
Resource management for global public computing:
many policies are better than (n)one

Evangelos Kotsovinos
Deutsche Telekom Laboratories

Iulia Ion
International University in Germany

Tim Harris
Microsoft Research Cambridge

Abstract
The federation of authority in global public computing
systems poses major resource management challenges,
as different stakeholders may have different views on
how server resources are to be apportioned. Ultimately,
the complexity of declaring and managing potentially
overlapping federated policies often leads to the absence
of high-level resource management systems from global
public computing platforms. In this paper we propose
a practical system that allows the different stakehold-
ers to independently express federated policies, provides
mechanisms for resolving potential constraint overlaps
automatically, and reaches decentralised resource alloca-
tion decisions. We demonstrate experimentally that the
system scales gracefully, introduces only a very low per-
formance overhead, and is suitable for operating in real-
istically large and complex settings.

1 Introduction

Global public computing systems such as Grids [1],
PlanetLab [2], and XenoServers [3] are characterised
by the distribution of management responsibility among
multiple individuals and organisations — collectively
termedentitiesor stakeholders. However, whilefeder-
ation is crucial for scalability and cost-efficiency, it in-
troduces important resource management challenges re-
lated toexpressing federated policiesandmanaging pol-
icy overlaps, often leading to the absence of high-level
resource management facilities from such systems.

Let us consider the following example: server Sergei,
a member of such a platform, reserves some of its re-
sources for private use. Sergei’s LAN is administered
by Lou, who limits the network bandwidth made avail-
able to Sergei’s non-local users to 100Kbps. Addition-
ally, Indy, an infrastructural authority — a XenoCorp in
XenoServers, or PLC in PlanetLab — limits the network
bandwidth given to commercial and academic users to
500Kbps and 300Kbps respectively.

Determining the amount of network bandwidth to be
given to users who are both remote and academic or com-
mercial at the same time is a non-trivial question of re-
solving such a policy overlap. Simply selecting the min-
imum reservation or limitation is inadequate; the amount
of bandwidth to allocate to a high-paying commercial
user who happens to connect from a remote network
may be the minimum, maximum, average, or any other
amount dictated byhigh-levelinstitutional or contractual
arrangements. Additionally, contrary to role-based ac-
cess control [4], resource allocation decisions arequan-
titative — how much access to grant a user to a resource
— instead of binary — whether to grant access or not.

Mandating that policies be declared only by infrastruc-
tural authorities (for consistency) is both technically and
organisationally inadequate, as it presents a management
bottleneck and reduces the distribution of responsibility,
which is crucial for scalability.

In this paper we present our design, implementation,
and initial evaluation of a scalablerole-based resource
management(RBRM) system for defining and combin-
ing federated policies for resource management in a de-
centralised way. Our work makes the following contri-
butions:

• Federation of policies. Our system embraces the
distribution of responsibility, by allowing stake-
holders to maintain different, subjective policies
and views of users’ properties.

• Overlap resolution. Unlike prior systems, which
generally assume policy consistency, we allow over-
laps and provide a mechanism for explicit automatic
overlap resolution.

• Scalability and performance. Our framework is
demonstrated to be scalable and of almost unnotice-
able overhead in a realistic deployment setting.

• Openness.Our system is not tied to a particular lan-
guage or deployment scheme, making it applicable
to a number of global public computing platforms.

Our framework and the mechanisms for resolving pol-
icy overlaps are described in Section 2. Experimental
evaluation results demonstrating the system’s expressive-
ness, scalability, and minimal overhead are presented in
Section 3. Section 4 positions our work in the relevant
research context, and Section 5 concludes.

2 Role-based resource management

RBRM operates as follows:Users request resources
from a server, and servers accept, negotiate, or deny re-
source reservation requests based on policies and cur-
rent resource availability. For grouping users, entities
declarerolesandrole entry conditions, which determine
which users are members of which roles. Entities specify
constraintson resource allocation for the different roles.
Finally, constraint relationshipscan be used to indicate
how to resolve overlaps in policies. Roles, entry condi-
tions, constraints, and constraint relationships are collec-
tively referred to aspolicy elements. We describe how
these elements are defined and how they interact in the
following section, and explain how they can be safely
declared in a federated manner in Section 2.2.

