing
readonly fields. Static initializers must use protected code
when touching protected statics.

Finalizers. An object’sFinalize method is called au-
tomatically after the object has become unreachable. We al-
ways run finalizers in unprotected mode. This supports their
intended use for clean-up work with native code. We chose
against selecting dynamically based on an object’s protec-
tion mode at time of death; this would require an HTM-based
implementation to track the mode.

4. Implementing Dynamic Separation
In this section, we discuss implementations of DS. We focus
in detail on our implementation using Bartok-STM because
we believe this is the most challenging setting in which to
implement DS correctly (Section 4.1). We initially assume
a sequentially consistent memory model; we revisit this in
Section 4.2. We then sketch alternative implementations us-
ing different TMs (Section 4.3).

4.1 Implementation Using Bartok-STM

Bartok-STM [11] uses weak atomicity with in-place updates
and optimistic concurrency control. This combination of fea-
tures has been found to perform well [18] and also to be
particularly troublesome in terms of problems like privatiza-
tion [1, 22].

Background, Bartok-STM design. The STM asso-
ciates meta-data with each heap object and, within trans-
actions, adds operations to “open” each object before it is
accessed—OpenForRead on objects about to be read, and
OpenForUpdate on objects about to be updated. The meta-
data, called an object’s “STM word”, records a version num-
ber indicating how many times the object has been opened
for update. This number is logged inOpenForRead and re-
checked during transaction validation: a concurrent change
indicates a conflict. The STM word also contains a flag in-
dicating whether the object is currently “owned” by a trans-
action, i.e., open for update. This flag is used to enforce
mutual exclusion between writers. An invalid transaction

may continue to execute as a “zombie” before a conflict
is detected. The runtime system sandboxes failures such as
null reference exceptions if they occur in this state. The run-
time system also guarantees that zombie transactions will be
detected and rolled back.

Representing protected objects dynamically.Our basic
approach is to modify the STM word to include a flag in
place of one bit of the version number. If the flag is set then
the object is protected. If the flag is clear then the object is
either unprotected or read-only (as we show, this implemen-
tation need not distinguish between these cases, although our
checking tool in Section 5 must). The flag is initialized along
with the rest of the object’s header when an object is al-
located and then modified only by the implementations of
protect/unprotect/share.

Correctness argument.Our companion paper [2] con-
tains a correctness theorem in the context of the AME cal-
culus. Here we include a brief informal sketch of the main
points.

The modified STM implementation maintains an invari-
ant that transactions only update objects whose protection
flags are set. This means that zombie transactions will not
trample on read-only or unprotected objects. So, if the pro-
gram is correctly synchronized, such transactions’ updates
will not be seen by non-transacted code.

We maintain this invariant at run-time by (i) modify-
ing the functionOpenForUpdate so that it only provides
access to protected objects, (ii) ensuring thatunprotect

andshare (which revoke write access from protected code)
block until there is no concurrent transaction with the object
open for update, and (iii) our restriction that DS operations
only occur in unprotected code rather than during the execu-
tion of a (possibly invalid) transaction.

Our treatment of objects that are read (but not updated) is
more subtle: we do not need to check whether or not they are
protected. The reason is that we only aim to guarantee strong
semantics to correctly synchronized programs: if a program
is correctly synchronized, and a transaction running in it is
still valid, then it will only read from protected and read-
only objects. Conversely, if the transaction is not valid, then
the invalidity will be detected in the normal way. In either
case, we meet the requirement to run correctly synchronized
programs with strong semantics.

Pseudo-code. Figure 3 showsDSOpenForUpdate in
pseudo-code. We use aDS prefix on functions provided by
the new implementation with DS, and anSTM prefix on the
underlying functions provided by the existing STM.

