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Abstract
This paper introduces a mechanism for asserting invariants that are
maintained by a program that uses atomic memory transactions.
The idea is simple: a programmer writescheck E whereE is an
expression that should be preserved by every atomic update for
the remainder of the program’s execution. We have extended STM
Haskell to dynamically evaluatecheck statements atomically with
the user’s updates: the result is that we can identify precisely which
update is the first one to break an invariant.

1. Introduction
Atomic blocks provide a promising simplification to the problem of
writing concurrent programs [9]. A code block is markedatomic
and the compiler and runtime system ensure that operations within
the block, including function calls, appear atomic. The programmer
no longer needs to worry about manual locking, low-level race con-
ditions or deadlocks. Atomic blocks are typically built usingsoft-
ware transactional memory(STM) which allows a series of mem-
ory accesses made via the STM library to be performed atomically.

This approach is sometimes described as being “like A and I”
from ACID database transactions; that is, atomic blocks provide
atomicityandisolation, but do not deal explicitly withconsistency
or durability. This paper attempts to include “C” as well, by show-
ing how to define dynamically-checked data invariants that must
hold when the system is in a consistent state. Specifically, we make
the following contributions:

• We propose a simple but powerful new operation,check E,
whereE is an expression that must run without raising an ex-
ception after every transaction (Section 3). For example, given
a predicateisSorted to test whether the data in a mutable list is
sorted, an invariantcheck (assert (isSorted l1)) would
cause an error to be issued if anyatomic block attempts to
commit with the listl1 unsorted. Furthermore, we can pinpoint
exactly whichatomic block attempted to violate the invariant.

Using atomic blocks provides us with a key benefit over ex-
isting work on dynamically-checked invariants: the boundaries
of atomic blocks indicate precisely where invariants must hold.
They may, and often must, be brokenwithin transactions, some-
thing that causes trouble in other systems (Section 7).

Furthermore, the programmer has fine control over the granu-
larity of invariant checking. She may specify coarse-grain in-
variants on large, global data structures, or fine-grain invariants
on individual parts of those structures (e.g. Section 3.2).

• A distinctive feature of our work is that we give a complete,
precise (but still compact) operational semantics ofcheck in
Section 4, by extending our earlier semantics for STM Haskell.
This semantics gives a precise answer to questions such as:
what happens if the invariant updates the heap, loops, or blocks?

• One might worry that, since invariants can be dynamically
added but never deleted, the system will run slower and slower
as more invariants are added. In Section 5 we show how to take
advantage of theexistingSTM transaction logging mechanism
to ensure that (i) invariants are only checked when a variable
read by the invariant is written by a transaction, and (ii ) invari-
ants are garbage-collected entirely when the data structures they
watch are dead. These properties are the key to scalability.

• In Section 6 we show how the operations supported by our
invariants can be extended to express conditions relating pairs
of program states (“XYZ is never decreased”), rather than just
inspecting the current state (“XYZ is never zero”).

The idea of combining data invariants with transactions is not new
– indeed, the POSTQUEL query language from 1986 included a
similar command that could be used to describe kinds of transaction
that could not be committed against a database [24]. Section 7
discusses related work in that field, along with other work on
incorporating invariants into programming languages.

We present our design in the context of STM Haskell [10] be-
cause this setting allows us to bring out the key issues in partic-
ularly crisp form. Everything we describe is fully implemented in
the Glasgow Haskell Compiler, GHC, and will shortly be publicly
available at the GHC home page. However, we believe that the
ideas of the paper could readily be applied in other languages, as
we discuss in Section 8.

2. Background: STM Haskell
Our prototype is based on STM Haskell [10], summarized in Fig-
ure 1. In this section we briefly review the language for the benefit
of readers not already familiar with it.

STM Haskell is itself built on Concurrent Haskell [20] which
extends Haskell 98, a pure, lazy, functional programming language.
It provides explicitly-forked threads, and abstractions for commu-
nicating between them. These constructs naturally involve side ef-
fects which are accommodated in the otherwise-pure language a
mechanism calledmonads[25]. The key idea is this: a value of
type IO a is an “I/O action” that, when performed may do some
input/output before yielding a value of typea. For example, the
functions putChar and getChar have types:

putChar :: Char -> IO ()
getChar :: IO Char

That is, putChar takes aChar and delivers an I/O action that,
when performed, prints the string on the standard output; while
getChar is an action that, when performed, reads a character from
the console and delivers it as the result of the action. A complete
program must define an I/O action calledmain; executing the
program means performing that action.



For example:

main :: IO ()
main = putChar ’x’

I/O actions can be glued together by a monadic bind combinator.
This is normally used through some syntactic sugar, allowing a C-
like syntax. Here, for example, is a complete program that reads a
character and then prints it twice:

main = do { c <- getChar; putChar c; putChar c }

Threads in STM Haskell communicate by reading and writing
transactional variables, orTVars. The operations onTVars are as
follows:

data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

All these operations make use of theSTM monad, which supports
a carefully-designed set of transactional operations, including allo-
cating, reading and writing transactional variables. ThereadTVar
andwriteTVar operations both return STM actions, but Haskell
allows us to use the samedo {...} syntax to compose STM ac-
tions as we did for I/O actions. These STM actions remain tentative
during their execution: in order to expose an STM action to the rest
of the system, it can be passed to a functionatomic, with type:

atomic :: STM a -> IO a

It takes a memory transaction, of typeSTM a, and delivers an I/O
action that, when performed, runs the transaction atomically with
respect to all other memory transactions. One might say:

main = do { ...; atomic (writeTVar r 3); ... }

Operationally,atomic takes the tentative updates and actually ap-
plies them to theTVars involved, thereby making these effects vis-
ible to other transactions. Theatomic function and all of the STM-
typed operations are built over the software transactional mem-
ory. This deals with maintaining a per-thread transaction log that
records the tentative accesses made toTVars. Whenatomic is in-
voked the STM checks that the logged accesses are valid – i.e. no
concurrent transaction has committed conflicting updates. If the log
is valid then the STM commits it atomically to the heap. Otherwise
the memory transaction is re-executed with a fresh log.

Splitting the world into STM actions and I/O actions provides
two valuable guarantees: (i) only STM actions and pure computa-
tion can be performed inside a memory transaction; in particular
I/O actions cannot; (ii ) no STM actions can be performed outside a
transaction, so the programmer cannot accidentally read or write a
TVar without the protection ofatomic. Of course, one can always
write atomic (readTVar v) to read aTVar in a trivial transac-
tion, but the call toatomic cannot be omitted.

As an example, this procedure atomically increments aTVar:

incT :: TVar Int -> IO ()
incT v = atomic (do x <- readTVar v

writeTVar v (x+1))

The implementation guarantees that the body of a call toatomic
runs atomically with respect to every other thread; for example,
there is no possibility that another thread can appear to readv
between thereadTVar andwriteTVar of incT.