2.1 Policy description

This section describes the syntax and usage of the policy
elements that can be declared.This font denotes de-
fined entities and policy elements, andthis font refers to
variables and describes the generic format of policy el-
ements. The inference notation used denotes that if the
condition that is defined above the inference line holds,
then the action defined below the inference line is taken.
Variables are always bound to the value they get above
the inference line, and the wildcard∗ denotes “any au-
thenticated entity” or “any value”.

The User object represents properties and methods
exported by the user in question. All policy elements
are signed by the entity that creates them (Declarer ,
Elector , or Constrainer), in order to prevent forging
and repudiation.

Role declarations. A role is a group of users
to which common policies apply. A role dec-
laration identifies a role calledName created
by the entity Declarer . This hierarchical struc-
ture allows for scalable and decentralised nam-
ing. The format ofRoleDeclaration statements is
Declarer : Name(Parameter1 ,Parameter2 , ...), with
parameters bound when users enter the role. Figure 1
shows the roles declared in the example introduced in
Section 1.

Role entry conditions. These specify membership of
other roles, user properties, or other conditions that a user
has to meet to be deemed a member of a given role. A
generic form of aRoleEntryCondition is:

RoleMemberships Expressions

RoleMembership

To expressRoleMembership statements, the notation
Elector → RoleDeclaration is used to indicate that the
specified elector entity asserts that the user in question is
a member of the specified role. A user’s membership of a
role is not global truth, but truth according to theElector

— this is inspired by previous RBAC approaches [5].
This allows different electors to maintain different views
of role memberships, and present these views to other en-
tities by declaring the corresponding entry conditions on
them. How much these other entities value each elector’s
view is entirely up to them. This distribution of control
benefits scalability, as discussed earlier.

As in Figure 1, Sergei defines that users connected to
any network apart from his one should enter theRemote

role defined by Lou. Since this definition is indepen-
dent of any previous role memberships, only the expres-
sion involving the user’s network is specified above the
inference line. Similarly, entry to theCommercial and
Academic roles is based only upon user credentials.

Constraint definitions. A constraint definitionis asso-
ciated with a role to express a reservation or usage lim-
itation on a resource, and applies to all members of the
role. It is expressed as follows:

RoleMembership

Constrainer → ConstrKind(Resource,Parameters)

where Constrainer is the entity imposing the con-
straint.ConstrKind takes the form of one oflimEach
(limit each member),limGrp (limit all members col-
lectively), or rsvGrp (reserve for all members collec-
tively)1. Parameters indicate the extent of the limita-
tion or reservation on a givenResource. The constraints
defined in our example are shown in Figure 1.

Constraint relationships When more than one con-
straint is applicable to a user request for a certain re-
source there is anoverlap; the system needs to deter-
mine how much of the resource can be made available to
the user. To facilitate this, we introduceconstraint rela-
tionships, giving a series of pattern-matches for existing
constraints, and then a replacement constraint to be gen-
erated in their place:

1Note that reservations are applied on a per group basis rather than
allowing “reserve for each member” as a kind of constraint — that latter
kind of reservation is not possible without being able to enumerate the
group’s membership, which is complicated in a decentralised, federated
model.

ConstraintDefinition(s) Expression(s)

ConstraintDefinition

In our example, in an overlap betweenCommercial (or
Academic) andRemote, the two constraints are replaced
with a new one limiting access to the average of what the
two overlapping constraints dictated (300 Kbps in this
case). Similar relationships to the one expressed in Fig-
ure 1 can be defined for more general resolution strate-
gies such as “take the minimum of a set oflimGrp con-
straints given for any resource”.

2.2 Declaration of policies

For scalability and simplicity, all policy enforcement
takes place in a decentralised manner on individual
servers, and a policy element is only applicable on the
server on which it has been declared. Each server com-
prises anauthenticationlayer, a tentative declarations
set, apolicy filter, and aconfirmed declarationsset. The
tentative declarations set contains all policy element dec-
larations attempted on a server. The confirmed declara-
tions set is not accessible to any entities other than the
server itself and contains the policy elements that are
taken into account when considering resource allocations
on the server. The policy filter controls which of the ten-
tative declarations are to be copied to the confirmed set.

Any authenticated entity can independently declare
policy elements on servers, subject to the policy elements
having been properlysignedby that entity to be non-
repudiable and unforgeable, by placing them in the ten-
tative declarations set of that server. Role declarations
and entry conditions declared by arbitrary entities offer
a federated view of the role memberships but cannot di-
rectly affect the resource allocations taking place on a
server. Thus, it is safe to subsequently copy all prop-
erly authenticated role declarations and entry conditions
to the confirmed declarations set without further checks.

