
Leaky regions: linking reclamation hints to program structure

Tim Harris
Microsoft Research Cambridge

tharris@microsoft.com

Abstract
This paper1 presents a new mechanism for automatic storage recla-
mation based on exploiting information about the relationship be-
tween object lifetimes and points in a program’s execution. In our
system method calls are annotated to indicate that most of the ob-
jects allocated during the call are expected to be unreachable by
the time it returns. A write barrier detects if objects escape from
one of these calls, causing them to be retained and subsequently
managed by an ordinary generational collector. We describe a tool
that helps select suitable annotation sites and we outline how this
process can be fully automated. We show that if these annotations
are placed judiciously then the additional costs of the write barrier
can be outweighed by savings in collection time.

1. Introduction
In many cases there is a clear relationship between points during
a program’s execution and sets of objects that can safely be de-
allocated. For instance, a video-playback application may generate
temporary objects while decoding one frame and most of these
objects can be deallocated when moving to the next frame. Or
a chess-playing game may allocate a number of objects while
evaluating possible moves and discard most of these after choosing
how to proceed.

If a tracing garbage collector is used with this kind of applica-
tion then the cost of performing a collection will vary according to
when the collector happens to run – it is usually better to invoke the
collector when a large fraction of the storage space it will process
contains unreachable objects. Schemes such as generational [21],
older-first [18] and garbage-first [11] collection can be seen as dif-
ferent ways to select a good area of the heap to collect.

Currently, however, garbage collection is usually triggered with-
out any reference to whether or not it is an appropriate time to per-
form a collection – for example, it may be faster to perform more
frequent collections that are timed to coincide with low volumes of
live data than to perform fewer collections which see a fuller heap.

In this paper we investigate a scheme for allowing the garbage
collector to exploit information about the object lifetimes that occur
in an application. Our approach is based on using annotations to
indicate method calls in which most of the objects allocated during
the call are expected to be unreachable by the time the call returns.
These annotations are always safe – if they are placed injudiciously
then the program may run slower than before but it will not crash.

Entering an annotated call creates a newscoped region in the
heap within which subsequent object allocation occurs. As with
generational collection, a write barrier is used to detect objects
that may escape from a scoped region. Each time an annotated
call returns we garbage collect the associated region, promoting
any escaping objects into the next youngest region (in the case of
nested annotated calls), or into the young generation of the heap (in

1 This paper describes work undertaken July 2004 – December 2004.

the case of the outermost annotated call). Figure 1 illustrates this
general scheme and Section 2 describes this design in more detail.

In practice we expect these annotations to be produced from
profiling, although expert programmers may choose to manually
annotate code. Others have developed suitable profiling systems
which could be used [5, 14, 9] and so we only briefly mention our
profiler in Section 3.

We have prototyped this design as part of a research compiler
and run-time system for executing CIL (Common Intermediate
Language) programs for .NET. As with the Jikes RVM [1], the
vast majority of the run-time system is itself implemented in safe
bytecode. For readers familiar with Java bytecode but not CIL, it is
worth pointing out that the only significant difference to consider
here is that the safe subset of CIL allows indirect stores to older
locations on the current thread’s stack.

We have tested our implementation with a number of bench-
marks compiled from C# to CIL. In the benchmarks we have stud-
ied, the effective placement of annotations led to acollect early,
collect often profile of memory usage: many more scoped mem-
ory regions are created and reclaimed than the number of garbage
collections that would be triggered with the same heap size. We
discuss performance results in Section 4.

Our decision to focus on using a write barrier to check for es-
caping objects may appear perverse given recent work on escape
analysis and region-based storage management. However, although
dynamic checks add work on the write barrier, our approach gains
a number of advantages over static analyses. Firstly, it allows us to
safely allocate objects which are unlikely to be identified as non-
escaping by a static analysis. Secondly, it allows us to optimisti-
cally scope-allocate objects even when similar objects occasionally
escape (for instance, if objects escape when an exception is raised,
but not ordinarily). Finally, by using an appropriate form of write
barrier, we can reclaim objects that are dead at the end of a scoped
region but which temporarily escape during its execution (for in-
stance, in one of our benchmarks, by being temporarily reachable
from a static field).