Although less relevant to our current paper, STM Haskell also
provides facilities forcomposable blocking. The first construct is a
retry operation:

-- The STM monad itself
data STM a
instance Monad STM

-- Exceptions
throw :: Exception -> STM a
catch :: STM a -> (Exception->STM a) -> STM a

-- Running STM computations
atomic :: STM a -> IO a
retry :: STM a
orElse :: STM a -> STM a -> STM a

-- Transactional variables
data TVar a
newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Figure 1. The language level interface to transactional memory in
STM Haskell

retry :: STM a

The semantics ofretry is to abort the current atomic transaction,
and re-run it after one of the transactional variables it read from
has been updated. For example, here is a proceduredecT that
decrements aTVar, but blocks if the variable is already zero:

dec :: TVar Int -> STM ()
dec v = do x <- readTVar v

if x == 0
then retry
else writeTVar v (x-1)

decT :: TVar Int -> IO ()
decT v = atomic (dec v)

Finally, the infix orElse function allows two transactions to be
tried in sequence:(s1 ‘orElse‘ s2) first attemptss1; if that
calls retry, thens2 is tried instead; if that retries as well, then
the entire call toorElse retries. For example, this procedure will
decrementv1 unlessv1 is already zero, in which case it will
decrementv2 instead. If both are zero, the thread will block:

decPair :: TVar Int -> TVar Int -> IO ()
decPair v1 v2 = atomic (dec v1 ‘orElse‘ dec v2)

In addition, the STM code needs no modifications at all to be ro-
bust to exceptions. The semantics ofatomic is that if the transac-
tion fails with an exception, then no globally visible state change
whatsoever is made.

Note that since our original paper on STM Haskell [10], we
realized that the type ‘STM a’ might, more clearly, be called
‘Atomic a’ and that the functionatomic could be renamed
‘perform’. The new names would make it clearer that operations
such asreadTVar andwriteTVar are individual atomic actions
that are combined monadically to form larger compound atomic
actions, and also thatperform is used only when actually mak-
ing such a compound action visible to concurrent threads (rather
than being necessary at every level when calling one transactional
function from another). For consistency we are sticking with the
published names, but mention the alternatives in case they help
readers unfamiliar with the language.

3. The main idea
The main idea of the paper is to introduce a single new primitive



check :: STM a -> STM ()

Informally,check takes an STM computation that tests an invariant
and, in addition, adds it to a global set of such invariants. At the end
of everyuser transaction,everyinvariant in the global set must be
satisfied if the user transaction is to be allowed to commit. If any
invariant fails, indicated by throwing an exception, then the user
transaction is rolled back and the exception propagates.

Since invariant checks are run repeatedly, and in an unspecified
order, it is clearly desirable that they do not perform side effects or
input/output. Our design partly offers this guarantee by construc-
tion: since the argument tocheck is anSTM computation, the type
system guarantees that it performs no input/output. Of course, as
an STM computation, it can callwriteTVar to attempt to update
transactional memory – or, indeed, it can attempt any of the other
actions in theSTM monad. To avoid this kind of side-effect we use a
fresh nested transaction to check each invariantand then roll-back
this transaction whether or not the invariant succeeds. We give a
fully-precise specification in Section 4, but first we discuss our de-
sign informally in the rest of this section.

In this section we introduce a number of examples showing
how invariants can be defined. In many of our examples we use
simple data structures built fromTVars holding integer values. In
Haskell, as in other languages, these examples could be written
more generally to act across multiple types; we stick to integers
for simplicity rather than due to limitations in the design or the
implementation. For simplicity we also stick with straightforward
imperative data structures.

3.1 Example 1: range-limited TVars

Consider the following example in which the typeLimitedTVar
holds a range-limited integer value. The functionnewLimitedTVar
constructs aLimitedTVarwith a specified limit.incLimitedTVar
attempts to increment the value:

type LimitedTVar = TVar Int

newLimitedTVar :: Int -> STM LimitedTVar
newLimitedTVar lim =
do { tv <- newTVar 0

; check (do { val <- readTVar tv
; assert (val <= lim) })

; return tv }

incLimitedTVar :: Int -> LimitedTVar -> STM ()
incLimitedTVar delta tv

= do { val <- readTVar tv
; writeTVar tv (val+delta) }

A key point is that the invariant is associated with thecreationof
theLimitedTVar, and not with its (perhaps diverse)uses. A pro-
grammer therefore can be confident thateveryLimitedTVar will
alwaysobey its invariant, rather than wondering whether perhaps
one errant use has fallen though the net. The second key point is
that the invariant is checked only at theendof (every) transaction;
the invariant may temporarily be brokenduring a transaction. For
example, a particular transaction may increase the variable beyond
its limit provided that the same transaction decreases it again before
the transaction ends. It is not useful, for example, to test the invari-
ant every time the variable is written. Finally, it is worth noting that
the invariant is a first-class closure; for instance it has a free vari-
ablelim that is not recorded in theLimitedTVar data structure at
all.

An invariant may of course describe arelationship between
mutable variables. For example, a limitedTVarwith a mutable limit
might be described thus:

data LimitedTVarM
= LTV { val :: TVar Int, limit :: TVar Int }

Now the invariant-check would read both theval and limit
TVars, and compare them, failing if they do not stand in the de-
sired relationship.

3.2 Example 2: a sorted list

Our second example illustrates the trade-offs involved in express-
ing the same invariant in different ways. Consider the following
definition of a singly linked list of integers:

data ListNode
= ListNode { val :: TVar Int,

next :: TVar (Maybe ListNode) }

EachListNode holds aTVar Int which we will call the node’s
value, and a reference to aMaybe ListNode which we will call
thenext node. In Haskell, the typeMaybe ListNode is essentially
a nullable reference to aListNode – its value is eitherNothing
(null), or Just l1 (a reference tol1). A Nothing next node
indicates the end of the list.

If a list is to be held in sorted order then, informally, an in-
variant for all nodes could be “the next node is either null, or the
next node’s value is larger than this node’s value”. This could be
expressed as:

validNode :: ListNode -> STM ()
-- Throws exception for invalid node
validNode ListNode { val = v_val, next = v_next }
= do { next_node <- readTVar v_next

; case next_node of -- C1
Nothing -> return ()
ListNode { val = v_next_val } ->
do { this_val <- readTVar v_val

; next_val <- readTVar v_next_val
; assert (this_val <= next_val) }

}

Case statementC1 examines the contents ofv_next: if it holds
Nothing, then the invariant holds and we simply return; otherwise,
the value fields of the two nodes are read and compared.

As with the first example, we could integrate this invariant with
a function that constructs list nodes:

newListNode :: Int -> STM ListNode
newListNode val
= do { v_val <- newTVar val

; v_next <- newTVar Nothing
; let result = ListNode { val = v_val,

next = v_next }
; check (validNode result)
; return result }

This approach is effective ifall ListNodes should occur in sorted
lists. But perhaps some lists are sorted, and some are not – what
then? In such cases the invariant could perhaps be expressed better
as a property of a larger data structures:

validList :: ListNode -> STM ()
validList ln@(ListNode { next = v_next })
= do { r <- validNode ln -- Check first node

; next_val <- readTVar v_next
; case next_val of

Nothing -> return ()
Just ln’ -> validList ln’ }

The code instantiating the list can now assert thatvalidList is
always true, rather than expressing a per-node invariant.



The choice between these two approaches is largely a matter of
taste and engineering. This example lets us raise two more issues
beyond those already highlighted: (i) using per-node invariants
enables more precise error reports (“node XYZ is out of order”,
versus “something in list ABC is out of order”), and (ii ) in our
implementation, per-node invariants may perform better: if the list
is updated then only invariants in the vicinity of the update are re-
checked, rather than the whole list being scanned.