The new function starts by opening the object for update
(leaving the protection bit unchanged). Then, before the
thread can update the object, it examines the protection bit. If
the object is protected then the transaction proceeds as usual.
If the object is unprotected then the transaction is validated.
If it is valid then the program is not correctly synchronized:
it is about to access an unprotected object transactionallyso
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void DSOpenForUpdate(tm_mgr tx, object obj) {
STMOpenForUpdate(tx, obj);
if (!IsProtected(GetSTMWord(obj))) {

if (STMIsValid(tx)) {
// Valid and choosing to access an unprotected object
throw new DynamicProtectionError(); // Fail (uncatchable)

} else {
// Choice to access object may be based on invalid state
STMAbort(tx); // Roll-back and re-execute

} } }

Figure 3. Production implementation of open-for-update
supporting DS.

void DSUnprotect(tm_mgr tx, object obj) {
while (true) {

w = GetSTMWord(obj);
if (!IsProtected(w) {

break; // Already unprotected/readonly: done
} else if (IsOwned(w)) {

continue; // Wait until object not open for update
} else {

new_w = CreateSTMWord(w.GetVersion(),
NOT_PROTECTED, NOT_OWNED);

if (CASSTMWord(obj, w, new_w)) {
break; // Installed new STM word; done

} } } }

Figure 4. Production implementation ofDSUnprotect.
The implementation ofDSShareReadOnly is identical.

the program fails with an error. If the transaction is invalid
then the transaction is aborted and re-executed.

We extend the STM interface with operations that corre-
spond toprotect/unprotect/share. We showunprotect
in pseudo-code in Figure 4. This implementation is a loop
which repeats until either (i) it observes that the object is
already unprotected (either before the call, or by a concur-
rent unprotect), or (ii) it succeeds in making the object
unprotected. The second case must wait until the object is
not owned by any transaction (IsOwned returns false) to
preserve the invariant that protected code updates only pro-
tected objects. (Even in a correctly synchronized program,
a zombie transaction may still have a previously-protected
object open for update: we must wait for such transactions
to drain from the system.)

The implementation ofshare is identical to that of
unprotect because the run time does not need to distin-
guish between unprotected and read-only objects. The im-
plementation ofprotect is symmetric to that ofunprotect
with the negation removed on!IsProtected, the STM
word being created with aPROTECTED flag rather than
NOT PROTECTED, and the test ofIsOwned being redundant.

4.2 Optimizations and Memory-Access Re-ordering

We have initially assumed a simple execution model ignor-
ing transformations made by a compiler or by a processor
with a relaxed memory model. Languages differ in terms of
exactly which transformations are valid and so a desirable
property for synchronization constructs is that they can be
used over many such models and, if used correctly, can ab-
stract the low-level details. Our design and implementation

of DS has been guided by the .NET 2.0 memory model (ex-
posed by the corresponding version of C#) [17]. However,
we have considered several transformations allowed by other
models to help gain confidence that DS is more broadly ap-
plicable.

We first consider whether DS operations may be re-
ordered with other operations. Our principle is that we pro-
hibit re-orderings that would transform a correctly synchro-
nized program to an incorrectly synchronized one (reason-
ing, as usual, just using the strong semantics). For example,
consider:

unprotected {
unprotect(o1); // U1
r1 = o1.x; // R1

}

If R1 could be moved beforeU1 thenR1 may attempt to read
from a protected object. The same problem occurs for a write
and, in the case ofprotect, with reads and writes before the
protect call. This suggests a rule such as “Reads and writes
cannot move before a DS operation on the same location”.

A similar problem can occur if anunprotect operation
is followed by a write that publishes the reference in shared
memory, and then by a read in another thread. (This can
occur with double-check locking which is a correct idiom in
C#.) This suggests a further rule “Writes cannot move before
a DS operation”.

Considering these two examples shows that many re-
orderings of memory accesses and DS operations must
be prohibited. Therefore, for simplicity, we propose the
stronger rule that “Reads and writes cannot move past DS
operations”. We enforce this conservatively by having the
compiler treat DS operations as having unknown side ef-
fects. This is an engineering choice that may be revisited as
we consider more sophisticated optimizations.