We discuss related work in more detail in Section 5 but we
should emphasise that the underlying idea of combining optimistic
stack allocation with garbage collection is not new. For instance,
Baker argued that allocations should often be made on the stack
and lazily promoted to the heap [2]. More recently, stack-like object
management disciplines have been used in ML [19] and in the
Real-Time Specification for Java [4]. Qianet al. [16] and Corry [9]
independently assessed how similar styles of allocation could be
used in object-oriented languages. The key contribution of our
work over Qianet al.’s and Corry’s is that we show how to actually
implement the scheme efficiently at run-time – getting measured
improvements on non-trivial benchmarks in terms of running time
as well as in terms of space reclamation.

A weakness of our current system is that it is restricted to single
threaded applications. We discuss the consequences of extending
our design to support multi-threading in Section 6.

1 2006/6/20

Young gen.

Stack

Old gen.

Static fields

Scoped region 0

Static fields

Young gen.Old gen.

Stack

1. The heap state just before entering a function
for which a new allocation scope is to be cre-
ated.

2. Within the function, objects are placed in a
new region of the heap. References to these
objects can be manipulated freely, e.g. they can
be referred to from the stack, from other heap
regions and from static fields.

Scoped region 0Young gen.Old gen.

Static fields

Stack

Young gen.Old gen.

Static fields

Stack

3. Upon returning from the function, some of the
objects allocated in it may still be reachable,
both from the heap, from statics and from re-
turn values and exceptions on the stack.

4. Before deallocating the scoped region, the
reachable objects are promoted into another re-
gion and references to them fixed up: in this
case they have been promoted into the young
generation.

Figure 1. Overview of the creation, use and deallocation of a new allocation scope.

2. Design
After presenting out design goals in Section 2.1, we discuss the
original design of the heap in our run-time system (Section 2.2),
how we extend it to represent scoped regions (Section 2.3), how we
use the write barrier to track inter-region references (Section 2.4),
how we decide when to reclaim space from scoped regions (Sec-
tion 2.5) and finally we look at a number of implementation issues
(Sections 2.6–2.8).

2.1 Goals

A number of goals have guided our design and implementation
work:

Safety. We do not want to provide mechanisms by which dan-
gling references could be created. We also do not want to introduce
new kinds of exceptional failure, for instance if an unexpectedly
deep nest of annotated calls is executed, or if a large volume of
objects escapes from a scoped region.

This goal is important because it enables annotations to be
added based on intuition or profiling of common-case code without

2 2006/6/20

void a() { void c() {
// Allocation // Allocation

} }

void b() { void d() {
while (..) { c(); // Annotated call

a(); // Annotated call while (..) {
} // Allocation

} }
}

b(); // Annotated call d(); // Annotated call

Figure 2. The left hand code fragment contains an annotated call
to b within which a loop makes a series of many annotated calls
to a. Being able to collect the storage space allocated bya without
triggering an ordinary GC requires theinner calls toa to be sup-
ported. Conversely, the right hand code fragment contains an an-
notated call tod within which a single annotated call toc is made,
followed by a loop which performs a number of allocations. Be-
ing able to reclaim this storage without an ordinary GC whend re-
turns requires us to retain information about theouter of two nested
scopes.

needing to consider rare execution paths or the effects of not-yet-
loaded classes.

Nesting and composability. We want to support nesting be-
tween annotated calls – arising either through recursion, or by call-
ing in to library code that uses annotated calls internally.

Figure 2 illustrates why the simple design of providing a single
scoped region as some kind of “younger than young” generation
would be ineffective by showing examples of nesting where the
inner of two scopes should be retained and, conversely, where the
outer of two is more appropriate to honour.

Low fragmentation cost. In order to support nesting effec-
tively, we must avoid fragmentation costs when entering new an-
notated calls – for instance, it would be inappropriate to place allo-
cations in different regions on different virtual memory pages.

Low execution overhead. The overheads introduced on exe-
cuting an annotated call, on executing write barrier code to detect
escaping objects, and on leaving an annotated call in the case where
nothing escapes must not offset the performance gained by reduc-
ing the time spent in garbage collection. A further consideration is
the need to avoid spending extra time clearing memory now that it
is being reclaimed when existing annotated calls return and there-
fore at smaller granularities than when completing an ordinary GC.