On the other hand, the association of role declara-
tions and entry conditions withconstraintsdoes affect
resource reservations and can only be performed subject
to a furtherauthorisationcheck carried out by the pol-
icy filter. This requires that the server owner defines de-
fines simple authorisation rules on the policy filter, al-
lowing constraints and constraint relationships from en-
tities that the server trusts or has long-term relationships
with — such as certain XenoCorps — to enter the con-
firmed declarations set. This involves the server endors-
ing the policy elements in question by placing itself as
the Constrainer and signing the elements. The set of
confirmed declarations is then passed on to the RBRM
policy evaluation procedure.

User
object

Role entry conditions

Constraint definitions

Role
memberships

Role entry

Constraint
processing

Overlapping resolution

Constraint relationships

Active
constraints

Resource request AvailabilityPolicy
rules

Admission control

allocate/propose/deny decision

4

1

2

3

Indy:Academic()
Indy:Commercial()
Lou: Remote()

User.Network!=128.232.0.0/16
Sergei Lou:Remote()

Sergei Indy:Commercial()
Sergei limGrp(NET3,500Kbps)

Sergei Indy:*()
Lou limGrp(NET3,X)

* Lou:Remote()
* limGrp(NET3,Y)

Sergei Lou:Remote()
Lou limGrp(NET3,avg(X,Y))

NET3: 400Kbps NET3: 2Mbps

Role declarations

Sergei Lou:Remote()
Lou limEach(NET3,100Kbps)

NET3: 300Kbps

Figure 1: Policy evaluation process. A member of the
Remote,Commercialroles requests 400Kbps. The two
overlapping constraints (100 Kbps, 500 Kbps) are re-
placed by one granting access to the average (300 Kbps).

2.3 Policy evaluation

Given a set of policy elements and a user request the
process starts with therole entrystep, which determines
which roles a user is a member of based on role entry
conditions and user properties — operation 1 in Figure 1.

The next step —constraint processing— associates
the roles the user shares with the constraints that apply
to them. Constraints that are not associated with any of
these roles are ignored further on, since they are unable
to affect the admission control decision, reducing the set
of constraints to the — potentially overlapping —active
constraints— operation 2 in Figure 1.

The overlap resolutionstep checks the set of active
constraints against the constraint relationships, resolv-
ing overlaps and replacing them by single constraints —
operation 3 in Figure 1. The algorithm starts with de-
riving the sets of overlapping constraints by looking for
active constraints attempting to impose different reser-
vations or limitations on access to the same resource, for
each resource. Then, for each of these sets, the algorithm
uses any constraint relationships that are applicable to
resolve overlaps, until there are no more sets of overlap-
ping constraints. This produces a set of non-overlapping
constraints (policy rules) applicable to the request.

Finally, theadmission controlmodule checks the cur-
rent resource availability and usage against the policy
rules to determine themaximum allowed allocationthat
can be made on each resource for the user in question
— operation 4 in Figure 1 — and determines whether to
grant or negotiate the request. In our running example,
the system proposes the minimum between what the pol-
icy allows for the user, namely 300Kbps, and the avail-
able amount of resource NET3, 2Mbps.

Running the constraint solver in a decentralised man-
ner and not on a central server facilitates scalabil-
ity, fault-tolerance, and inherent incentive compatibility;
nodes that choose to employ sophisticated RBRM poli-
cies contribute the local server resources required to run
the constraint solver. Our goal is not to pursue a “global
optimum” but rather to allow server owners and other
stakeholders to define how resources are to be appor-
tioned in a decentralised, federated way.

Conflicting constraint relationships. A conflict can
occur when no constraint relationship is applicable to a
set of overlapping constraints or when several relation-
ships propose different replacement constraints. In case
a conflict does occur, the approach our prototype takes
is to either select the one that imposes the minimum re-
placement reservation or restriction or — if that cannot
be clearly determined — request manual intervention.

Such conflicts will be relatively rare, as constraint rela-
tionships will be relatively few and defined infrequently,
for the following reasons. Contrary to role memberships
and constraints, which may depend on volatile properties
such as the time of day or server load, constraint relation-
ships express long-term, organisational relationships be-
tween the entities involved. Such relationships may de-
note the order of authority (“policies of entities of type A
are more important than policies of entities of type B”)
or the general rules based on which overlaps are to be re-
solved (“when policies of entities of type A overlap, take
the average”).

