Transactional memory

Tim Harris

with data invariants

Simon Peyton Jones

Microsoft Research, Cambridge
{tharris,simonpj}@microsoft.com

Abstract

This paper introduces a mechanism for asserting invariants that are

maintained by a program that uses atomic memory transactions.
The idea is simple: a programmer writeseck E whereE is an
expression that should be preserved by every atomic update for
the remainder of the program’s execution. We have extended STM
Haskell to dynamically evaluaigheck statements atomically with

the user’s updates: the result is that we can identify precisely which
update is the first one to break an invariant.

1. Introduction

Atomic blocks provide a promising simplification to the problem of
writing concurrent programs [9]. A code block is marketbmic
and the compiler and runtime system ensure that operations within
the block, including function calls, appear atomic. The programmer
no longer needs to worry about manual locking, low-level race con-
ditions or deadlocks. Atomic blocks are typically built usisft-
ware transactional memor{§TM) which allows a series of mem-
ory accesses made via the STM library to be performed atomically.
This approach is sometimes described as being “like A and I”
from ACID database transactions; that is, atomic blocks provide
atomicityandisolation, but do not deal explicitly witltonsistency
or durability. This paper attempts to include “C” as well, by show-
ing how to define dynamically-checked data invariants that must
hold when the system is in a consistent state. Specifically, we make
the following contributions:

e We propose a simple but powerful new operatieheck E,
whereE is an expression that must run without raising an ex-
ception after every transaction (Section 3). For example, given
apredicate sSorted to test whether the data in a mutable list is
sorted, an invariantheck (assert (isSorted 11)) would
cause an error to be issued if aayomic block attempts to
commit with the listL1 unsorted. Furthermore, we can pinpoint
exactly whichatomic block attempted to violate the invariant.

Using atomic blocks provides us with a key benefit over ex-
isting work on dynamically-checked invariants: the boundaries
of atomic blocks indicate precisely where invariants must hold.
They may, and often must, be brokeithin transactions, some-
thing that causes trouble in other systems (Section 7).

Furthermore, the programmer has fine control over the granu-

e One might worry that, since invariants can be dynamically
added but never deleted, the system will run slower and slower
as more invariants are added. In Section 5 we show how to take
advantage of thexistingSTM transaction logging mechanism
to ensure thati) invariants are only checked when a variable
read by the invariant is written by a transaction, aingivari-
ants are garbage-collected entirely when the data structures they
watch are dead. These properties are the key to scalability.

In Section 6 we show how the operations supported by our
invariants can be extended to express conditions relating pairs
of program states KYZ is never decreased”), rather than just
inspecting the current statex(fZ is never zero”).

The idea of combining data invariants with transactions is not new
— indeed, the POSTQUEL query language from 1986 included a
similar command that could be used to describe kinds of transaction
that could not be committed against a database [24]. Section 7
discusses related work in that field, along with other work on
incorporating invariants into programming languages.

We present our design in the context of STM Haskell [10] be-
cause this setting allows us to bring out the key issues in partic-
ularly crisp form. Everything we describe is fully implemented in
the Glasgow Haskell Compiler, GHC, and will shortly be publicly
available at the GHC home page. However, we believe that the
ideas of the paper could readily be applied in other languages, as
we discuss in Section 8.

2. Background: STM Haskell

Our prototype is based on STM Haskell [10], summarized in Fig-
ure 1. In this section we briefly review the language for the benefit
of readers not already familiar with it.

STM Haskell is itself built on Concurrent Haskell [20] which
extends Haskell 98, a pure, lazy, functional programming language.
It provides explicitly-forked threads, and abstractions for commu-
nicating between them. These constructs naturally involve side ef-
fects which are accommodated in the otherwise-pure language a
mechanism calledgnonads[25]. The key idea is this: a value of
type I0 ais an “l/O action” that, when performed may do some
input/output before yielding a value of type For example, the
functions putChar and getChar have types:

Char -> I0 ()
I0 Char

putChar ::
getChar ::

larity of invariant checking. She may specify coarse-grain in- That is, putChar takes @har and delivers an 1/O action that,
variants on large, global data structures, or fine-grain invariants when performed, prints the string on the standard output; while
on individual parts of those structures (e.g. Section 3.2). getChar is an action that, when performed, reads a character from
the console and delivers it as the result of the action. A complete
precise (but still compact) operational semanticsiéck in program must define an 1/O action calledin; executing the
Section 4, by extending our earlier semantics for STM Haskell. Program means performing that action.

This semantics gives a precise answer to questions such as:

what happens if the invariant updates the heap, loops, or blocks?

A distinctive feature of our work is that we give a complete,

For example: -- The STM monad itself
data STM a
main :: I0 Q) instance Monad STM

main = putChar ’x’ .
-- Exceptions

I/0 actions can be glued together by a monadic bind combinator. ~throw :: Exception -> STM a
This is normally used through some syntactic sugar, allowing a C- catch :: STM a -> (Exception->STM a) -> STM a
like syntax. Here, for example, is a complete program that reads a

L -- Running STM tati
character and then prints it twice: unning comprrarions

atomic :: STM a -> I0 a
retry :: STM a

main = do { ¢ <- getChar; putChar c; putChar c } orFlse :: STM a —> STM a —> STM a

Threads in STM Haskell communicate by reading and writing T tional iabl
transactional variables, @iars. The operations ofiVars are as datar,?l\;zicamna variables

follows: newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a

data TVar a writeTVar :: TVar a -> a -> STM ()

newTVar :: a -> STM (TVar a)
readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()

Figure 1. The language level interface to transactional memory in
STM Haskell

All these operations make use of tB8M monad, which supports

a carefully-designed set of transactional operations, including allo-
cating, reading and writing transactional variables. Te&edTVar
andwriteTVar operations both return STM actions, but Haskell
allows us to use the samd® {...2} syntax to compose STM ac-
tions as we did for I/O actions. These STM actions remain tentative
during their execution: in order to expose an STM action to the rest
of the system, it can be passed to a functenmic, with type:

retry :: STM a

The semantics afetry is to abort the current atomic transaction,
and re-run it after one of the transactional variables it read from
has been updated. For example, here is a procedkex® that
decrements &Var, but blocks if the variable is already zero:

dec :: TVar Int -> STM ()

atomic :: STM a -> 10 a dec v = do x <- readTVar v

It takes a memory transaction, of typ&M a, and delivers an 1/O if x ==

action that, when performed, runs the transaction atomically with then retry

respect to all other memory transactions. One might say: else writeTVar v (x-1)
main = do { ...; atomic (writeTVar r 3); ... } decT :: TVar Int -> I0 ()

. . decT v = atomic (dec v)
Operationallyatomic takes the tentative updates and actually ap-

plies them to th&@Vars involved, thereby making these effects vis- Finally, the infix orElse function allows two transactions to be
ible to other transactions. Theonic function and all of the STM- tried in sequence(s1 ‘orElse‘ s2) first attemptssi; if that
typed operations are built over the software transactional mem- calls retry, thens2 is tried instead; if that retries as well, then
ory. This deals with maintaining a per-thread transaction log that the entire call toorElse retries. For example, this procedure will
records the tentative accesses madeviars. Whenatomic is in- decrementvl unlessvi is already zero, in which case it will
voked the STM checks that the logged accesses are valid - i.e. nodecrement2 instead. If both are zero, the thread will block:
concurrent transaction has committed conflicting updates. If the log
is valid then the STM commits it atomically to the heap. Otherwise ~ decPair :: TVar Int -> TVar Int -> I0 O
the memory transaction is re-executed with a fresh log. decPair v1 v2 = atomic (dec vl ‘orElse‘ dec v2)

Splitting the world into STM actions and I/O actions provides
two valuable guarantees) only STM actions and pure computa-
tion can be performed inside a memory transaction; in particular
1/0 actions cannot;ii) no STM actions can be performed outside a
transaction, so the programmer cannot accidentally read or write a
TVar without the protection o&tomic. Of course, one can always
write atomic (readTVar v) to read alVar in a trivial transac-
tion, but the call teatomic cannot be omitted.