The .NET 2.0 memory model prohibits transformations
that are valid in other languages. For example, it does not
permit reads to be introduced by hoisting them above an op-
eration on which they are control-flow dependent. This prop-
erty does not hold in more relaxed contexts, including the
Java memory model. Such models may be attractive from
a performance viewpoint—either to exploit processors with
relaxed memory models, or to enable compiler transforma-
tions.

Re-ordering across dependencies is problematic: it can
cause the implementation to access locations that it would
not touch under the strong semantics. Consider the following
“racy publication” idiom:

// Initially: x_shared=false, x=0,
// x_shared protected, x unprotected

// U1 // A2
unprotected { r1 = -1; r2 = x;

x = 42; if (x_shared) {
protect(&x); r1 = r2;

} }
// A1
x_shared = true;
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This is not correctly synchronized at a source level, but
equivalent code may result if a compiler hoistsA2’s read of
x to before its read ofx shared. Our implementation of DS
supports such transformations.

The resulting additional reads are problematic for two
reasons. First, they allow executions that are not possiblefor
the source program under strong semantics—for example,
A2 may read fromx before U1’s write and still commit.
Second, such reads can cause a transaction to access data
that is always unprotected (e.g. if the read is hoisted abovea
conditional that is always false)—the implementation would
deadlock if the transaction waited for the object to become
protected.

We deal with these reads by: (i) Making DS operations
conflict with transactions read the object in question. (ii)
Not checking the object’s protection mode inOpenForRead
or at commit-time (we must still, of course, check protec-
tion modes inOpenForUpdate). Taken together, these steps
mean that data remains in the same protection mode from
when it is read until when the transaction commits.

This is clearly correct if the data remains protected. To
see why it is also correct for unprotected data, notice that
either (i) the access would have been performed under strong
semantics (hence the program is not correctly synchronized),
or (ii) the access would not have been performed under
strong semantics (as in “racy publication”, so the program is
not using the value read). In both (i) and (ii) the transaction
may commit.

4.3 Alternative Implementations

We have considered implementations of DS over various
different TMs. At a minimum the TM must guarantee that
incorrectly synchronized programs remain type-safe. This
is naturally true of designs that keep the TM’s meta-data
separate from the object’s normal contents and use the same
object layout for transacted and non-transacted data.

DS can be implemented over such TMs so long as the
granularity at which the TM logs updates or undo operations
is the same (or finer) than the granularity at which the lan-
guage exposes DS. This ensures that the TM will not make
accesses that “spill over” from the data apparently being
accessed by the source code (this is similar to GLU prob-
lems [20]).

The implementation of DS is simpler when using an STM
with deferred updates rather than in-place ones: the writesof
zombie transactions are automatically contained. Therefore,
the implementations of the DS operations do not need to
wait if the object is open-for-update by a transaction that
is still running. However, for unprotected code to correctly
see a transaction’s updates to an object, DS operations on
the object must still wait for a transaction that has chosen to
commit updates to the object but not yet written them back.

The implementation is simpler still when using a TM
with strong atomicity: DS operations have no semantic run-
time effect, although they may need to serve as memory

fences depending on the language’s memory model and the
processor it is implemented over.

DS can also be implemented over some TMs that use
different object formats for protected and unprotected data,
so long as it is still type-safe for unprotected code to read
from objects in their protected representation. This is true
in Ennals’ design [6] where the start of a protected object’s
representation is the same as the corresponding unprotected
object, or in Fraser’s design [7] if the indirection-headeris
overlaid on the STM word at the start of an ordinary object.
In such implementationsprotect/unprotect would mar-
shal between the different representations. However, sup-
porting read-only mode requires a common object format
for reads to be served from. We examine such marshaling
formally in our companion paper [2].

5. Dynamically Checking Correct Usage
We extended Bartok with a debug mode that provides dy-
namic checks of whether or not a program run is correctly
synchronized. Our goal is to report errors without any false
positives, without missing error reports, and with all execu-
tion before the error being correct under strong semantics.