We believe that this is simple yet sufficiently effective;
a carefully defined set of constraint relationships allows
completely automatic overlap resolution in most cases,
requiring manual intervention only when there is a con-
flict that cannot be overcome by selecting the minimum
reservation or restriction. In contrast, without constraint
relationships manual intervention would be needed for
resolving every constraint overlap, which occurs much
more frequently than conflicts of constraint relationships.

3 Evaluation

We implemented a prototype RBRM framework and in-
tegrated it in the admission control stage of XenoServers
— the point where a user requests the deployment of a
new service in direct communication with the server, af-
ter authentication of the request.

The prototype is written in Java, supports the use of
regular expressions, dynamic variable binding, and a
large set of mathematical functions in the definition of
constraint relationships, providing a very high degree of
expressiveness. At the same time, it allows defining gen-
eral constraint relationships such as such as “take the av-

erage of a set oflimGrp constraints given for any re-
source”, reducing the number of constraint relationships
that need to be defined for resolving possible conflicts.

Our results demonstrate that the system can be used to
reach resource allocation decisions in a large-scale, com-
plex, realistic scenario, without introducing a noticeable
time overhead in the admission control process.

3.1 Experimental setup.

The following parameters determine the complexity of
the problem: number of roles, number of constraints,
number of overlaps per user request, andnumber of re-
quests per second— all per serverthat participates in
the RBRM scheme. By altering the number of roles, we
created scenarios named “10”, “20”, “30”, “40”, “50” —
we anticipate that a typical server will very rarely have
more than 50 roles declared. To consider the worst case
scenario, we take the number of constrains equal to that
of roles, i.e. we assume that each role has one defined
constraint. We use different values for the number of
overlaps per user request and the number of requests per
second to obtain results regarding the scalability and per-
formance of the framework. All experiments were run on
a 3 GHz P4 with 512 MB of RAM, connected to a 100
Mbps LAN.

3.2 Experiments

The proposed resource management scheme needs to be
lightweight enough so as to not slow down the operation
of global public computing platforms considerably. It
also needs to scale gracefully when policies get complex
and the number of requests increases, and to be effective
in expressing realistic resource management policies ap-
plied to existing systems.

Performance. It is important that integrating our
RBRM framework with an existing global public com-
puting system does not cause a significant performance
degradation of the admission control process, as this
would be noticeable to the end users. To demonstrate
this, we measured the average time required by each sub-
sequent step in the RBRM policy evaluation process in
all scenarios, for single requests each generating 1 over-
lap on a given server.

The results of this experiment, shown in Figure 2(a),
demonstrate that our framework can reach such a com-
plex resource allocation decision in less than 150ms for
scenario “50”, most of which is needed for determin-
ing the role memberships of a user — phase 1 in Fig-
ure 1 — with only 25ms needed to resolve the over-
lap. This shows that it is possible to incorporate our
RBRM framework in the admission control process of

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50 40 30 20 10

R
es

po
ns

e
tim

e
(m

s)

Number of roles

role entry
constraint processing

overlapping resolution
admission control

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 5 4 3 2 1.5 1 0.5 0.1

R
es

po
ns

e
tim

e(
m

s)

Overlaps per user

"10"
"20"
"30"
"40"
"50"

(b)

 20

 30

 40

 50

 60

 70

 80

 90

 10 8 6 4 2

R
es

po
ns

e
tim

e
(m

s)

Requests/second

"10"
"20"
"30"
"40"
"50"

(c)

Figure 2: a) Execution time for each processing step. Response time when increasing b) the number of overlaps per
user, and c) the number of requests per second

a real global public computing system without incurring
a performance hit noticeable by the users — 150ms for a
large system that manages up to 50 user roles.

Scalability. We performed two experiments. In the
first one, whose results are shown in Figure 2(b), we fo-
cused on the effect ofpolicy complexityon the system.
We measured the time taken by the RBRM framework
to reach a decision in all scenarios on one server and in-
creased the number of roles and that of constraint over-
laps generated by each request. The results show that
the system scales gracefully, each role adding 1.6ms and
each overlap resolution adding 15ms.