As an example, this procedure atomically incremertgza:

In addition, the STM code needs no modifications at all to be ro-
bust to exceptions. The semanticsasbmic is that if the transac-
tion fails with an exception, then no globally visible state change
whatsoever is made.

Note that since our original paper on STM Haskell [10], we
realized that the typeSTM a’ might, more clearly, be called
‘Atomic a' and that the functionatomic could be renamed
‘perform’. The new names would make it clearer that operations
such asreadTVar andwriteTVar are individual atomic actions

incT :: TVar Int -> I0 Q) that are combined monadically to form larger compound atomic
incT v = atomic (do x <- readTVar v actions, and also thaterform is used only when actually mak-
writeTVar v (x+1)) ing such a compound action visible to concurrent threads (rather
)) than being necessary at every level when calling one transactional
The implementation guarantees that the body of a cadlttaic function from another). For consistency we are sticking with the

runs atomically with respect to every other thread; for example, published names, but mention the alternatives in case they help
there is no possibility that another thread can appear to vead readers unfamiliar with the language.

between theeadTVar andwriteTVar of incT

Although less relevant to our current paper, STM Haskell also L
provides facilities foromposable blockingrhe first construct is a 3. Themain idea
retry operation: The main idea of the paper is to introduce a single new primitive

check :: STM a -> STM () data LimitedTVarM

= LTV { val :: TVar Int, limit :: TVar Int }

Informally, check takes an STM computation that tests an invariant))
and, in addition, adds it to a global set of such invariants. At the end Now the invariant-check would read both thel and limit

of everyuser transactiorgveryinvariant in the global set must be ~ TVars, and compare them, failing if they do not stand in the de-
satisfied if the user transaction is to be allowed to commit. If any sired relationship.

invariant fails, indicated by throwing an exception, then the user 32 Example2: asorted list
transaction is rolled back and the exception propagates.

Since invariant checks are run repeatedly, and in an unspecifiedOur second example illustrates the trade-offs involved in express-
order, it is clearly desirable that they do not perform side effects or ing the same invariant in different ways. Consider the following
input/output. Our design partly offers this guarantee by construc- definition of a singly linked list of integers:
tion: since the argument icheck is anSTM computation, the type
system guarantees that it performs no input/output. Of course, as L .
an STM computation, it can caliriteTVar to attempt to update = ListNode { val :: TVar Int, ,
transactional memory — or, indeed, it can attempt any of the other next :: TVar (Maybe ListNode) }
actions in thesTM monad. To avoid this kind of side-effect we use a EachListNode holds aTvar Int which we will call the node’s
fresh nested transaction to check each invardauat then roll-back value and a reference to Maybe ListNode which we will call
this transaction whether or not the invariant succeed give a thenext nodeln Haskell, the typelaybe ListNode is essentially
fully-precise specification in Section 4, but first we discuss our de- g nullable reference to BistNode — its value is eitheNothing

sign informally in the rest of this section. ~ (null), or Just 11 (a reference tdl1). A Nothing next node
In this section we introduce a number of examples showing indicates the end of the list.

how invariants can be defined. In many of our examples we use |f a list is to be held in sorted order then, informally, an in-
simple data structures built fromvars holding integer values. In variant for all nodes could be “the next node is either null, or the

Haskell, as in other languages, these examples could be writtennext node’s value is larger than this node’s value”. This could be
more generally to act across multiple types; we stick to integers expressed as:

data ListNode

for simplicity rather than due to limitations in the design or the
implementation. For simplicity we also stick with straightforward
imperative data structures.

3.1 Example 1: range-limited TVars

Consider the following example in which the typémitedTVar
holds a range-limited integer value. The functiwLimitedTVar
constructs &imitedTVar with a specified limitincLimitedTVar
attempts to increment the value:

type LimitedTVar = TVar Int

newLimitedTVar :: Int -> STM LimitedTVar
newLimitedTVar lim =
do { tv <- newTVar O
; check (do { val <- readTVar tv
; assert (val <= 1lim) })
; return tv }

incLimitedTVar :: Int -> LimitedTVar -> STM ()
incLimitedTVar delta tv
= do { val <- readTVar tv
; writeTVar tv (val+delta) }

A key point is that the invariant is associated with tireation of
theLimitedTVar, and not with its (perhaps diverse$es A pro-
grammer therefore can be confident thaéryLimitedTVar will

validNode :: ListNode -> STM ()
-- Throws exception for invalid node
validNode ListNode { val = v_val, next = v_next }
= do { next_node <- readTVar v_next
; case next_node of --C1

Nothing -> return ()
ListNode { val = v_next_val } ->
do { this_val <- readTVar v_val
; next_val <- readTVar v_next_val
; assert (this_val <= next_val) }

}

Case statemert1 examines the contents of next: if it holds
Nothing, then the invariant holds and we simply return; otherwise,
the value fields of the two nodes are read and compared.

As with the first example, we could integrate this invariant with
a function that constructs list nodes:

newListNode :: Int -> STM ListNode
newListNode val
= do { v_val <- newTVar val
; v_next <- newTVar Nothing
; let result = ListNode { val = v_val,
next = v_next }
; check (validNode result)

; return result }

alwaysobey its invariant, rather than wondering whether perhaps This approach is effective #ll ListNodes should occur in sorted
one errant use has fallen though the net. The second key point isliSts. But perhaps some lists are sorted, and some are not — what

that the invariant is checked only at thedof (every) transaction;
the invariant may temporarily be brokelring a transaction. For

example, a particular transaction may increase the variable beyond
its limit provided that the same transaction decreases it again before
the transaction ends. It is not useful, for example, to test the invari-

ant every time the variable is written. Finally, it is worth noting that

the invariant is a first-class closure; for instance it has a free vari-

ablelim that is not recorded in thieimitedTVar data structure at
all.

An invariant may of course describeralationship between
mutable variables. For example, a limitgthr with a mutable limit
might be described thus:

then? In such cases the invariant could perhaps be expressed better
as a property of a larger data structures:

validList :: ListNode -> STM ()
validList 1n@(ListNode { next = v_next })
= do { r <- validNode 1n —— Check first node
; next_val <- readTVar v_next
; case next_val of
Nothing -> return ()
Just 1n’ -> validList 1n’ }

The code instantiating the list can now assert thatidList is
always true, rather than expressing a per-node invariant.

The choice between these two approaches is largely a matter of

Having said that, as we return to in Section 6, we can extend

taste and engineering. This example lets us raise two more issue®ur system to support invariants suchna@gNonDecreasingTVar

beyond those already highlighted) {using per-node invariants
enables more precise error reports (“node XYZ is out of order”,
versus “something in list ABC is out of order”), and)(in our
implementation, per-node invariants may perform better: if the list
is updated then only invariants in the vicinity of the update are re-
checked, rather than the whole list being scanned.