3.3 Example 3: invariants over state pairs

Our third example illustrates a kind of invariants whichcannotbe
expressed in STM Haskell. Suppose that we wish to create anon
decreasingTVar, holding an integer value that is never allowed to
be decreased by a transaction. We might attempt such a definition
as follows:

newNonDecreasingTVar :: Int -> STM (TVar Int)
newNonDecreasingTVar val
= do { r <- newTVar val

; p <- newTVar val
; check (do { c_val <- readTVar r

; p_val <- readTVar p
; assert (p_val <= c_val)
; writeTVar p c_val -- W1
})

; return r;
}

The intention here is thatr refers to theTVar holding the non-
decreasing value, thatp refers tor’s previous value, and that the
check ensures that the previous value is less than the current value.
Unfortunately this will not work – the write atW1 that is responsible
for recording the previous value will be rolled back each time the
invariant is checked.

This example might make it appear tempting to allow some
limited kind of updates to be made within invariant checks; there
are many ways that the state modified by these updates could be
kept distinct from the state visible to the application through its
ownTVars.

Leaving aside the question of exactlyhow updates are carried
from one invariant check to another, retainingany kind of update
is problematic semantically. This is becauserunning an invariant
check is no longer an idempotent operation. For instance, consider
the following example in which the invariant check maintains a
counter, failing when the counter reaches 10:

timebomb :: STM ()
timebomb
= do { c <- newTVar 0

; check (do { c_val <- readTVar c
; writeTVar c (c_val + 1)
; assert (c_val < 10)
})

}

What should this mean? Must the check be performed on every
transaction (failing when exactly 10 have been committed)? May
the invariant be checked multiple times on every transaction –
after all, the invariant updates aTVar (c) that it itself depends
on. Conversely, is it permitted to elide checking this invariant at
all – after all, it is not associated with any data reachable by the
application?

If such a definition is to be allowed then the only reasonable
approach semantically would seem to be to execute it until it either
fails or reaches a fixed point. This is not an attractive proposition
in terms of performance and sowe do not provide any support for
maintaining updates from one invariant check to another.

Having said that, as we return to in Section 6, we can extend
our system to support invariants such asnewNonDecreasingTVar
without allowing problems of the kind raised bytimebomb.

3.4 Example 4: invariants as guards

Our final example illustrates a facet of our design on which we
would particularly welcome feedback: what happens when an in-
variant blocks? Recall that in STM Haskell, blocking is expressed
by aretry statement being executed inside anatomic block. Se-
mantically, this aborts the block and re-executes it from the start,
although the implementation delays this re-execution until one of
the TVars read by the block has been updated (without such an
update the block would simplyretry again, spinning uselessly).

Suppose that we define a variant of theLimitedTVar type from
Section 3.1 which blocks instead of failing (aside from naming,
differences are highlighted in black):

newBlockingTVar :: Int -> STM LimitedTVar
newBlockingTVar lim =
do { v_n <- newTVar 0

; always { val <- readTVar v_n
; if (val <= lim)

then return ()
else retry }

; return v_n }

The followingatomic blocks create aTVar limited to 10, and then
attempt to exceed that limit by incrementing it from 0 to 20:

xs <- atomic { newBlockingTVar 10 } -- A1
-- intervening code elided
atomic { incBlockingTVar 20 xs } -- A2

What should this mean? One option is that it should simply be
forbidden. An alternative option is that executingretry when
checking an invariant is exactly the same as executingretrywithin
the block being checked:A2 will block until the increment can
succeed without breaching the limit (perhaps because of work done
by a concurrent thread forked elsewhere).

Our current semantics and implementation follow the latter
alternative. As we discuss in the next section it is debatable whether
this is the best choice here; however, it is reminiscent of how the
SCOOP concurrency extensions for Eiffel interpret method pre-
conditions as blocking guard conditions [21].

3.5 Design choices

The preceding examples illustrated a number of decisions taken
in the design ofcheck. The first four of these are genuine design
decisions on which we have selected one particular option based on
the intuition gained from our examples:

[D1] The granularity at which invariants are checked coincides
with transaction boundaries.This follows many designs for database
invariants and, of course, it is necessary to allow such as “all entries
in list L1 must also be in list L2” to be brokeninsidetransactions
that must update one list and then the other.

[D2] An invariant must succeed both when it is passed tocheck,
and also when the transaction proposing it is committed. Our de-
sign follows that of many of the database systems in Section 7.2.
Although the decision that invariants must succeed when passed to
check is debatable, it is essential that any new invariants succeed
at the end of the transaction proposing them. This allows future
invariant failures to be correctly identify the offending transaction.

[D3] The check function is anSTM action, and so it can be com-
posed with otherSTM actions in an atomic block.An early design
had check as anIO action, so that it could not be used within



atomic blocks. Our examples illustrate the benefit of havingcheck
be anSTM action: it can be encapsulated in STM-typed constructor
functions.

[D4] The closure passed tocheck is itself anSTM action: it pro-
ceeds by reading directly from theTVars the the invariant depends
on. This allows an invariant to re-use existing STM functions that
may form part of the program logic.

However, beyond these basic decisions, there are a number of cases
where clear guidance does not follow from simple examples. To a
large extent these are cases that a ‘well behaved’ invariant should
not exercise: what if it updatesTVars rather than just reading them,
what if it loops, or what if it callsretry, orElse, or evencheck?

We have explored two points in this design space. The first,
in Section 3.6, is the one followed by our implementation and by
Section 4’s operational semantics. In this design wedo notrestrict
the kinds of STM action that can be composed to form an invariant;
instead we use nested transactions and roll-back to limit the kinds
of side effect that can leak out from a badly behaved invariant. The
second design, in Section 3.7 shows how we can use the Haskell
type system to statically restrict invariants to only reading from
TVars and performing pure computation.

3.6 Unrestricted invariants

Our first approach is to perform each invariant check in anested
transaction, and to roll back this nested transaction whether or
not the invariant succeeds. This means that the invariant can use
TVars internally without being able to affect the application’s data
structures.

This approach leads to the following behavior for ‘badly be-
haved’ invariants:

[D5] If an invariant does not terminate at the end of a transaction
then the transaction does not terminate.

[D6] An invariant may updateTVars within its own execution.

[D7] If an invariant evaluates toretry then the user transaction is
aborted and re-executed (potentially after blocking until it is worth
re-executing it).

[D8] If an invariant executes acheck statement, then the new
invariant is checked at that point, but is not retained by the system.

Some of these design choices are open for debate. Two particular
examples are the use ofretry within invariants and the use of or-
dinary (i.e. catchable) exceptions to indicate failures. Our example
from Section 3.4 illustrates how an invariant incorporatingretry
can remove the need to repeat a guard condition across multiple
atomic blocks.

We are somewhat uneasy with this kind of use. This is because
it requiresinvariants to be checked at run-time: this is at odds with
the intuition that testing could be disabled once a program appears
to run without violations.

3.7 Restricted invariants

An alternative to theunrestricted invariantsof Section 3.6 is to
limit invariants to only reading fromTVars. Doing so means that in-
variants cannot have side effects onTVars, or callretry, orElse,
or check.