In the second experiment, Figure 2(c), we examined
the effect ofpopularity. We measured the time needed
to reach an admission control decision on one server
when increasing the number of requests per second to
the RBRM system. For normal request rates — i.e. since
a request takes 150ms, we can have up to 6.5 per second
— response time remains constant.

The results of both experiments demonstrate that our
framework is able to scale to deal with both increasing
complexity of policies and growing popularity, making
it highly suitable for global public computing platforms.
Scalability in terms of network usage was not measured
as no inter-server communication is incurred.

Effectiveness. We examined various realistic resource
allocation policies, of the kind suggested on public com-
puting mailing lists and fora, such as the PlanetLab ar-
chitecture mailing list2 and the GGF’s Policy Research
Group3. In these sources we were not able to find a
real-world resource allocation policy that our system was
not able to express. As a few examples, using the pol-
icy description mechanisms described before we could
express the following constraints — and their combina-
tions: “Limit bandwidth to X Gigabytes per month to re-

2arch@lists.planet-lab.org
3https://forge.gridforum.org/projects/policy-rg/

mote users”, “limit bandwidth of traffic on TCP port 80
to X Gigabytes per month to all users”, “allow dedicated
use of only Y IP addresses by each local user”, “guar-
antee bandwidth to X% of total bandwidth to premium
users”, and “reserve X% of CPU for users connected to
the local network”.

4 Related work

Since early RBAC research [4], several such frameworks
have been devised. [6] defines roles as sets of rights
and duties, and considers relationships between roles and
meta-policies for resolving conflicts. [7] applies RBAC
to open, large-scale systems. [8] proposes object-centric
— similar to RBRM’s concept of constraint definitions
— and environment-centric. Ponder [9] associates pos-
itive and negative security policies with roles, and sup-
ports meta-policies for conflict resolution and role inher-
itance. Challenges of conflict resolution in the context of
RBAC have been identified [10, 11]. PERMIS [12] pro-
vides a privilege management infrastructure and defines
a hierarchical RBAC policy language.

The eXtensible Access Control Markup Language
(XACML) [13] can be used to define access control poli-
cies and protocols, but does not support quantifying ac-
cess to resources. This is also true of [14], an XACML-
based policy management and authorisation service. Ad-
ditionally, this service does not deal with overlapping or
conflicting policies that are likely to appear in an open,
federated environment.

Akenti [15] relies upon decentralised use-condition
certificates, created using a public key infrastructure,
which define what conditions a user has to meet in order
to get access to a resource. Attribute-based access con-
trol [16], which makes access control decisions based on
user attributes, is supported by our framework by defin-
ing single-property roles such as “Remote” and associat-
ing constraints with them.

Our framework draws on some of the techniques de-
veloped in RBAC, but differs fundamentally in its use of

quantitative policies, its emphasis onfederated control,
and the introduction of constraint relationships to control
the way in whichoverlapping policiesare combined.

Our system is complementary to work on service re-
quirements negotiation [17], policy-based resource al-
location [18], and negotiation and agreement proto-
cols [19]. While such approaches focus on methods for
specifying and agreeing on service requirements, RBRM
provides a scalable system for federated policy specifi-
cation and management. Our work is orthogonal to —
and generic enough to be integrated with — low-level
mechanisms for enforcing resource management deci-
sions [20, 21] and incentive schemes for spreading re-
source contention [22, 23].

Condor [24] supports simple access control policies,
but does not deal withfederatedandoverlappingpoli-
cies — only the machine’s owner can define the policies
used to manage a resource. Moreover, there is no mech-
anism forgroupingusers — policies need to enumerate
individual users — or forquantifyingaccess to resources
— only accept/deny decisions can be made. We plan to
experiment with deploying RBRM in Condor platforms
to address the above challenges.

5 Summary

This paper has presented a role-based resource manage-
ment framework that embraces the federated nature of
global public computing systems, and maintains the prin-
ciple of distribution of responsibility that lies at their
core. By doing so, and by having proven an efficient
and scalable solution, it offers global public computing
systems a viable alternative to the current common prac-
tice of not providing any high-level resource manage-
ment schemes at all.

In the future, we plan to perform wide-area deploy-
ment and testing of our framework on the XenoServer
platform and other global public computing systems, and
to devise tools that will simplify the process of declaring
policy elements and distributing them to the servers. Ad-
ditionally, we plan to investigate the expressiveness of
our policy definition framework more comprehensively.