3.3 Example3: invariantsover state pairs

Our third example illustrates a kind of invariants whicdnnotbe
expressed in STM Haskell. Suppose that we wish to createna
decreasindgr'Var, holding an integer value that is never allowed to

be decreased by a transaction. We might attempt such a definition

as follows:

newNonDecreasingTVar :: Int -> STM (TVar Int)
newNonDecreasingTVar val
= do { r <- newTVar val
; P < newIVar val
; check (do { c_val <- readTVar r
; p_val <- readTVar p
; assert (p_val <= c_val)
; writeTVar p c_val -- Wil
B

; return r;

}

The intention here is that refers to theTvar holding the non-
decreasing value, thatrefers tor’s previous value, and that the

check ensures that the previous value is less than the current value.

Unfortunately this will not work — the write att that is responsible
for recording the previous value will be rolled back each time the
invariant is checked.

This example might make it appear tempting to allow some

without allowing problems of the kind raised lbymebomb.

3.4 Example4: invariantsasguards

Our final example illustrates a facet of our design on which we
would particularly welcome feedback: what happens when an in-
variant blocks? Recall that in STM Haskell, blocking is expressed
by aretry statement being executed insideaomic block. Se-
mantically, this aborts the block and re-executes it from the start,
although the implementation delays this re-execution until one of
the Tvars read by the block has been updated (without such an
update the block would simplyetry again, spinning uselessly).

Suppose that we define a variant of thieitedTVar type from
Section 3.1 which blocks instead of failing (aside from naming,
differences are highlighted in black):

; if (val <= lim)
then return (O
else retry }

The followingatomic blocks create @&var limited to 10, and then
attempt to exceed that limit by incrementing it from 0 to 20:

xs <- atomic { newBlockingTVar 10 } -- A1l
- intervening code elided

atomic { incBlockingTVar 20 xs } -- A2

What should this mean? One option is that it should simply be
forbidden. An alternative option is that executimgtry when
checking an invariant is exactly the same as executéngy within

limited kind of updates to be made within invariant checks; there ne plock being checkedi2 will block until the increment can

are many ways that the state modified by these updates could bescceed without breaching the limit (perhaps because of work done
kept distinct from the state visible to the application through its by a concurrent thread forked elsewhere).

ownTVars.

Leaving aside the question of exactipw updates are carried
from one invariant check to another, retainiaigy kind of update
is problematic semantically. This is becausening an invariant
check is no longer an idempotent operatiéor instance, consider
the following example in which the invariant check maintains a
counter, failing when the counter reaches 10:

timebomb :: STM ()

timebomb

= do { ¢ <- newTVar O

; check (do { c_val <- readTVar c
; writeTVar c¢ (c_val + 1)
; assert (c_val < 10)
B
}

Our current semantics and implementation follow the latter
alternative. As we discuss in the next section it is debatable whether
this is the best choice here; however, it is reminiscent of how the
SCOOP concurrency extensions for Eiffel interpret method pre-
conditions as blocking guard conditions [21].

3.5 Design choices

The preceding examples illustrated a number of decisions taken
in the design okheck. The first four of these are genuine design
decisions on which we have selected one particular option based on
the intuition gained from our examples:

[D1] The granularity at which invariants are checked coincides
with transaction boundariehis follows many designs for database
invariants and, of course, it is necessary to allow such as “all entries
in list L1 must also be in list L2” to be brokeinsidetransactions

What should this mean? Must the check be performed on every that must update one list and then the other.

transaction (failing when exactly 10 have been committed)? May
the invariant be checked multiple times on every transaction —
after all, the invariant updates ®ar (c) that it itself depends
on. Conversely, is it permitted to elide checking this invariant at
all — after all, it is not associated with any data reachable by the
application?

If such a definition is to be allowed then the only reasonable
approach semantically would seem to be to execute it until it either
fails or reaches a fixed point. This is not an attractive proposition
in terms of performance and see do not provide any support for
maintaining updates from one invariant check to another

[D2] An invariant must succeed both when it is passedheck,

and also when the transaction proposing it is commit@dr de-

sign follows that of many of the database systems in Section 7.2.
Although the decision that invariants must succeed when passed to
check is debatable, it is essential that any new invariants succeed
at the end of the transaction proposing them. This allows future

invariant failures to be correctly identify the offending transaction.

[D3] The check function is anSTM action, and so it can be com-
posed with otheBTM actions in an atomic blockAn early design
had check as anI0 action, so that it could not be used within

atomic blocks. Our examples illustrate the benefit of havingck
be anSTM action: it can be encapsulated in STM-typed constructor
functions.

[D4] The closure passed toheck is itself anSTM action: it pro-
ceeds by reading directly from ti&ars the the invariant depends
on. This allows an invariant to re-use existing STM functions that
may form part of the program logic.

However, beyond these basic decisions, there are a number of cases

where clear guidance does not follow from simple examples. To a
large extent these are cases that a ‘well behaved’ invariant should
not exercise: what if it updat@¥ars rather than just reading them,
what if it loops, or what if it calleretry, orElse, or evencheck?

We have explored two points in this design space. The first,
in Section 3.6, is the one followed by our implementation and by
Section 4's operational semantics. In this designdeeotrestrict
the kinds of STM action that can be composed to form an invariant;
instead we use nested transactions and roll-back to limit the kinds
of side effect that can leak out from a badly behaved invariant. The
second design, in Section 3.7 shows how we can use the Haskell
type system to statically restrict invariants to only reading from
TVars and performing pure computation.

3.6 Unrestricted invariants

Our first approach is to perform each invariant check imeated
transaction and to roll back this nested transaction whether or
not the invariant succeeds. This means that the invariant can us

structures.
This approach leads to the following behavior for ‘badly be-
haved’ invariants:

[D5] If an invariant does not terminate at the end of a transaction
then the transaction does not terminate.

[D6] An invariant may updat&Vars within its own execution.

[D7] If an invariant evaluates taetry then the user transaction is
aborted and re-executed (potentially after blocking until it is worth
re-executing it).

[D8] If an invariant executes acheck statement, then the new
invariant is checked at that point, but is not retained by the system.

e
TVars internally without being able to affect the application’s data (

-- Phantom types for different kinds of STM action
data ReadOnly
data Full

—-- The STM monad distinguishing between kinds
-- of STM action

data STM e a

instance Monad (STM e)

-- Exceptions
throw :: Exception -> STM e a
catch :: STM e a -> (Exception->STM e a) -> STM e a

-- Running STM computations

atomic :: STM Full a -> I0 a
retry : STM Full a
orElse :: STM Full a -> STM Full a -> STM Full a

—- Transactional variables
data TVar a

newTVar :: a -> STM Full (TVar a)
readTVar : TVar a -> STM e a
writeTVar :: TVar a -> a -> STM Full ()
-- Invariants

check :: STM ReadOnly a -> STM Full ()

Figure 2. The language level interface to transactional memory in
STM Haskell, distinguishing between actions that can perform any
STM action ("STM Full”) and those that can only read froffiars
“STM ReadOnly”").

ReadOnly andFull are so-callegpphantom typeghey have no data
contructors and no values.