This kind of restriction can be elegantly integrated with the in-
terface to transactional memory in STM Haskell. Figure 2 shows
how. TheSTM type constructor gets an extra type argument,e, that
characterises the effets in the computation. Specifically, a compu-
tation of typeSTM ReadOnly t performs only read effects, while
one of typeSTM Full t has arbitrary STM effects. The types

-- Phantom types for different kinds of STM action
data ReadOnly
data Full

-- The STM monad distinguishing between kinds
-- of STM action
data STM e a
instance Monad (STM e)

-- Exceptions
throw :: Exception -> STM e a
catch :: STM e a -> (Exception->STM e a) -> STM e a

-- Running STM computations
atomic :: STM Full a -> IO a
retry :: STM Full a
orElse :: STM Full a -> STM Full a -> STM Full a

-- Transactional variables
data TVar a
newTVar :: a -> STM Full (TVar a)
readTVar :: TVar a -> STM e a
writeTVar :: TVar a -> a -> STM Full ()

-- Invariants
check :: STM ReadOnly a -> STM Full ()

Figure 2. The language level interface to transactional memory in
STM Haskell, distinguishing between actions that can perform any
STM action (“STM Full”) and those that can only read fromTVars
(“STM ReadOnly”).

ReadOnly andFull are so-calledphantom types; they have no data
contructors and no values.

The functionswriteTVar, retry, and orElse in Figure 2
all returnFull computations. In contrast,readTVar is polymor-
phic in e, and hence can be used in bothReadOnly and Full
contexts. The operationsreturn, (>>=), catch, andthrow are
all similarly polymorphic, and hence are usable in both con-
texts. The key funcion in Figure 2 ischeck: it takes aReadOnly
computation and returns aFull computation. So, for example,
check (readTVar x) is well-typed, whilecheck (retry) or
check (writeTVar x v) is not.

This design has its attractions: read-only invariants may be more
amenable to static verification, and the implementation does not
need to track and roll-back their side effects. Conversely, restric-
tions limit the kinds of existing function that can be used in in-
variants – any algorithms that internally useTVars are prohibited,
even if they do not clash with those used by the application. Fur-
thermore, since executable invariants can still loop endlessly, it is
not the case thatcheck statements can be safely removed from an
application once it runs without invariant failures.

4. Operational semantics
So far our discussion in Section 3 has been informal. It is hard to
be sure that such descriptions cover all the combinations of these
functions that might arise1, so in this section we extend the formal,
operational semantics of STM Haskell [10] to include thecheck
primitive. We follow the design forunrestricted invariantsfrom
Section 3.6.

Figure 3 gives the syntax of a fragment of STM Haskell. Terms
and values are entirely conventional, except that we treat the ap-
plication of monadic combinators, such asreturn andcatch, as

1 As an example, even though we had completed a prototype implementa-
tion, the case of executing one invariant that proposes a second invariant is
something we did not anticipate until writing these semantics.



x, y ∈ Variable
r, t ∈ Name
C ∈ Constructor
c ∈ Char

Value V ::= r | c | \x ->M | C M1 · · · Mn

| return M | M >>=N
| putChar c | getChar
| throw M | catch M N
| retry | M ‘orElse‘ N
| forkIO M | check M

Term M, N ::= x | V | M N | · · ·

Thread soup P, Q ::= Mt | (P |Q)
Heap Θ ::= r ↪→ M

Allocations ∆ ::= r ↪→ M
Invariants Ω ::=

˘
M

¯

Evaluation � ::= [·] | � >>=M
contexts | catch � M | � orElse M

� ::= �t | (� |P ) | (P |�)
Action a ::= !c | ?c | ε

Figure 3. The syntax of values and terms. Definitions in gray come
directly from those used with STM Haskell. Definitions in black
indicate modifications.

values. Thedo-notation we have been using so far is syntactic sugar
for uses ofreturn and>>=:

do {x<-e; Q} ≡ e >>= \x-> do {Q}
do {e; Q} ≡ e >>= \ -> do {Q}

do {e} ≡ e

Figure 4 gives a small-step operational semantics for the lan-
guage. Definitions typeset in gray are identical to the original def-
initions for STM Haskell. Definitions typeset in black show modi-
fications or additions needed forcheck. We will first of all outline
the structure of the definitions in this figure (Section 4.1) and then
show how they are extended to supportcheck (Section 4.2).

4.1 Original semantics

We begin by describing the operational semantics of STM Haskell
without invariants. The material of this section is largely taken from
[10], but it is essential to understanding the changes for invariants.
The semantics is given in Figure 4, which groups the existing
transitions into three sets:

The IO transitions are steps taken by threads. A transition
P ; Θ, Ω

a−→ Q; Θ′, Ω′ indicates a single step from a system with
threads in stateP transitions to one with threads in stateQ. Theta
(Θ) is the state of the heap before the transition;Θ′ is the state of
the heap after the transition.a is the IO action (if any) performed
by the step. Omega (Ω) is the current set of invariants; we return to
its role in section 4.2.

The first two rules deal with input and output. If the active
term is aputChar or getChar the appropriate labelled transition
takes place, and the operation is replaced by areturn carrying the
result. Rule FORK allows a new thread to be created, by adding
a new term M to the thread soup, allocating a fresh namet as its
ThreadId.

Rule ADMIN concernsadministrative transitions, which are
given in the second section of Figure 4. Rule EVAL allows a pure
function M that is not a value to be evaluated by an auxiliary
function, V[[M ]], which gives the value ofM . This function is

entirely standard, and we omit it here. Rule BIND implements
sequential composition in the monad. The rules THROW, CATCH1
and CATCH2 implement exceptions in the standard way. All of
these rules are, as we shall see, used both for IO transitions and
STM transitions, which is why we keep them in a separate group.

Ignoring the additions forcheck, rules ARET and ATHROW
define the semantics of atomic blocks that return a value ARET,
or that throw an exception ATHROW. In each case the main idea is
that theonlyway of performing “⇒” STM transitions is to package
up the transitions for an entire atomic block and encapsulate them
in a single “→” IO transition; this is how atomicity is reflected in
the rules.

An STM transitionhas the formM ; Θ, ∆, Ω ⇒ N ; Θ′, ∆′, Ω′.
It defines a transition within a single thread from stateM to N .
Once again,Θ is the state of the heap andΩ holds the invariants
that we return to in Section 4.2.

The role of delta (∆) is more subtle: it records theallocation
effectsof the transition. For instance, rules READ, WRITE and
NEW are concerned with primitive accesses toTVars and their
main effect is to return a value from the heap (Θ(r) in READ),
or to update the heap (Θ[r �→ M ] in WRITE). However, notice
that as well as adding a new mapping toΘ, NEW also adds it to∆.

The reason for tracking allocation effects is the design choice
that ATHROWrolls backthe heap updates that a transaction makes
when it terminates by an exception, but that it continues propagat-
ing the exception that caused the roll back. This exception may
contain references toTVars that were allocated within the transac-
tion and so we must retain these allocations if we are not to intro-
duce dangling pointers.∆ collects up these allocation effects and
the ATHROW rule constructs a new heap state by combining them
with the previous heap state (Θ ∪ ∆′).

The STM transition AADMIN incorporates pure computation,
monadic bind and exception handling within transactions.

Finally, the three rules OR1, OR2 and OR3 define theorElse
combinator. OR1 says thatM1 ’orElse’ M2 behaves likeM1

if that returns a value. OR2 expresses says that ifM1 raises an
exception then that forms the result of theorElse operation. OR3
says that ifM1 completes by callingretry then we tryM2 instead.