This works much like dynamic race detectors. In short,
we introduce explicit tests on data accesses to check whether
or not they are made in the correct mode. We constrain the
compiler not to re-order, add, or remove memory accesses.
We distinguish between three targets of memory accesses: (i)
stack-allocated data, (ii) static fields, whose protectionmode
is given by attributes in the source code, (iii) objects, whose
protection mode is set dynamically,

The first two cases are straightforward. No checks are
needed on access to the stack. Checks on statics are handled
during compilation. The compiler generates two versions of
each method, one for protected and another for unprotected
code, and so we compile correct-mode accesses as normal
and incorrect-mode accesses to code that will report an error
when executed.

Object accesses are handled by checking protection infor-
mation in the object’s STM word. Unlike the production im-
plementation we must distinguish between unprotected data
and read-only data (this lets us report errors where unpro-
tected code attempts to update putatively read-only data).We
do this by reserving a further bit from the STM word and
providing operationsIsProtected, IsUnprotected, and
IsReadOnly to distinguish the three states. (We still have
27 bits of version number space and mechanisms to recover
from overflow [11].)

We must distinguish four sources of memory accesses:
Atomic actions. We report an error if either (i) a valid

transaction opens an unprotected or read-only object for
writing, or (ii) a valid transaction sees an unprotected object
in its read set during a successful validation.

Unprotected managed code.We must check the object’s
protection mode atomically with the data access: otherwise,
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in an incorrectly synchronized program, a concurrent thread
may protect the data and access it transactionally, lettingus
see a non-committed transaction’s write without reporting
an error. We deal with this difficulty in a similar way to
Shpeisman et al.’s runtime support for strong atomicity [20]:
we expand each unprotected access into a series of steps
that accesses the STM word along with the data location.
In effect we treat the access as a small transaction.

Runtime system (RTS) code.The STM, GC, and other
pieces of the RTS are implemented in C# and compiled
along with the application. The RTS performs its own con-
currency control and the data it accesses is disjoint from the
application data (e.g., an object’s header rather than its pay-
load fields), except for times when it accesses entire objects
(e.g., during garbage collection with all threads stopped).

We must not report errors from accesses made by RTS
code. We therefore introduce a new source-code attribute
RTSRoot to identify entry points to the RTS. Such meth-
ods are compiled without access-mode checks along, recur-
sively, with any code they call. The RTS does not call into
application code and so the resulting duplication is limited
to a small number of system classes (e.g.,System.UIntPtr

whose instances represent pointer-sized integers).
Native code. In correctly synchronized programs any

objects being passed to native code must have been pinned
in unprotected code. We test that (i) an object is unprotected
when it is pinned, (ii) an object being protected is not pinned.

6. Evaluation
We have used the implementation described in Sections 4 to
study the effectiveness of DS. We discuss its use in programs
in Section 6.1 and performance in Section 6.2.

6.1 Case Study: a Library for File and Network IO

We experimented with the implementation of the AME IO
library and web-proxy and file access applications built
over it. These have concurrent activity combined with asyn-
chronous file and network access. We wrote two versions of
the web-proxy application: one in terms of classic threads
and locks, the other in the AME model. The latter is sub-
stantially more straightforward, since most of the required
synchronization is automatic.

The methods that the library provides for initiating its IO
operations each take a similar form. Each method takes an
objectObjA (allocated by the application in protected mode)
that describes the requested operation. The method call re-
turns a new objectObjB (also in protected mode) that corre-
sponds to the in-progress operation. The application can use
a field ofObjB with blockuntil to wait for completion of
the operation, and may then access the results of the oper-
ation that have been stored into the original request object
ObjA.

For example, an application can perform a read from a
file by executing the following, from within protected code:

ioInfo = StartAsyncRead(readBlock);
yield();
blockuntil(ioInfo.IsCompleted);
// access the status code and data from fields of "readBlock"

The application could, if it wished, place the call ofblockuntil

and subsequent code into a separate asynchronous method
call (and consequently omit the call ofyield).

For the purposes of the present paper, the interesting
code lies inside the IO library, which at its core must use
unprotected code to access the underlying IO calls provided
by the operating system. This works as follows.