The functionswriteTVar, retry, and orElse in Figure 2
all returnFull computations. In contrasteadTVar is polymor-
phic in e, and hence can be used in bdthadOnly and Full
contexts. The operationsturn, (>>=), catch, andthrow are
all similarly polymorphic, and hence are usable in both con-
texts. The key funcion in Figure 2 isheck: it takes aReadOnly
computation and returns Bull computation. So, for example,
check (readTVar x) is well-typed, whilecheck (retry) or
check (writeTVar x v) is not.

This design has its attractions: read-only invariants may be more
amenable to static verification, and the implementation does not

Some of these design choices are open for debate. Two particulateeq to track and roll-back their side effects. Conversely, restric-

examples are the use sétry within invariants and the use of or-
dinary (i.e. catchable) exceptions to indicate failures. Our example
from Section 3.4 illustrates how an invariant incorporatirgry

can remove the need to repeat a guard condition across multiple
atomic blocks.

We are somewhat uneasy with this kind of use. This is because
it requiresinvariants to be checked at run-time: this is at odds with
the intuition that testing could be disabled once a program appears
to run without violations.

3.7 Restricted invariants

An alternative to theunrestricted invariantof Section 3.6 is to
limitinvariants to only reading frorivars. Doing so means that in-
variants cannot have side effectsDrars, or callretry, orElse,
or check.

This kind of restriction can be elegantly integrated with the in-
terface to transactional memory in STM Haskell. Figure 2 shows
how. TheSTM type constructor gets an extra type argumenthat

tions limit the kinds of existing function that can be used in in-
variants — any algorithms that internally uBears are prohibited,
even if they do not clash with those used by the application. Fur-
thermore, since executable invariants can still loop endlessly, it is
not the case thatheck statements can be safely removed from an
application once it runs without invariant failures.

4, Operational semantics

So far our discussion in Section 3 has been informal. It is hard to
be sure that such descriptions cover all the combinations of these
functions that might ariseso in this section we extend the formal,
operational semantics of STM Haskell [10] to include the:ck
primitive. We follow the design founrestricted invariantdrom
Section 3.6.

Figure 3 gives the syntax of a fragment of STM Haskell. Terms
and values are entirely conventional, except that we treat the ap-
plication of monadic combinators, such&asturn andcatch, as

characterises the effets in the computation. Specifically, a compu-1 s an example, even though we had completed a prototype implementa-
tation of typeSTM ReadOnly t performs only read effects, while tion, the case of executing one invariant that proposes a second invariant is
one of typeSTM Full t has arbitrary STM effects. The types something we did not anticipate until writing these semantics.

entirely standard, and we omit it here. Rule BIND implements
sequential composition in the monad. The rules THROW, CATCH1
and CATCH2 implement exceptions in the standard way. All of
these rules are, as we shall see, used both for 10 transitions and
STM transitions, which is why we keep them in a separate group.

Ignoring the additions foeheck, rules ARET and ATHROW
define the semantics of atomic blocks that return a value ARET,
or that throw an exception ATHROW. In each case the main idea is
that theonlyway of performing =" STM transitions is to package
up the transitions for an entire atomic block and encapsulate them
in a single “~" 10 transition; this is how atomicity is reflected in
the rules.

An STM transitiorhas the form\/; ©, A, Q = N; 0, A’ Q.

It defines a transition within a single thread from stateto V.
Once againg is the state of the heap afitiholds the invariants
that we return to in Section 4.2.

The role of delta {) is more subtle: it records thalocation
effectsof the transition. For instance, rules READ, WRITE and
NEW are concerned with primitive accessesTitars and their
main effect is to return a value from the hea@p({) in READ),
or to update the hea(r — M] in WRITE). However, notice
that as well as adding a new mappingdpNEW also adds it ta\.

The reason for tracking allocation effects is the design choice
that ATHROWrolls backthe heap updates that a transaction makes
when it terminates by an exception, but that it continues propagat-
Figure3. The syntax of values and terms. Definitions in gray come ing the exception that caused the roll back. This exception may
directly from those used with STM Haskell. Definitions in black contain references tvars that were allocated within the transac-
indicate modifications. tion and so we must retain these allocations if we are not to intro-
duce dangling pointersA collects up these allocation effects and
the ATHROW rule constructs a new heap state by combining them
with the previous heap stat® (U A’).

The STM transition AADMIN incorporates pure computation,

check M

Invariants Q = {M}

values. Thelo-notation we have been using so far is syntactic sugar
for uses ofreturn and>>=:

do {z<-e; QY = e >>= \z—> do {Q} monadic bind and exception handling within transactions.
do{e; QY = e >>=_-> do {Q} Finally, the three rules OR1, OR2 and ORS3 definedhBlse
do{e} = e combinator. OR1 says thall; ’orElse’ M, behaves likeM,

Figure 4 gives a small-step operational semantics for the lan- if that returns a value. OR2 expresses says that/jf raises an
guage. Definitions typeset in gray are identical to the original def- €xception then that forms the result of #eE1se operation. OR3
initions for STM Haskell. Definitions typeset in black show modi- Says that if\; completes by callingetry then we tryM2 instead.

fications or additions needed feheck. We will first of all outline The alert reader may be wondering why there is no rule
the structure of the definitions in this figure (Section 4.1) and then ARETRY to go along with ARET and ATHROW, to account for
show how they are extended to suppeatéck (Section 4.2). the fact that an STM computation may .evaluateémry. There is
no rule for this caseWhat that means is that an atomic block in
4.1 Original semantics which all orElse choices end irretry cannot make a series of

STM transitions that will allow the ARET or ATHROW rules to be

We begin by describing the operational semantics of STM Haskell applied. To make progress, another thread must be chosen.

without invariants. The material of this section is largely taken from
[10], but it is essential to understanding the changes for invariants.
The semantics is given in Figure 4, which groups the existing . . .
transitions into three sets: 4.2 Semanticsof invariants
The 10 transitions are steps taken by threads. A transition e are now ready to extend the semantics to incorparaéek.
P:0,Q % Q;0,Q indicates a single step from a system with There are three changes:
threads in staté transitions to one with threads in stafe Theta Firstly, the state associated with 1O transitions and STM tran-
(©) is the state of the heap before the transitiénjs the state of sitions now includes a set of invariarfis As Figure 4 shows, the
the heap after the transition.is the 10 action (if any) performed majority of rules treat this set in the same way as the t@ap
by the step. OmegdY) is the current set of invariants; we return to Secondly, the STM transitions now include two rulesdheck.
its role in section 4.2. The first, CHECK1 is taken when the invariant holds at the point
The first two rules deal with input and output. If the active it is proposed. Above the line, the proposed invarigdmvaluates
term is aputChar or getChar the appropriate labelled transition to areturn term in the current heap state. Below the line, the
takes place, and the operation is replaced bgtairn carrying the proposed invariant is added$band the side effects of evaluating it
result. Rule FORK allows a new thread to be created, by adding are discarded. Note that the heap rem&nand allocation effects

a new term M to the thread soup, allocating a fresh namag its A —even ifM’s execution allocates neWars there is no way that
ThreadId. they can leak out because the res\ilis discarded.
Rule ADMIN concernsadministrative transitionswhich are The second new STM transition, CHECK?2, is taken when the

given in the second section of Figure 4. Rule EVAL allows a pure invariant does not hold at the point it is proposed. Above the line,
function M that is not a value to be evaluated by an auxiliary M evaluates to ahrow term. Below the line, the exception is
function, V[M], which gives the value of\/. This function is re-raised, rolling back any updates made by the fadleelck but