The alert reader may be wondering why there is no rule
ARETRY to go along with ARET and ATHROW, to account for
the fact that an STM computation may evaluate toretry. There is
no rule for this case.What that means is that an atomic block in
which all orElse choices end inretry cannot make a series of
STM transitions that will allow the ARET or ATHROW rules to be
applied. To make progress, another thread must be chosen.

4.2 Semantics of invariants

We are now ready to extend the semantics to incorporatecheck.
There are three changes:

Firstly, the state associated with IO transitions and STM tran-
sitions now includes a set of invariantsΩ. As Figure 4 shows, the
majority of rules treat this set in the same way as the heapΘ.

Secondly, the STM transitions now include two rules forcheck.
The first, CHECK1 is taken when the invariant holds at the point
it is proposed. Above the line, the proposed invariantM evaluates
to a return term in the current heap state. Below the line, the
proposed invariant is added toΩ and the side effects of evaluating it
are discarded. Note that the heap remainsΘ and allocation effects
∆ – even ifM ’s execution allocates newTVars there is no way that
they can leak out because the resultN is discarded.

The second new STM transition, CHECK2, is taken when the
invariant does not hold at the point it is proposed. Above the line,
M evaluates to athrow term. Below the line, the exception is
re-raised, rolling back any updates made by the failedcheck but



IO transitions P ; Θ, Ω
a−→ Q; Θ′, Ω′

�[putChar c]; Θ, Ω
!c−→ �[return ()]; Θ, Ω (PUTC )

�[getChar]; Θ, Ω
?c−→ �[return c]; Θ, Ω (GETC )

�[forkIO M ]; Θ, Ω −→ (�[return t] | Mt); Θ, Ω t �∈ �, Θ, Ω (FORK )

M −→ N
�[M ]; Θ, Ω −→ �[N ]; Θ, Ω

(ADMIN )
M ; Θ, {}, Ω �⇒ throw N ; Θ′, ∆′, Ω′

�[atomic M ]; Θ, Ω −→ �[throw N ]; (Θ ∪ ∆′), Ω
(ATHROW )

M ; Θ, {}, Ω �⇒ return N ; Θ′, ∆′, Ω′ ∀Mi ∈ Ω′ :
`
Mi; Θ′, {}, {} �⇒ return Ni; Θ′

i, ∆
′
i, Ω

′
i

´

�[atomic M ]; Θ, Ω −→ �[return N ]; Θ′, Ω′ (ARET1 )

M ; Θ, {}, Ω �⇒ return N ; Θ′, ∆′, Ω′ ∃Mi ∈ Ω′ :
`
Mi; Θ′, {}, Ω′ �⇒ throw Ni; Θ′

i, ∆
′
i, Ω

′
i

´

�[atomic M ]; Θ, Ω −→ �[throw Ni]; (Θ ∪ ∆′ ∪ ∆′
i), Ω

(ARET2 )

Administrative transitions M −→ N

M −→ V if V[[M ]] = V andM �≡ V (EVAL)

return N >>=M −→ M N (BIND) catch (return M) N −→ return M (CATCH1 )
throw N >>=M −→ throw N (THROW ) catch (throw M) N −→ N M (CATCH2 )

retry >>=M −→ retry (RETRY ) catch (retry) N −→ retry (CATCH3 )

STM transitions M ; Θ, ∆, Ω ⇒ N ; Θ′, ∆′, Ω′

�[readTVar r]; Θ, ∆, Ω ⇒ �[return Θ(r)]; Θ, ∆, Ω if r ∈ dom(Θ) (READ)
�[writeTVar r M ]; Θ, ∆, Ω ⇒ �[return ()]; Θ[r �→ M ], ∆, Ω if r ∈ dom(Θ) (WRITE)

�[newTVar M ]; Θ, ∆, Ω ⇒ �[return r]; Θ[r �→ M ], ∆[r �→ M ], Ω if r �∈ dom(Θ) (NEW )

M ; Θ, {}, Ω �⇒ return N ; Θ′, ∆′, Ω′

�[check M ]; Θ, ∆, Ω ⇒ �[return ()]; Θ, ∆,
`
Ω ∪ {M}´ (CHECK1 )

M ; Θ, {}, Ω �⇒ throw N ; Θ′, ∆′, Ω′

�[check M ]; Θ, ∆, Ω ⇒ �[throw N ];
`
Θ ∪ ∆′´,

`
∆ ∪ ∆′´, Ω

(CHECK2 )

M −→ N
�[M ]; Θ, ∆, Ω ⇒ �[N ]; Θ, ∆, Ω

(AADMIN )
M1; Θ, ∆, Ω

�⇒ return N ; Θ′, ∆′, Ω′

�[M1 ‘orElse‘ M2]; Θ, ∆, Ω ⇒ �[return N ]; Θ′, ∆′, Ω′ (OR1 )

M1; Θ, ∆, Ω
�⇒ throw N ; Θ′, ∆′, Ω′

�[M1 ‘orElse‘ M2]; Θ, ∆, Ω ⇒ �[throw N ]; Θ′, ∆′, Ω′ (OR2 )
M1; Θ, ∆, Ω

�⇒ retry; Θ′, ∆′, Ω′

�[M1 ‘orElse‘ M2]; Θ, ∆, Ω ⇒ �[M2]; Θ, ∆, Ω
(OR3 )

Figure 4. Operational semantics of STM Haskell. Definitions in gray form the original semantics. Definitions in black show modifications.

keeping any allocation effects (∆′) that may be leaked by the
exception.

Finally, in the IO transitions, there are substantial changes to
ARET1 (for successful atomic blocks) and a new rule ARET2 (for
atomic blocks that break an invariant). Aside from the updates to
Ω, ARET1 adds an additional premise to the original rule: all of
the invariants in place at the end of the atomic block must evaluate
toreturn terms. Note that we consider allMi in Ω′ – this will pick
up any new invariants added during the atomic block. Also, when
evaluating each invariant, we discard the actual value returned and

the updates that the invariant may make to the heap and to the set
of invariants. This mirrors our informal notion that invariants are
checked in nested transactions that are then rolled back.

The new rule ARET2 applies when any of the invariants eval-
uates to athrow term. As with ATHROW, the exception is propa-
gated, retaining allocation effects but rolling back the remainder of
the heap. Note that by using allocation effects∆′ and∆′

i we retain
any allocations in the originalatomic block and any allocations
made during the invariant’s re-execution.



5. Implementation
We have implementedcheck as an extension to our existing pro-
totype of STM Haskell [10, 11]. The main point of this section
is to demonstrate that invariants can be implemented in a practi-
cal and scalable manner. At first sight one might have thought the
opposite, because the specification requires thateveryinvariant is
checked aftereveryatomic block, and that does not scale at all
as the number of invariants grows. The main technical insight is
that thevery same mechanismthat is already needed to support the
STM (atomic, retry, orElse etc) can be re-used to trigger the
checking of invariants: that is, an invariant INV is only run after a
transaction T if a variable read by INV is written by T.

Is this technique actually consistent with the semantics of Fig-
ure 4? Note that rule ARET1 requiresall invariants to complete
successfully, whereas our implementation may skip the evaluation
of an invariant that does not depend on a givenatomic block. The
worry is that the implementation may skip an invariant that does not
terminate, allowing anatomic block to commit when rule ARET1
would not apply.

This is not a problem. In outline, suppose that an invariantI1
would loop after an atomic blockA1. If the set ofTVars read by
I1 intersects the set updated byA1 then our implementation will
executeI1 and the program will loop. Conversely, if the sets are
disjoint thenI1’s execution will not have affected by the atomic
block and the looping would have occurred earlier (either after a
block that did affectI1’s read set, or at the pointI1 was proposed).