References

[1] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology
of the Grid: An Open Grid Services Architecture for Distributed
Systems Integration. GGF Working Draft, June 2002.

[2] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson, M. Wawr-
zoniak, and M. Bowman. PlanetLab: An Overlay Testbed for
Broad-Coverage Services.ACM SIGCOMM Comp. Comm. Re-
view, 33(3):3–12, July 2003.

[3] S. Hand, T. L. Harris, E. Kotsovinos, and I. Pratt. Controlling
the XenoServer Open Platform. InProc. of the 6th Intl Conf. on
Open Arch. and Net. Prog. (IEEE OPENARCH), April 2003.

[4] D. Ferraiolo and R. Kuhn. Role-Based Access Controls. InProc.
of the 15th NIST-NCSC Conf., 1992.

[5] R. Hayton. An Open Architecture for Secure InterworkingSer-
vices. Technical Report UCAM-CL-TR-399, Univ. of Cam-
bridge, Computer Lab., June 1996.

[6] E. C. Lupu, D. A. Marriott, M. S. Sloman, and N. Yialelis. A
Policy Based Role Framework for Access Control. InProc. of
the 1st ACM Workshop on RBAC, 1996.

[7] R. J. Hayton, J. M. Bacon, and K. Moody. Access Control in an
Open Distributed Environment. InProc. of the IEEE Symp. on
Sec. and Priv., May 1998.

[8] M. Covington, M. Moyer, and M. Ahamad. Generalized Role-
Based Access Control for Securing Future Applications. InProc.
of the 23rd Nat. Inf. Sys. Sec. Conf. (NISSC), October 2000.

[9] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder
Policy Specification Language. InProc. of the Policy2001 Work-
shop, January 2001.

[10] E. C. Lupu and M. Sloman. Conflicts in Policy-Based Distributed
Systems Management.IEEE Transactions on Software Engineer-
ing, 25(6):852–869, 1999.

[11] S. Reiff-Marganiec and K. J. Turner. Feature Interaction in Poli-
cies.Computer Networks, 45(5):569–584, 2004.

[12] D.W. Chadwick and A. Otenko. The PERMIS X.509 role based
privilege management infrastructure.Future Gen. Comp. Sys.,
19(2):277–289, 2003.

[13] Organization for the Advancement of Structured Infor-
mation Standards (OASIS). eXtensible Access Control
Markup Language (XACML) Specification Set v1.0, February
2003. Available fromhttp://www.oasis-open.org/
committees/xacml.

[14] M. Lorch, D. Kafura, and S. Shah. An xacml-based policy man-
agement and authorization service for globus resources. InProc.
of the 4th Intl Workshop on Grid Comp., 2003.

[15] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson,
and A. Essiari. Certificate-based access control for widelydis-
tributed resources. InProc. of USENIX Security, 1999.

[16] P. Bonatti and P. Samarati. A unified framework for regulating
access and information release on the web.Journal of Computer
Security, 10(3):241–272, 2002.

[17] C. S. Yeo and R. Buyya. Service level agreement based allocation
of cluster resources: Handling penalty to enhance utility.In Proc.
of the 7th IEEE Intl Conf. on Cluster Comp., 2005.

[18] C. Dumitrescu, M. Wilde, and I. Foster. Policy-based resource al-
location for virtual organizations. Technical report, Grid Physics
Network, 2003.

[19] P. C. K. Hung, H. Li, and J. Jeng. WS-Negotiation: An Overview
of Research Issues.HICSS, 01:10033b, 2004.

[20] C. A. Waldspurger. Lottery and stride scheduling: Flexi-
ble proportional-share resource management. Technical Report
MIT/LCS/TR-667, Massachusetts Institute of Technology, 1995.

[21] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a general-
purpose schedular. InProc. of ACM SOSP, 1999.

[22] O. Regev and N. Nisan. The popcorn market — an online market
for computational resources. InProc. of the 1st Intl Conf. on Inf.
and Comp. Econ., 1998.

[23] A. AuYoung, B. Chun, A. Snoeren, and A. Vahdat. Resourceallo-
cation in federated distributed computing infrastructures. InProc.
of the 1st Workshop on Operating Systems and Architectural Sup-
port for the On-demand IT Infranstructure, October 2004.

[24] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mech-
anisms for High Throughput Computing.SPEEDUP Journal,
11(1), June 1997.