Q2 ,Q
2 ,Q
,Q ,Q ,Q ,Q
,Q Q' VM; € (Mi; o' {}{} = return N; @;,A;,Q;) ;
M; ©,{},Q = return N; ', A", Q" 3IM; € @' : (M;; ©,{},Q = throw N;; O}, A}, Q) ARET»
Platomic M]; ©,Q — P[throw N;]; (O U A’ UA)),Q ()
Q2 QY
,Q ,Q
2 ,Q
, €2 ,Q
M; ©,{},Q = return N; ', A, Q)
(CHECK1)
E[check M]; ©,A,Q = E[return QJ; 6,A, (QU{M})
M; ©,{},Q = throw N; ©',A",Q
- (CHECK?2)
E[check M]; ©,A,Q = [E[throw NJ; (GUA'),(AUA),Q
,Q ,Q ,Q ,Q
2 51 ,Q NoX
Q2 Y Y’ Y’

Figure 4. Operational semantics of STM Haskell. Definitions in gray form the original semantics. Definitions in black show modifications.

keeping any allocation effects\() that may be leaked by the the updates that the invariant may make to the heap and to the set

exception. of invariants. This mirrors our informal notion that invariants are
Finally, in the 10 transitions, there are substantial changes to checked in nested transactions that are then rolled back.

ARET1 (for successful atomic blocks) and a new rule ARET2 (for The new rule ARET2 applies when any of the invariants eval-

atomic blocks that break an invariant). Aside from the updates to uates to a&hrow term. As with ATHROW, the exception is propa-

2, ARET1 adds an additional premise to the original rule: all of gated, retaining allocation effects but rolling back the remainder of

the invariants in place at the end of the atomic block must evaluate the heap. Note that by using allocation effetfsand A’ we retain

toreturn terms. Note that we consider all; in Q' — this will pick any allocations in the originatomic block and any allocations

up any new invariants added during the atomic block. Also, when made during the invariant’s re-execution.

evaluating each invariant, we discard the actual value returned and

5. Implementation

We have implementedheck as an extension to our existing pro-
totype of STM Haskell [10, 11]. The main point of this section
is to demonstrate that invariants can be implemented in a practi-
cal and scalable manner. At first sight one might have thought the
opposite, because the specification requires ekatyinvariant is
checked afteeveryatomic block, and that does not scale at all
as the number of invariants grows. The main technical insight is
that thevery same mechanisthat is already needed to support the
STM (atomic, retry, orElse etc) can be re-used to trigger the
checking of invariants: that is, an invariant INV is only run after a
transaction T if a variable read by INV is written by T.

Is this technique actually consistent with the semantics of Fig-
ure 4? Note that rule ARET1 requir@dl invariants to complete
successfully, whereas our implementation may skip the evaluation

// Invariant management
List<Closure*> *STMGetInvariantsToCheck(TLog *tlog)
void STMDefineInvariant(TLog *tlog,

of an invariant that does not depend on a gieeamic block. The Closure *c, TLog *inmer)
worry is that the implementation may skip an invariant that does not void STMRecordCheckedInvariant(TLog *outer,
terminate, allowing amtomic block to commit when rule ARET1 Closure *c, TLog *inner)
would not apply.

This is not a problem. In outline, suppose that an invariant Figure5. The STM runtime interface

would loop after an atomic block1. If the set ofTvars read by

I1 intersects the set updated by then our implementation will

executeI1l and the program will loop. Conversely, if the sets are STMStart starts a new top-level transaction, returning a ref-
disjoint thenI1's execution will not have affected by the atomic erence to its transaction logTMNewTVar, STMReadTVar and
block and the looping would have occurred earlier (either after a STMWriteTVar provide the basic operations to create, read, and
block that did affec1’s read set, or at the poidtl was proposed). update transactional variables.

In Section 5.1 we provide an overview of the original STM STMIsValid returnsTrue if the specified transaction log is
interface that we build on. We then discuss three steps in the consistent with memory (transactions are periodically validated so
implementation ofcheck. The first step (Section 5.2) is how to that conflicts with concurrent transactions are guaranteed to be de-
identify the invariants that need to be checked at the end of an tected [10]).STMCommit attempts to commit the current transac-
atomic block. The second (Section 5.3) is how to perform those tion, returnTrue if it succeeds an&alse otherwise.

checks. The third (Section 5.4) is how we exte8TICommit to STMStartNested creates a new transaction nested within the

ensure atomicity between the user’s transaction and the checkingspecifiedouter transactionSTMMergeNested attempts to commit

of the invariants. a nested transaction by merging its transaction log into its parent’s
(the parent becomes invalid if the child was). Transaction logs are

5.1 Original STM interface allocated in the garbage collected heap and remain private to a

transaction until passed BTMCommit: a transaction is aborted by

The underlying STM is based on optimistic concurrency control: simply discarding all references to its log.

until it attempts to commit, a transaction builds up a private log
recording thefVars that it has read from, the values that it has seen 52 |dentifying invariantsto check
in theTvars, and the values that it proposes storing in them.

The commit operation itself is disjoint-access parallel [14]
(meaning that transactions accessing non-overlapping setae$
can commit in parallel) and read-parallel [7] (meaning that a se
of transactions that have read from, but not updatetiye can
commit in parallel). The commit operation is built over [ftar
locks implemented as part of the Haskell runtime system. Locks are
only held during commit operations. We considered using a non-
blocking STM derived from Herlihyet al’s design [12], Fraser’s

The key implementation idea is to dynamically track dependencies

between invariants an@ivars. We will illustrate this using the
t example in Figure 6(a). The figure shows tistNode structures
created by theewListNode function from Section 3.2. Each node
comprises twdr'Vars: one for itsval field and one for itsmext
field. The newly allocated nodes are not linked together, so the
next fields both holdNothing. EachTVar contains two fields:
the first holds th&Vvar’s value and the second forms the head of a
design [6] or Maratheet al’s hybrid design [19]: the indirection list of dynamic dependencies on téar. Link _struc'tures such as
provided byTvars provides a natural counterpart to the object L1-1 represent the dependencies between invariantsTiars’.
handles that these STMs use. We chose the lock-based design fof O InstanceTvar T1-Val has the value 10 and no dependents,
two reasons:i} the implementation is simpler, anii)(the Haskell whereasT1-Next has the valudlothing and is depended on by
runtime schedules Haskell threads between a pool of OS threadslvariant-1.

tuned to the number of available CPUs: this removes some of the At runtime the invariants attached irewListNode are rep-
importance of a non-blocking progress guarantee. resented by structures holding the closure to be checked, and a

Within the multi-processor Haskell runtime system, the STM list of the Tvars that the invariant depended on when last eval-
implementation provides an interface for managing transactions Yated. For instancenvariant-1 is evaluated by computing
and performing reads and writesItars. The interface is shownin ~ validNode (Node-1) whose result initially depends dri-Next

Figure 5. As usual, gray lines indicate existing parts of the interface (P&cause the current value of tfEtar is Nothing and so the
and black lines indicate changes and addifions implementation ofralidNode does not examine the oth&Vars).

There are two sets of invariants to check at the end of an
atomic block. Firstly, we must check any new invariants that

2For clarity we omit the further operations support blocking and unblocking
Haskell threads that executetry statements; these are unchanged and the 3As described in our earlier paper [10] the same list is used to represent
details are orthogonal to this paper. dependencies betwegfiars and blocked transactions.