Running inside a transaction, the call ofStartAsyncRead

places the request (readBlock) onto an internal (global)
queue:

ioInfo = new Action(readBlock, ...);
if (queue.head == null) {

queue.head = ioInfo;
} else {

queue.tail.next = ioInfo;
}
queue.tail = ioInfo;

When this transaction commits, the updated contents of the
queue are visible to a permanently executing thread (TSend)
inside the IO library, which extracts the request, then uses
unprotected code to hand it to the operating system:

do {
blockuntil(queue.head != null);
ioInfo = queue.head;
queue.head = queue.head.next;
buffer = ioInfo.buffer;
unprotected {

unprotect(buffer);
osReq = new OSReq(ioInfo, buffer, ...);
... call the operating system ...

}
}

We use the Windows “completion port” mechanism to re-
ceive notification when the actual IO finishes. A second per-
manently executing thread (TReceive) in the IO library uses
unprotected code to receive this notification, then updates
theIsCompleted field of the request (thus allowing the ap-
plication to complete its call ofblockuntil):

do {
unprotected {

... wait in the OS for an event completion ...

... assign the OS request object to "osReq" ...
protect(osReq.buffer);
ioInfo = osReq.ioInfo;

}
ioInfo.IsCompleted = true;

}

Note the protection mode of the various objects involved.
The originalreadBlock object is accessed only from within
protected code, as is theioInfo object. The actual data ar-
ray that will be presented to the underlying operating system
is readBlock.buffer. This array was allocated (protected)
by the application, and after completion will be read (pro-
tected) by the application. ButTSend unprotects it before
handing the array to the operating system, andTReceive

protects it again before settingioInfo.IsCompleted.
We have a few conclusions from this exercise:
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• The basic ideas of DS work as intended.

• The read-only mode is particularly useful for data man-
aged by core libraries that are used by protected and un-
protected code, for example the “empty string” object,
and tables for localization and suchlike.

• The dynamic transition between protection modes does
indeed allow efficient transfer of data in and out of pro-
tected code.

• It is very convenient to be allowed to have an unpro-
tected object (our data buffer during the actual underly-
ing IO operation) carried within an object that remains
protected (thereadBlock request descriptor). Similarly,
a protected objectioInfo is carried within unprotected
data to be sent through the completion port.

6.2 Performance

The performance of a program using DS depends on several
factors: the immediate cost of the DS operations, the over-
head that supporting them adds to the TM, and any costs
incurred in structuring the program to use DS. We focus ini-
tially on the Bartok-STM implementation and then discuss
alternatives.

Using Bartok-STM, the fast-path of the DS operations is
a single read then compare-and-swap (CAS) on the object’s
STM word. If the CAS fails then the slow path distinguishes
the different cases as in the pseudo-code of Figure 4. DS
operations only block if the object is open-for-update by
a transaction (which, in a correctly synchronized program,
must be a zombie transaction). This delay is the same as for
a non-transactional access in an implementation of strong
atomicity following Shpeisman et al.’s design [20].

Supporting DS adds no overhead to the fast-path of the
existing STM operations: the check of whether or not an ob-
ject is protected is combined with an existing test of whether
or not it is open for update (both look at low-order bits in the
STM word).

These performance characteristics would change slightly
for an STM with deferred updates: the DS operations would
never need to wait for transactions to be rolled back, though
they may still block while another transaction is committing.
Again, these costs follow those of a non-transacted access in
Shpeisman et al.’s design. With hardware support for strong
atomicity the DS operations would be no-ops and, of course,
no changes would be needed to the TM implementation.

A more subtle question is how performance is affected
by structuring code to use DS rather than some other disci-
pline. There are both positive and negative effects. Compar-
ing with static separation, DS may allow marshaling code
to be removed. Conversely, when comparing with violation-
freedom or a single-global-lock discipline, it may be neces-
sary to add DS operations and structure the program so they
are called appropriately. This is a complex trade-off: the DS
operations add a cost, but the underlying implementations of
more permissive models limit scalability by introducing syn-

chronization between non-conflicting transactions [15] and
preclude the use of in-place updates which have been found
to perform well [18].