In Section 5.1 we provide an overview of the original STM
interface that we build on. We then discuss three steps in the
implementation ofcheck. The first step (Section 5.2) is how to
identify the invariants that need to be checked at the end of an
atomic block. The second (Section 5.3) is how to perform those
checks. The third (Section 5.4) is how we extendSTMCommit to
ensure atomicity between the user’s transaction and the checking
of the invariants.

5.1 Original STM interface

The underlying STM is based on optimistic concurrency control:
until it attempts to commit, a transaction builds up a private log
recording theTVars that it has read from, the values that it has seen
in theTVars, and the values that it proposes storing in them.

The commit operation itself is disjoint-access parallel [14]
(meaning that transactions accessing non-overlapping sets ofTVars
can commit in parallel) and read-parallel [7] (meaning that a set
of transactions that have read from, but not updated, aTVar can
commit in parallel). The commit operation is built over per-TVar
locks implemented as part of the Haskell runtime system. Locks are
only held during commit operations. We considered using a non-
blocking STM derived from Herlihyet al.’s design [12], Fraser’s
design [6] or Maratheet al.’s hybrid design [19]: the indirection
provided byTVars provides a natural counterpart to the object
handles that these STMs use. We chose the lock-based design for
two reasons: (i) the implementation is simpler, and (ii ) the Haskell
runtime schedules Haskell threads between a pool of OS threads
tuned to the number of available CPUs; this removes some of the
importance of a non-blocking progress guarantee.

Within the multi-processor Haskell runtime system, the STM
implementation provides an interface for managing transactions
and performing reads and writes toTVars. The interface is shown in
Figure 5. As usual, gray lines indicate existing parts of the interface
and black lines indicate changes and additions2.

2 For clarity we omit the further operations support blocking and unblocking
Haskell threads that executeretry statements; these are unchanged and the
details are orthogonal to this paper.

// Basic transaction execution
TLog *STMStart()
TVar *STMNewTVar(void *v)
void *STMReadTVar(TLog *tlog, TVar *t)
void STMWriteTVar(TLog *tlog, TVar *t, void *v)

// Transaction commit operations
boolean STMIsValid(TLog *tlog)
boolean STMCommit(TLog *tlog)

// Nested-transaction operations
TLog *STMStartNested(TLog *outer)
void STMMergeNested(TLog *inner)

// Invariant management
List<Closure*> *STMGetInvariantsToCheck(TLog *tlog)
void STMDefineInvariant(TLog *tlog,

Closure *c, TLog *inner)
void STMRecordCheckedInvariant(TLog *outer,

Closure *c, TLog *inner)

Figure 5. The STM runtime interface

STMStart starts a new top-level transaction, returning a ref-
erence to its transaction log.STMNewTVar, STMReadTVar and
STMWriteTVar provide the basic operations to create, read, and
update transactional variables.

STMIsValid returnsTrue if the specified transaction log is
consistent with memory (transactions are periodically validated so
that conflicts with concurrent transactions are guaranteed to be de-
tected [10]).STMCommit attempts to commit the current transac-
tion, returnTrue if it succeeds andFalse otherwise.

STMStartNested creates a new transaction nested within the
specifiedouter transaction.STMMergeNested attempts to commit
a nested transaction by merging its transaction log into its parent’s
(the parent becomes invalid if the child was). Transaction logs are
allocated in the garbage collected heap and remain private to a
transaction until passed toSTMCommit: a transaction is aborted by
simply discarding all references to its log.

5.2 Identifying invariants to check

The key implementation idea is to dynamically track dependencies
between invariants andTVars. We will illustrate this using the
example in Figure 6(a). The figure shows twoListNode structures
created by thenewListNode function from Section 3.2. Each node
comprises twoTVars: one for itsval field and one for itsnext
field. The newly allocated nodes are not linked together, so the
next fields both holdNothing. EachTVar contains two fields:
the first holds theTVar’s value and the second forms the head of a
list of dynamic dependencies on theTVar. Link structures such as
L1-1 represent the dependencies between invariants andTVars3.
For instance,TVar T1-Val has the value 10 and no dependents,
whereasT1-Next has the valueNothing and is depended on by
Invariant-1.

At runtime the invariants attached innewListNode are rep-
resented by structures holding the closure to be checked, and a
list of the TVars that the invariant depended on when last eval-
uated. For instance,Invariant-1 is evaluated by computing
validNode(Node-1) whose result initially depends onT1-Next
(because the current value of thatTVar is Nothing and so the
implementation ofvalidNode does not examine the otherTVars).

There are two sets of invariants to check at the end of an
atomic block. Firstly, we must check any new invariants that

3 As described in our earlier paper [10] the same list is used to represent
dependencies betweenTVars and blocked transactions.
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Node-1

T1-Val T1-Next

Nothing

Invariant-1

validNode(Node-1)

Dependencies:

T1-Next

L1-1

20

Node-2

T2-Val T2-Next

Nothing

Invariant-2

validNode(Node-2)

Dependencies:

T2-Next

L2-1

(a) Two newly allocatedListNodes with separate invariants.

10

Node-1

T1-Val T1-Next

Invariant-1

validNode(Node-1)

Dependencies:

T1-Val, T1-Next, 

T2-Val

L1-1

20

Node-2

T2-Val T2-Next

Nothing

Invariant-2

validNode(Node-2)

Dependencies:

T2-Next

L2-1L1-3L1-2

(b) Node-1 is updated to makeNode-2 its successor. This triggers
re-evaluation ofInvariant-1 which checks that the two nodes
are in order.Node-1’s invariant now depends on threeTVars.

Figure 6. Runtime structures used to associate invariants with data
that they depend on.

the block itself has proposed. Invariants are proposed by check-
ing the invariant in a nested transaction, and if it succeeds, call-
ing STMDefineInvariant which updates a new-invariant list
attached to the current transaction log to include the supplied
invariant and the dependencies established in its initial execu-
tion. Secondly, we must check any existing invariants that de-
pend onTVars that the block intends to update. The function
STMGetInvariantsToCheck in Figure 5 returns a single list con-
taining both sources of invariants for the current transaction. Con-
sider what happens when a transaction attempts to updateT1-Next
to link the two list nodes together – the update toT1-Next means
thatSTMGetInvariantsToCheck just returnsInvariant-1.

5.3 Checking invariants

Following the semantics ofcheck, each invariant in the list re-
turned bySTMGetInvariantsToCheck must be confirmed to exe-
cute without raising an exception. This is done by iterating through
the list and running each invariant in its own new transaction nested
within the user’s transaction.

If a check fails then the user’s transaction is aborted and the
exception indicating the failure is propagated4. If a check suc-
ceeds, then the invariant’s closure and the nested transaction’s log
is passed to the STM throughSTMRecordCheckedInvariant. As
described in the next section, the purpose of this call is to allow
STMCommit to update the invariant’s dependencies and to ensure
that the whole set of invariant checks appear to take place atomi-
cally with the user’s transaction.

4 Unlike the operational semantics, our runtime system does not need to
track the allocations that are made. This is becauseSTMNewTVar places
newTVars directly in the garbage collected heap.