Node-1 Node-2

T1-Val T1-Next T2-Val T2-Next
[10] [Nothing] [20] [Nothing]
L1-1 L2-1
Invariant-1 Invariant-2
validNode(Node-1) validNode(Node-2)
Dependencies: Dependencies:
T1-Next T2-Next

15. Lock tvars related to invariants
for each invariant touched
for each tvar in current dependence set: // Il

(a) Two newly allocated.istNodes with separate invariants.

try to lock the tvar
Node-1 Node-2 .
if unsuccessful:
T1-Val T1-Next T2-Val T2-Next unlock tvars and abort
{ 10 }{ i { 20| { Nothing } for each tvar in proposed dependence set: // I2
try to lock the tvar

if successful and current value matches that

L1-2 L1-1 L1-3 L2-1 . . .
read when checking the invariant:
Invariant-1 Invariant-2 continue
validNode(Node-1) validNode(Node-2) else:
Dependencies: Dependencies:
ﬂﬂﬂTL@“v FoNext unlock tvars and abort

T2-Val

(b) Node-1 is updated to mak®Bode-2 its successor. This triggers
re-evaluation ofinvariant-1 which checks that the two nodes
are in orderNode-1's invariant now depends on thr&gars.

Figure6. Runtime structures used to associate invariants with data
that they depend on.

25.Update invariant dependencies

the block itself has proposed. Invariants are proposed by check- ~ for each invariant touched // 13
ing the invariant in a nested transaction, and if it succeeds, call- for each tvar in current dependence set:

ing STMDefineInvariant which updates a new-invariant list unlink tvar from invariant

attached to the current transaction log to include the supplied for each tvar in proposed dependence set:
invariant and the dependencies established in its initial execu- link tvar to invariant

retain current dependence set as old set

tion. Secondly, we must check any existing invariants that de-
install proposed dependence set as current set

pend onTvars that the block intends to update. The function
STMGetInvariantsToCheck in Figure 5 returns a single list con-
taining both sources of invariants for the current transaction. Con-
sider what happens when a transaction attempts to updatiext

to link the two list nodes together — the updateTte-Next means

thatSTMGetInvariantsToCheck just returnsinvariant-1.))
35. Unlock tvars related to invariants

5.3 Checkinginvariants for each invariant touched

for each tvar in old dependence set: // 14
unlock the tvar if still locked

discard old dependence set

for each tvar in current dependence set: // I5
unlock the tvar if still locked

Following the semantics ofheck, each invariant in the list re-
turned bySTMGetInvariantsToCheck must be confirmed to exe-
cute without raising an exception. This is done by iterating through
the list and running each invariant in its own new transaction nested
within the user’s transaction.

If a check fails then the user's transaction is aborted and the ~ o6 7 Committing a transaction with invariant checking.
exception indicating the failure is propagdtedf a check suc-
ceeds, then the invariant’s closure and the nested transaction’s log
is passed to the STM throug@TMRecordCheckedInvariant. AS
described in the next section, the purpose of this call is to allow) .
STMCommit to update the invariant's dependencies and to ensure 94 Ensuring atomicity
that the whole set of invariant checks appear to take place atomi-We now consider the changes mades®iCommit. The underly-
cally with the user’s transaction. ing commit operation follows a pattern typical of many STM de-

signs [7]: it acquires temporary ownership of ttiéars that have

4Unlike the operational semantics, our runtime system does not need to been updated, it checks thB¥ars that have been read have not
track the allocations that are made. This is beca®B&lewTVar places been modified by concurrent transactions, it applies the transac-
newTVars directly in the garbage collected heap. tion’s updates to the heap, and it finally releases ownership of the

TVars that it acquired. This is shown in the gray portions of Fig- Usingold we can express our example non-decreaSiryg as:
ure 7.

We extend this design with three additional steps shown in RewNonDecreasingIVar :: Int —> STM TVar Int
black in the figure. The inputs to these are the values passed to “evwNonDecreasingTVar val

STMRecordCheckedInvariant, comprising the invariants’ clo- = do { r <~ newTVar val

sures and the new dependence information from the transaction ; check (do { c_val <- readTVar r

logs from the invariants’ execution. ; p_val <- old (readTVar r)
Step 15 ensures th&TMCommit locks theTVars on which the ; assert (p_val <= c_val)

invariant previously depended (loap), and theTvars it accessed b

when checked (loofi2). Note that some of these/ars may have ; return r;

already been locked in step 10, and that la@must check the b

TVars’.current.vaIues to ensure that the check is still up-to-date. ag with invariant checks in general, there are design choices to be
While holding these locks, step 25 updates the dependencemade over what kinds of operations can be performed inlan

information between théVars and the invariants. computation. In fact, the same problems from Section 3.5 occur
Finally, step 35 releases any locks that have not already beengng "unsurprisingly, the two broad solutions from Section 3.6 and
released in the existing step 30. Section 3.7 are possible — that is, & computation can either

There are a number of design choices here. In particular, we pe yyn in its own transaction against the pre-transactional state, or
chose to acquirall of the TVars in the dependence sets in 100ps the 514 computation can be statically restricted to just performing

I1 and I2. This serves two purposes)) the locks acquired in 5 series ofreadTVar operations. In the restricted setting we can
both loops protect the updates made in step 25, aphthe locks give o1d the following type:

acquired in loof 1 also act as an implicit lock on the invariant. This
is necessary to serialize concurrent user transactions attempting old :: STM ReadOnly a -> STM e a
updates to distinctvars on which the same invariant depends.
An alternative design would explicitly lock invariants and use non-
blocking lists to record the dependence between invariants an
TVars. A non-blockingSTMCommit algorithm could be developed
by using helping in the usual way: all of the information needed by
STMCommit is present at the start of the operation and can be made
available through a descriptor in shared memory.

As with check, this means tha#ld can only be supplied with a
gReadOnly STM action formed fronreadTVar operations and pure
computation.

However, there are two additional problematic cases. Firstly, an
old computation may try to read from®ar that was allocated
during the current transaction. This is straightforward to handle in
our implementation because thesocation effectare kept dis-

55 Garbage collection tinct from the transaction’s subsequent updatesotitecomputa-

. o . tion will see the value with which th&var was initialized.
The runtime structures in Figure 6 allow the memory occupied by The second problematic case is whetbed should be usable
invariants to be reclaimed automatically by the garbage collector: oytsidean invariant check. Doing so could harm modularity be-
since there is no global list of invariants, each invariant becomes g se it allows an STM-typed function to depend on the starting
unreachable when all of th&/ars it depends on become unreach- state of theatomic block it occurs in, not just the state that it is
able.))) called from. This is ultimately a matter of taste since there is no

However, note that the links from invariantstiars can extend jmplementation reason to prevent such usage. However, if desired,

the lifetimes of individualrVars that are not ordinarily reachable \ye could restrcb1d to just being used in invariant checks by refin-
by the application. For instance, 1fl-Val is reachable by the jng its type to:

application then the dependency links througivariant-1 will
causeT1-Next andT2-Val (and everything reachable from them) old :: STM ReadOnly a -> STM ReadOnly a
to be retained even if the list nodes themselves are no longer

reachable by the application. The use oReadOnly on the right hand side means that the action

canonly be performed in a context expectingRaadOnly STM
. . action — i.e. ultimately within an invariant check.
6. Predicatesover state pairs It is technically straightforward to adelld to the semantics of
Having seen this implementation, recall our problematic example Figure 4 but we omit the details because it is syntactlcally verbose:
from Section 3.3: what if we want to express a property over pairs the state carried into and between STM transitions would have to
of states (XYZ never decreases”) rather than a property of a single include the pre-transactional staé)(captured in the ARET rules.
state (XYZ is never zero”)?