We examined the performance of two applications over
the AME IO library. The first of these,FileTest, is a micro-
benchmark which copies a file on disk, structured using a
loop that performs asynchronous IO requests. We build two
versions: “dummy” in which the underlying IOs are not sent
to the kernel, and “real” in which they are. The dummy
version makes this CPU-bound, highlighting the overhead
added by the DS operations. The second program,WebProxy

is a caching web proxy which interacts with multiple concur-
rent clients and web servers, maintaining an on-disk cache
of requested pages. We load the web proxy with 1..4 con-
current client requests. In each case we use sufficiently large
files that the execution time is readily measurable. We use
an otherwise-unloaded machine with dual 4-core processors
and plentiful memory. The applications are quite simple, and
our experiments can be interpreted mostly as a sanity check
that our implementation does not introduce any unexpected
overhead.

Figure 5 shows the results. We compare five different im-
plementations. “Baseline” uses the underlying Bartok-STM
with DS disabled. We normalise against its performance.
“Baseline + DS” is our implementation of DS. “Run-time
checking” is the implementation described in Section 5. The
WebProxy performs and scales identically to a (much more
complicated) alternative built using traditional synchroniza-
tion.

As expected, the overhead of “Baseline + DS” over
“Baseline” is low, even in the CPU-bound program. How-
ever, the “Baseline” is not a correct implementation because
it may allow undetected conflicts between transacted and
non-transacted accesses in correctly synchronized programs.
To confirm that this did not distort results (for example, if
such race conditions delayed the baseline execution), we
built an alternative “Serialized baseline” which serializes
transactions with a global lock. This correctly supports DS
with the operations compiled as no-ops. We compare this
with “Serialized baseline + DS” adding the normal DS im-
plementation.

Finally, we studied an implementation of the AME IO
library built to maintain static separation between transacted
and non-transacted data. Prior to developing DS this was the
only correct programmer-centric programming model we
had identified for writing programs with Bartok-STM. Static
separation requires data to be marshaled between access
modes. Even with the IO-intensive AME applications we are
using this was over a decimal order of magnitude slower in
total execution time than “Baseline + DS”.

7. Related Work
Adve and Hill pioneered the approach of requiring correctly
synchronized programs to run with sequential consistency,
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FileTest (dummy) FileTest (real) WebProxy (1) WebProxy (2) WebProxy (3) WebProxy (4)
Baseline 1.00 1.00 1.00 1.11 1.27 1.49

Baseline + DS 1.00 1.00 1.00 1.11 1.27 1.49

Serialized baseline 1.41 1.27 1.00 1.11 1.27 1.49
Serialized baseline + DS 1.42 1.27 1.00 1.11 1.27 1.49

Run-time checking 1.01 1.02 1.00 1.11 1.27 1.49

Figure 5. Performance of test applications—execution time, normalised against “baseline” and, for WebProxy, a 1-client
workload.

and the use of a programmer-centric definition of which pro-
grams are correctly synchronized [3]. Saraswat et al. subse-
quently termed this the “fundamental property” of memory
models [19]. Spear et al. [22] and Abadi et al. [1] concur-
rently identified the link between that work and languages
implemented over TM with weak atomicity.

Hill subsequently argued that hardware should provide
sequential consistency [12]. However, this is separate from
the design of the language’s memory model which must also
consider program transformations made by the compiler.

Many papers have examined different programming dis-
ciplines which, as with DS, provide strong semantics to a
class of programs built over transactional memory.

7.1 Strong Programming Disciplines

It may be desirable in principle to provide strong atomic-
ity between transacted and non-transacted memory accesses,
and provide constructs (such asvolatilemodifiers) to con-
strain re-ordering or prevent memory accesses from being
eliminated. Shpeisman et al. showed how to build this over
an STM that natively provides weak atomicity [20]. Lev and
Maessen introduced the idea of compiling non-transactional
memory accesses to include a run-time check of whether the
data is visible to transactions [14]. If the data is visible then
it is accessed using the TM. They track data’s visibility at
run-time, marking objects as transacted when they are made
reachable via an existing transacted object.