10.Lock user-tlog tvars
for each user-tlog log entry:
if the entry is an update:
try to lock the tvar
if successful and current value matches entry:
continue

else:
unlock tvars and abort

if the entry is a read:
record tvar’s version number

15.Lock tvars related to invariants
for each invariant touched
for each tvar in current dependence set: // I1
try to lock the tvar
if unsuccessful:
unlock tvars and abort

for each tvar in proposed dependence set: // I2
try to lock the tvar
if successful and current value matches that

read when checking the invariant:
continue

else:
unlock tvars and abort

20.Check reads
for each user-tlog entry:
if the entry is a read then
re-read the tvar’s version number
if this matches the one we recorded:
continue

else:
unlock tvars and abort

25.Update invariant dependencies
for each invariant touched // I3
for each tvar in current dependence set:
unlink tvar from invariant

for each tvar in proposed dependence set:
link tvar to invariant

retain current dependence set as old set
install proposed dependence set as current set

30.Make updates
for each user-tlog entry:
if the entry is an update:
store new value to tvar, unlocking the tvar

35.Unlock tvars related to invariants
for each invariant touched
for each tvar in old dependence set: // I4
unlock the tvar if still locked

discard old dependence set
for each tvar in current dependence set: // I5
unlock the tvar if still locked

Figure 7. Committing a transaction with invariant checking.

5.4 Ensuring atomicity

We now consider the changes made toSTMCommit. The underly-
ing commit operation follows a pattern typical of many STM de-
signs [7]: it acquires temporary ownership of theTVars that have
been updated, it checks thatTVars that have been read have not
been modified by concurrent transactions, it applies the transac-
tion’s updates to the heap, and it finally releases ownership of the



TVars that it acquired. This is shown in the gray portions of Fig-
ure 7.

We extend this design with three additional steps shown in
black in the figure. The inputs to these are the values passed to
STMRecordCheckedInvariant, comprising the invariants’ clo-
sures and the new dependence information from the transaction
logs from the invariants’ execution.

Step 15 ensures thatSTMCommit locks theTVars on which the
invariant previously depended (loopI1), and theTVars it accessed
when checked (loopI2). Note that some of theseTVars may have
already been locked in step 10, and that loopI2 must check the
TVars’ current values to ensure that the check is still up-to-date.

While holding these locks, step 25 updates the dependence
information between theTVars and the invariants.

Finally, step 35 releases any locks that have not already been
released in the existing step 30.

There are a number of design choices here. In particular, we
chose to acquireall of theTVars in the dependence sets in loops
I1 and I2. This serves two purposes: (i) the locks acquired in
both loops protect the updates made in step 25, and (ii ) the locks
acquired in loopI1 also act as an implicit lock on the invariant. This
is necessary to serialize concurrent user transactions attempting
updates to distinctTVars on which the same invariant depends.
An alternative design would explicitly lock invariants and use non-
blocking lists to record the dependence between invariants and
TVars. A non-blockingSTMCommit algorithm could be developed
by using helping in the usual way: all of the information needed by
STMCommit is present at the start of the operation and can be made
available through a descriptor in shared memory.

5.5 Garbage collection

The runtime structures in Figure 6 allow the memory occupied by
invariants to be reclaimed automatically by the garbage collector:
since there is no global list of invariants, each invariant becomes
unreachable when all of theTVars it depends on become unreach-
able.

However, note that the links from invariants toTVars can extend
the lifetimes of individualTVars that are not ordinarily reachable
by the application. For instance, ifT1-Val is reachable by the
application then the dependency links throughInvariant-1 will
causeT1-Next andT2-Val (and everything reachable from them)
to be retained even if the list nodes themselves are no longer
reachable by the application.

6. Predicates over state pairs
Having seen this implementation, recall our problematic example
from Section 3.3: what if we want to express a property over pairs
of states (“XYZ never decreases”) rather than a property of a single
state (“XYZ is never zero”)?

One could express such properties succinctly by allowing the in-
variant to read the “old” value ofXYZ directly. Providing this ability
is rather simple, becausethe STM mechanism already retainsXYZ’s
old value in case the transaction is rolled back,and so we can read-
ily expose this value to the invariant check.

We can see two main approaches. The first is to provide a
function to explicitly read the previous value from aTVar:

readTVarOld :: TVar a -> STM a

However, while this is suitable for simple cases it requires separate
functions to be used for access to the pre-transactional state. An
alternative is to provide a mechanism for running an existing STM
computation against the pre-transactional state:

old :: STM a -> STM a

Usingold we can express our example non-decreasingTVar as:

newNonDecreasingTVar :: Int -> STM TVar Int
newNonDecreasingTVar val
= do { r <- newTVar val

; check (do { c_val <- readTVar r
; p_val <- old (readTVar r)
; assert (p_val <= c_val)
})

; return r;
}

As with invariant checks in general, there are design choices to be
made over what kinds of operations can be performed in anold
computation. In fact, the same problems from Section 3.5 occur
and, unsurprisingly, the two broad solutions from Section 3.6 and
Section 3.7 are possible – that is, theold computation can either
be run in its own transaction against the pre-transactional state, or
theold computation can be statically restricted to just performing
a series ofreadTVar operations. In the restricted setting we can
giveold the following type:

old :: STM ReadOnly a -> STM e a

As with check, this means thatold can only be supplied with a
ReadOnlySTM action formed fromreadTVar operations and pure
computation.

However, there are two additional problematic cases. Firstly, an
old computation may try to read from aTVar that was allocated
during the current transaction. This is straightforward to handle in
our implementation because theseallocation effectsare kept dis-
tinct from the transaction’s subsequent updates: theold computa-
tion will see the value with which theTVar was initialized.

The second problematic case is whetherold should be usable
outsidean invariant check. Doing so could harm modularity be-
cause it allows an STM-typed function to depend on the starting
state of theatomic block it occurs in, not just the state that it is
called from. This is ultimately a matter of taste since there is no
implementation reason to prevent such usage. However, if desired,
we could restrctold to just being used in invariant checks by refin-
ing its type to:

old :: STM ReadOnly a -> STM ReadOnly a

The use ofReadOnly on the right hand side means that the action
can only be performed in a context expecting aReadOnly STM
action – i.e. ultimately within an invariant check.

It is technically straightforward to addold to the semantics of
Figure 4 but we omit the details because it is syntactically verbose:
the state carried into and between STM transitions would have to
include the pre-transactional state (Θ) captured in the ARET rules.

7. Related work
This paper builds on two main areas of existing work: (i) incorpo-
rating invariants in programming languages, and (ii ) incorporating
invariants in databases. We discuss these in Sections 7.1 and 7.2
respectively.

7.1 Invariants in programming languages

Many languages and tools have provided ways to express invariants
over data. Gypsy and Alphard programs can include specifications
for use by formal methods [8, 26]. CLU [18], ESC/Modula3 [4],
ESC/Java [5] and JML [17] include specifications in stylized com-
ments for processing by tools.

Euclid, Eiffel and Spec# are notable for embedding specifica-
tions in the same language that is used for programming. An impor-
tant design decision in all of these languages is how to generalize



invariants to be able to refer to multiple objects in the presence of
aliasing. For instance, suppose that an invariant on a list states that
it only contains positive-valued integers. It is insufficient to check
this each time a node is added to the list because, in general, the
contents of a node may subsequently be updated via another refer-
ence to it.