One could express such properties succinctly by allowing the in- 7. Related work

variant to read the “old” value afyz directly. Providing this_abi[ity This paper builds on two main areas of existing woikir{corpo-
is rather simple, becausige STM mechanism already retaiti&z’s rating invariants in programming languages, aingigcorporating

old value in case the transaction is rolled baekd so we canread- jyyariants in databases. We discuss these in Sections 7.1 and 7.2
ily expose this value to the invariant check. respectively.

We can see two main approaches. The first is to provide a
function to explicitly read the previous value fronT#ar: 7.1 Invariantsin programming languages

readTVar0ld :: TVar a -> STM a Many languages and tools have provided ways to express i_n_vari_ants
over data. Gypsy and Alphard programs can include specifications
However, while this is suitable for simple cases it requires separate for use by formal methods [8, 26]. CLU [18], ESC/Modula3 [4],
functions to be used for access to the pre-transactional state. AnESC/Java [5] and JML [17] include specifications in stylized com-
alternative is to provide a mechanism for running an existing STM ments for processing by tools. _ 3
computation against the pre-transactional state: Euclid, Eiffel and Spec# are notable for embedding specifica-
tions in the same language that is used for programming. An impor-
old :: STM a -> STM a tant design decision in all of these languages is how to generalize

invariants to be able to refer to multiple objects in the presence of Conceptually they run continuously: when first executed, the com-
aliasing. For instance, suppose that an invariant on a list states thamand runs until it ceases to have an effect, whereupon it is re-run
it only contains positive-valued integers. It is insufficient to check whenever data that it has read or written to is updated. A “refuse”
this each time a node is added to the list because, in general, thecommand can be used to enforce integrity constraints (“refuse to
contents of a node may subsequently be updated via another referadd an employee whose salary is more than $30k”) or for security

ence to it. (“refuse to retrieve Mike’s salary when logged in as Bill").

Euclid, Eiffel, Spec# and our own work all take different ap- Cohen introduced “consistency rules” in the transactional lisp-
proaches to this problem. As we introduced in Section 1, a contri- derived query language AP5 [2]. This design is the closest to our
bution of our approach is that we allow invariants todedined dy- own: all accepted transactions had to satisfy all of the constraints
namically (rather than, say, associated with class definitions), and that were defined. Transactions were defined by series of queries
that we allow them to depend arbitrary mutable stategrather grouped by ametomic [...] construct; constraints could be
then, say, only on the fields of the current object). violated within the atomic block, but had to be restored by the end

Euclid includes explicitassert statements, pre- and post- of the block. Cohen’s design allowed a user to specify whether or
conditions on routines, and invariants on modulEs]. An in- not a constraint had to be true at the point at which it was declared.

variant must remain true during the module’s lifetime, except for The SQL:92 query language supports various kinds of con-
when routines exported from the module are executing. Although straint definition [3]. In particularassertionscan be general con-
these invariants could be written as boolean-typed Euclid expres- straints involving an arbitrary collection of columns from an arbi-
sions, they were generally expected to be checked by verification trary collection of tables. For instance, “no supplier with status less
rather than checked at runtime [22] and so language mechanismghan 20 can supply any part in a quantity greater than 500"

to control updates to data that an invariant depends on are not re-

quired. CREATE ASSERTION supply CHECK
The Eiffel language supports class-based invariants which must (NOT EXISTS (SELECT * FROM S
be satisfied by every instance of the class whenever the instance is WHERE S.STATUS < 20
externally accessible; that is, immediately after creation, and before AND EXISTS
and after any call to an exported routine of the class [13]. Invari- (SELECT * FROM SP
ants are boolean-typed Eiffel expressions. Note that invariants are WHERE SP.SNO = S.SNO
explicitly checkedbeforecalls as well as after them: this will de- AND SP.QTY > 500)))
tect changes that may have been made to objects that the invariant)) o)
depends on. Checking of constraints can be deferred within transactions and

Spect# extends C# with several features to encourage robus‘pgrformgd upon commit: if any constraint fails then the transaction
programming [1]. These include class invariants that are required fails and is rolled back.
to hold on every instance of the class while it is not “exposed”. A
new constructxpose (o) { § } allows the invariant ob to be 8. Conclusion
temporarily broken within the statemerstsbut it must be restored)))
by the end of those statements; objects can only be updated whileThe key ideas of this paper are to extestbmic blocks with a
exposed in this way. Furthermore, a hierarchical object-ownership Mechanism to dynamically define an invariant over arbitrary mu-
discipline is used to ensure that the invariant of one object dependstable state and to re-use the STM machinery to track the depen-
only on the state of that object and objects that it (transitively) dence be.tween transactions and that state. The result is that the sys-
owns. This means that an object’s invariant cannot be broken by tem provides the appearance that every commiiteshic block
uncontrolled updates to objects that it depends on. In concurrentPreserves every invariant, while only re-evaluating invariants that a

settings, the same hierarchy can be used to associate locks witHgiven block actually appears to have changed.
aggregate objects [15]. Some concluding observations:

Erasure. A frequent point of discussion about this work is
whether invariants should be used to detect operations that are
Stonebraker introduced the idea of defining integrity constraints attempted when the system is ‘not ready’ for them — either in-
for a database independently from the basic requirements of itsdicating this explicitly by usingetry within an invariant (as in
schema [23]. He described simple constraints on individual fields Section 3.4), or by catching an exception raised by an invariant
(“Employee salaries must be positive”), constraints on fields in failure.
the same row of a table (“Everyone in the toy department must A possible benefit of this approach is code brevity: perhaps an
make more than $8000"), and more complex constraints involving application would include duplicate checks, one within the imple-
joins across tables (“Employees must earn less than two times thementation of a transaction to check whether or not it is ready to
sales volume of their department if their department has a positive run, and the second within an invariant attached to the data struc-
sales”). These constraints were expressed as a special form otures that are being modified.
query, and then enforced by combining them with database updates Conversely, relying on invariants to control execution in this
in such a way that an update cannot change data in a way thatway makes it impossible to disable invariant-checking once a pro-
violates a constraint. gram has been debugged, and harms modularity because there is no
In the POSTQUEL query language, Stonebrageal. intro- external indication of whether or not a library operation requires in-
duced a more general system that supported integrity constraintsvariant checking to be enabled.
and computation triggered by database updates [24]. Their system This, we feel, provides a strong argument for keeping invari-
allowed existing commands to be tagged “always” or “refuse”. An ants for bug detection clearly distinct from similar operations that
“always” command can be used to trigger updates when related form part of the application’s logic. An interesting approach (sug-
data is modified, e.g. "Always replace Mike’s salary with Bill's”. gested by an anonymous reviewer) is to follow the database dis-
tinction betweenassertionsand triggers triggers are considered
51n Euclid, module is a type constructor; many instances of a module can part of the application logic and may be used to maintain invariants
exist dynamically. between related data structures. In STM Haskell one could imag-

7.2 Invariantsin databases

ine a trigger-like construct that could also usetry to defer the
commit of a transaction when the system is not ready for it.

Expressiveness. We have shown how STM lets us extend invari-
ant checks to include executable predicates ovebéfiereandaf-

ter memory states of the transaction, rather than jusaftes state.