Without hardware support, none of these approaches
meet our goal of supporting implementations with weak
atomicity (e.g. so that code from the kernel, other processes
or DMA transfers from devices can access the data).

7.2 Violation-Freedom and Single-Global-Lock
Atomicity

Violation freedom [1] formalizes the notion that the same
data should not be accessed transactionally and non-trans-
actionally at the same time. However, as we showed in ear-
lier work [1], supporting violation-free programs with strong
semantics is incompatible with our goal of implementation
flexibility: we cannot use implementations with optimistic
concurrency control, in-place updates and weak atomicity.

Menon et al. [15] defined a “single-global-lock atomic-
ity” (SGLA) semantics for transactions in Java, by relating

the behavior of a program usingatomic blocks to one where
those blocks are replaced by synchronized regions on a sin-
gle process-wide lock. This, in turn, defines a notion of cor-
rect use ofatomic blocks in terms of the existing definition
of correct use of locks.

As with violation freedom, supporting SGLA does not
meet our goal of implementation flexibility. Furthermore,
known implementations of SGLA (and the weaker defini-
tions Menon et al. studied [15]) either involve pessimistic
read locks or synchronization between non-conflicting trans-
actions (again inconsistent with our goal for implementation
flexibility and parallelism).

7.3 Transactional Fences

Spear et al. discussed several ways to implement privatiza-
tion idioms correctly, proposing “transactional fences” and
“validation fences” [22]. Unlike DS these require synchro-
nization with all concurrent transactions, rather than just
those accessing the object in question. Wang et al. used sim-
ilar global operations in an implementation of atomic blocks
for C [23]: a shared list of active transactions is manipulated
when transactions start or commit.

7.4 Static Separation

Under “static separation” disciplines data is split into trans-
acted data and non-transacted data. Several definitions of
static separation have been considered, typically providing
enforcing this distinction through a type system ([10, 1, 16]).

While static separation is appealing in functional lan-
guages like Haskell [10], it is less palatable in imperative
languages where most data comprises mutable shared ob-
jects. There are two problems here. First, data has to be mar-
shaled between different access modes by copying. Second,
if static separation is expressed through a type system, then
simple versions of static separation can impede code re-use
(much like all simple type systems).

DS attempts to address these concerns by allowing code
to be re-used in transacted and non-transacted contexts, and
by allowing data to be marshaled between access modes
without copying.
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8. Conclusion and Future Work
This paper introduces the idea of dynamic separation for
sharing data between transacted and non-transacted code.
We believe DS has several appealing properties. It is built on
a simple formal definition for correct synchronization which
might serve as the foundation for further formal reasoning
and for static checking (alongside the dynamic checking that
we have already explored). It can be implemented over a
wide range of STMs with weak atomicity, and it can also
be implemented over HTMs with strong atomicity without
imposing a runtime overhead for protection flags. It does not
introduce synchronization between non-conflicting transac-
tions. It allows unprotected data to be accessed freely by sys-
tem calls and DMA transfers.

These benefits come at the cost of requiring explicit DS
operations, and the restriction that these occur only in non-
transacted code. This trade-off is motivated by the AME
model: application code runs by default in atomic actions
and DS is used at the boundary between this code and the
non-transacted libraries that it calls into, much as explicit
pinning is already used across such boundaries. Neverthe-
less, we are currently investigating the possibility of insert-
ing the DS operations automatically for some classes of pro-
grams.

To what extent is DS an appropriate discipline for alter-
native programming models like C# or Java withatomic
blocks? We previously showed that these constructs can be
encoded in AME [1], so the theory carries over. However,
the constraint that DS operations happen only outside trans-
actions seems less palatable because boundaries between the
two modes occur in application code, not just at the edge
of it. It may be possible to remove this constraint for im-
plementation without in-place, while retaining the ability of
non-conflicting transactions to run and commit in parallel.
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