Euclid, Eiffel, Spec# and our own work all take different ap-
proaches to this problem. As we introduced in Section 1, a contri-
bution of our approach is that we allow invariants to bedefined dy-
namically(rather than, say, associated with class definitions), and
that we allow them to depend onarbitrary mutable state(rather
then, say, only on the fields of the current object).

Euclid includes explicitassert statements, pre- and post-
conditions on routines, and invariants on modules5 [16]. An in-
variant must remain true during the module’s lifetime, except for
when routines exported from the module are executing. Although
these invariants could be written as boolean-typed Euclid expres-
sions, they were generally expected to be checked by verification
rather than checked at runtime [22] and so language mechanisms
to control updates to data that an invariant depends on are not re-
quired.

The Eiffel language supports class-based invariants which must
be satisfied by every instance of the class whenever the instance is
externally accessible; that is, immediately after creation, and before
and after any call to an exported routine of the class [13]. Invari-
ants are boolean-typed Eiffel expressions. Note that invariants are
explicitly checkedbeforecalls as well as after them: this will de-
tect changes that may have been made to objects that the invariant
depends on.

Spec# extends C# with several features to encourage robust
programming [1]. These include class invariants that are required
to hold on every instance of the class while it is not “exposed”. A
new constructexpose (o) { S } allows the invariant ofo to be
temporarily broken within the statementsS, but it must be restored
by the end of those statements; objects can only be updated while
exposed in this way. Furthermore, a hierarchical object-ownership
discipline is used to ensure that the invariant of one object depends
only on the state of that object and objects that it (transitively)
owns. This means that an object’s invariant cannot be broken by
uncontrolled updates to objects that it depends on. In concurrent
settings, the same hierarchy can be used to associate locks with
aggregate objects [15].

7.2 Invariants in databases

Stonebraker introduced the idea of defining integrity constraints
for a database independently from the basic requirements of its
schema [23]. He described simple constraints on individual fields
(“Employee salaries must be positive”), constraints on fields in
the same row of a table (“Everyone in the toy department must
make more than $8000”), and more complex constraints involving
joins across tables (“Employees must earn less than two times the
sales volume of their department if their department has a positive
sales”). These constraints were expressed as a special form of
query, and then enforced by combining them with database updates
in such a way that an update cannot change data in a way that
violates a constraint.

In the POSTQUEL query language, Stonebrakeret al. intro-
duced a more general system that supported integrity constraints
and computation triggered by database updates [24]. Their system
allowed existing commands to be tagged “always” or “refuse”. An
“always” command can be used to trigger updates when related
data is modified, e.g. “Always replace Mike’s salary with Bill’s”.

5 In Euclid,module is a type constructor; many instances of a module can
exist dynamically.

Conceptually they run continuously: when first executed, the com-
mand runs until it ceases to have an effect, whereupon it is re-run
whenever data that it has read or written to is updated. A “refuse”
command can be used to enforce integrity constraints (“refuse to
add an employee whose salary is more than $30k”) or for security
(“refuse to retrieve Mike’s salary when logged in as Bill”).

Cohen introduced “consistency rules” in the transactional lisp-
derived query language AP5 [2]. This design is the closest to our
own: all accepted transactions had to satisfy all of the constraints
that were defined. Transactions were defined by series of queries
grouped by anatomic [ ... ] construct; constraints could be
violated within the atomic block, but had to be restored by the end
of the block. Cohen’s design allowed a user to specify whether or
not a constraint had to be true at the point at which it was declared.

The SQL:92 query language supports various kinds of con-
straint definition [3]. In particular,assertionscan be general con-
straints involving an arbitrary collection of columns from an arbi-
trary collection of tables. For instance, “no supplier with status less
than 20 can supply any part in a quantity greater than 500”:

CREATE ASSERTION supply CHECK
( NOT EXISTS ( SELECT * FROM S

WHERE S.STATUS < 20
AND EXISTS
( SELECT * FROM SP

WHERE SP.SNO = S.SNO
AND SP.QTY > 500 ) ) )

Checking of constraints can be deferred within transactions and
performed upon commit: if any constraint fails then the transaction
fails and is rolled back.

8. Conclusion
The key ideas of this paper are to extendatomic blocks with a
mechanism to dynamically define an invariant over arbitrary mu-
table state and to re-use the STM machinery to track the depen-
dence between transactions and that state. The result is that the sys-
tem provides the appearance that every committedatomic block
preserves every invariant, while only re-evaluating invariants that a
given block actually appears to have changed.

Some concluding observations:

Erasure. A frequent point of discussion about this work is
whether invariants should be used to detect operations that are
attempted when the system is ‘not ready’ for them – either in-
dicating this explicitly by usingretry within an invariant (as in
Section 3.4), or by catching an exception raised by an invariant
failure.

A possible benefit of this approach is code brevity: perhaps an
application would include duplicate checks, one within the imple-
mentation of a transaction to check whether or not it is ready to
run, and the second within an invariant attached to the data struc-
tures that are being modified.

Conversely, relying on invariants to control execution in this
way makes it impossible to disable invariant-checking once a pro-
gram has been debugged, and harms modularity because there is no
external indication of whether or not a library operation requires in-
variant checking to be enabled.

This, we feel, provides a strong argument for keeping invari-
ants for bug detection clearly distinct from similar operations that
form part of the application’s logic. An interesting approach (sug-
gested by an anonymous reviewer) is to follow the database dis-
tinction betweenassertionsand triggers: triggers are considered
part of the application logic and may be used to maintain invariants
between related data structures. In STM Haskell one could imag-



ine a trigger-like construct that could also useretry to defer the
commit of a transaction when the system is not ready for it.

Expressiveness. We have shown how STM lets us extend invari-
ant checks to include executable predicates over thebeforeandaf-
ter memory states of the transaction, rather than just theafterstate.
This does raise the question of whether there are further kinds of
invariant that would be useful to programmers but which cannot be
expressed in our system. In principle there are some: nothing de-
pending on three or more successive states can be expressed solely
using invariant checks because any side effects incurred by check-
ing invariants are rolled back.

We have considered one further possible design that increases
the expressiveness of the properties that can be described solely by
checks. The idea is to allowcheck statements to add new invari-
ants to the system, even though we roll back ordinary updates that
checks make to the heap. For instance, a ‘non repeatingTVar’ that
cannot take the same value more than once could be implemented
by one invariant check that adds further checks each time a new
value is seen. This is more expressive, but perhaps ultimately im-
practicable in many cases. There is one subtlety: any new invariants
must themselves be checked against the post-transactional state as
well as the state whencheck was called. This ensures that the com-
plete set of invariants holds at the end of the transaction and that the
set is closed under the re-execution of any invariant.

We have held back from actually implementing this more com-
plicated design because, in practice, we think it is an open question
as to whether there areusefulproperties that cannot be captured
by our current design while still being suitable for expressing by
executable specifications.

Application to other languages. It is easy to see how these ideas
could be applied to a language other than STM Haskell. However,
there are two issues that we would like to highlight. Firstly, our use
of dynamically-defined invariants benefits from Haskell’s support
for closures: our examples in Section 3 showed how concise invari-
ants depended on variables from enclosing scopes. Secondly, STM
Haskell is notable in that the type system constrains where mutable
state can be accessed: it is guaranteed that theonlyupdates to trans-
actional variables occur withinatomic blocks. This lets us ensure
that invariants are re-evaluated when necessary. In other languages
it will be necessary to consider whether such a segregation is valu-
able.
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