This does raise the question of whether there are further kinds of
invariant that would be useful to programmers but which cannot be

expressed in our system. In principle there are some: nothing de-

[6] FRASER, K. Practical lock freedom PhD thesis, University of
Cambridge Computer Laboratory, 2003.

[7] FRASER, K., AND HARRIS, T. Concurrent programming without
locks. Under submission.

[8] Goopb, D. I., COHEN, R. M., AND HUNTER, L. W. A report on the
development of Gypsy. IACM 78: Proceedings of the 1978 annual
conferencéNew York, NY, USA, 1978), ACM Press, pp. 116-122.

[9] HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. IObject-Oriented Programming, Systems, Langauges

pending on three or more successive states can be expressed solely & Applications (OOPSLA '03§Oct. 2003), pp. 388—402.

using invariant checks because any side effects incurred by check-

ing invariants are rolled back.

We have considered one further possible design that increases
the expressiveness of the properties that can be described solely by

checks. The idea is to allowtheck statements to add new invari-

ants to the system, even though we roll back ordinary updates that

checks make to the heap. For instance, a ‘non repeatiag’ that

cannot take the same value more than once could be implemented
by one invariant check that adds further checks each time a new

value is seen. This is more expressive, but perhaps ultimately im-

[10] HARRIS, T., HERLIHY, M., MARLOW, S.,AND PEYTON JONES,

S. Composable memory transactions.Pimceedings of the ACM

Symposium on Principles and Practice of Parallel Programming, to

appear(June 2005).

[11] HARRIS, T., MARLOW, S.,AND PEYTON JONES, S. Haskell on a
shared-memory multiprocessor. Haskell '05: Proceedings of the
2005 ACM SIGPLAN workshop on Hask@kept. 2005), pp. 49-61.

[12] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER |II,

W. N. Software transactional memory for dynamic-sized data
structures. IrProceedings of the 22nd Annual ACM Symposium on
Principles of distributed computin@003), ACM Press, pp. 92-101.

practicable in many cases. There is one subtlety: any new invariants[13] \NTERNATIONAL STANDARD ECMA-367, E. Eiffelanalysis, design

must themselves be checked against the post-transactional state as

well as the state whetheck was called. This ensures that the com-

plete set of invariants holds at the end of the transaction and that the

set is closed under the re-execution of any invariant.
We have held back from actually implementing this more com-

and programming language, June 2005.

[14] ISRAELI, A., AND RAPPOPORT L. Disjoint-access-parallel
implementations of strong shared memory primitivesPtaceedings
of the 13th Annual ACM Symposium on Principles of Distributed
Computing(Aug. 1994), pp. 151-160.

plicated design because, in practice, we think it is an open question [15] JAcoBs, B., LEINO, R., AND SCHULTE, W. Safe concurrency for

as to whether there angsefulproperties that cannot be captured
by our current design while still being suitable for expressing by
executable specifications.

Application to other languages. It is easy to see how these ideas
could be applied to a language other than STM Haskell. However,
there are two issues that we would like to highlight. Firstly, our use
of dynamically-defined invariants benefits from Haskell’s support
for closures: our examples in Section 3 showed how concise invari-

ants depended on variables from enclosing scopes. Secondly, STM
Haskell is notable in that the type system constrains where mutable

state can be accessed: it is guaranteed thatrtlyaipdates to trans-
actional variables occur withiatomic blocks. This lets us ensure

that invariants are re-evaluated when necessary. In other language
it will be necessary to consider whether such a segregation is valu-

able.

Acknowledgments

The ideas in this paper have benefited greatly from discussion with
the Spec# group and, in particular, we thank Daan Leijen, Mike
Barnett and Ben Zorn for the the ideasr@fadTVar01d, old, and

the use of phantom types.

References

[1] BARNETT, M., LEINO, K. R. M., AND SCHULTE, W. The Spec#
programming system. IRroceedings of CASSIS 20(D04).

[2] CoHEN, D. Compiling complex database transition triggers. In
SIGMOD '89: Proceedings of the 1989 ACM SIGMOD international
conference on Management of dgtdew York, NY, USA, 1989),
ACM Press, pp. 225-234.

[3] DATE, C. J.,AND DARWEN, H. A guide to the SQL standardth ed.
Addison-Wesley, 2000.

[4] DETLEFS, D. L., LEINO, K. R. M., NELSON, G.,AND SAXE, J. B.

Extended static checking. Tech. Rep. Research Report 159, Compag

SRC, Dec. 1998.

[5] FLANAGAN, C., LEINO, K. R. M., LILLIBRIDGE, M., NELSON,
G., SAXE, J. B.,AND STATA, R. Extended static checking for Java.
In PLDI '02: Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementa(idew York, NY,
USA, 2002), ACM Press, pp. 234-245.

J19]

aggregate objects with invariants. Pmoceedings of SEFM 2005

[16] LAMPSON, B. W., HORNING, J. J., LONDON, R. L., MITCHELL,

J. G.,AND PoPEK, G. J. Report on the programming language
Euclid. SIGPLAN Not. 122 (1977), 1-79.

[17] LEAVENS, G. T., RuBY, C., RUSTAN, K., LEINO, M., PoLL,

E., AND JacoBs, B. JML (poster session): notations and tools
supporting detailed design in java. @OPSLA '00: Addendum to the
2000 proceedings of the conference on Object-oriented programming,
systems, languages, and applications (AddendiNeyv York, NY,

USA, 2000), ACM Press, pp. 105-106.

[18] Liskov, B. A history of CLU. InHOPL-II: The second ACM

SIGPLAN conference on History of programming langua@éswy

York, NY, USA, 1993), ACM Press, pp. 133-147.

MARATHE, V. J., SSHERERIII, W. N., AND ScoTT, M. L. Adaptive

software transactional memory. Technical report TR-868, Department

of Computer Science, University of Rochester, May 2005.

[20] MARLOW, S., FEYTON JONES, S.,AND THALLER, W. Extending
the Haskell Foreign Function Interface with concurrency. In
Proceedings of the ACM SIGPLAN workshop on Hag@towbird,
Utah, USA, September 2004), pp. 57—68.

[21] MEYER, B. Systematic concurrent object-oriented programming.
Commun. ACM 3@ (1993), 56-80.

[22] PopPEK, G. J., HORNING, J. J., LAMPSON, B. W., MITCHELL,

J. G.,AND LONDON, R. L. Notes on the design of Euclid. In
Proceedings of an ACM conference on Language design for reliable
software(1977), pp. 11-18.

[23] STONEBRAKER, M. Implementation of integrity constraints and
views by query modification. I8IGMOD '75: Proceedings of the
1975 ACM SIGMOD international conference on Management of
data(New York, NY, USA, 1975), ACM Press, pp. 65-78.

[24] STONEBRAKER, M., AND ROWE, L. A. The POSTGRES papers.
Tech. rep., Berkeley, CA, USA, 1987.

[25] WADLER, P. The essence of functional programmingClonference
record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages: papers presented at the
symposium, Albuguerque, New Mexico, January 19-22, (96@/
York, NY, USA, 1992), ACM, Ed., ACM Press, pp. 1-14.

[26] WULF, W. A., LONDON, R. L., AND SHAW, M. An introduction
to the construction and verification of Alphard programs.|QSE
'76: Proceedings of the 2nd international conference on Software
engineeringLos Alamitos, CA, USA, 1976), IEEE Computer Society
Press, p. 390.