Allow recapture. It should be possible to deallocate objects that
temporarily escape but are recaptured by the time that the annotated
call returns (for instance, because they are temporarily reachable
from a static field). We see this kind of object usage in the Lisp
interpreter benchmark in Section 4.

Interact with full language features. We should support all
of the features of the CIL bytecode language and core libraries –
including reflection, multi-threading, weak references and finaliza-
tion. However, our current design and implementation does not ad-
dress these problems; we return to discuss them in Section 6.

2.2 Original heap design

In the experiments performed here, the heap used in our run-time
system has a conventional two-generation stop-the-world design.
Young generation collections are performed using a semi-space
collector that is usually triggered after a fixed volume of allocation.
A full collection, using a sliding collector, is invoked every 8 young
generation collections.

int a(int n) {
// Temporary allocations

if (n < 5) {
t = a(n + 1); // Annotated call

}

// Temporary allocations

return t;
}

r = a(0); // Annotated call

Figure 3. Within the annotated call toa(0), a nested series of
scoped regions are created, with objects being allocated within each
one during the recursive calls, some of which escape to the caller.

Heap storage is divided into aligned 4KB pages and, for each
page, an ownership byte is held. For pages containing objects, this
indicates to which generation the objects belong. Other ownership
values distinguish (i) pages holding static data, (ii) pages forming
part of threads’ stacks, (iii) pages holding non-heap data (such as
code), (iv) empty pages which have been cleaned and (v) empty
pages which have not been cleaned.

Ordinary allocations are satisfied from thread local allocation
buffers, with the fast path code for non-overflowing allocations
being inlined by the compiler. Large objects (64KB+) are allocated
directly in the old generation.

A write barrier tracks old-to-young references, using the page
ownership table to confirm that an update is creating such a ref-
erence before logging the updated location in an sequential store
buffer (SSB). Each thread has a chunk of SSB space; if the sup-
ply of SSB chunks is exhausted then a young generation collection
is triggered. We discuss, along with our results, the volume of SSB
entries logged. Thread stacks and statics are treated as GC roots and
so, using a stop-the-world collector, updates to them do not require
tracking by the write barrier.

2.3 Representing scoped regions

There are two main decisions to take in how to represent scoped
regions in the heap: how to allocate objects in different regions and
how to identify inter-region references which may cause objects to
escape the region in which they are allocated.

The approach we take for allocation is to retain the same local
allocation buffer that was active on executing an annotated call and
to introduce a new set of page ownership values for scoped regions.
There are a number of trade-offs involved here:

• Our design makes entering a scoped region fast – we do not
need to refill the local allocation buffer.

• Annotated calls do not cause fragmentation – in particular a
deep series of calls does not lead to many unused fragments in
the way that it would if we used fresh local allocation buffers
for each.

• We lose precision in the ownership information retained about
pages – we must introduce amixed ownership value for pages
containing objects from more than one scoped region, or from
the young generation as well as the outermost scoped region.

• We are unable to allocate objects within anything but the inner-
most region – for instance, a method cannot directly allocate an
object to be returned in the region corresponding to its caller.

As an example, consider the example method calla(0) depicted
in Figure 3. This makes recursive callsa(1)... a(5), allocating

3 2006/6/20

Young gen. Young gen. Unused Unused

1. Initially heap pages are being used to hold objects in the young generation.

Young gen. Mixed Region 1 Mixed

a(0) a(1) a(2)

2. After calls toa(0) and recursively toa(1) anda(2) three scoped regions are active. The ownership table records pages holding objects
from different scoped regions asmixed (in practice regions would span many pages).

Figure 4. Heap page usage on entering scoped regions.

some objects in each call. Figure 4 shows how these objects may
be laid out across a number of pages in the heap and the ownership
values that will be associated with these pages.

Note that although the figure shows only four pages, we actually
expect scoped regions to be from around 1KB to 1MB in size. This
is because regions smaller than this are unlikely to be effective
unless the entry/exit cost can be amortized over a larger volume of
allocation. Conversely, as regions grow beyond 1MB, it becomes
more likely that they will span GC cylces. Our profiling results in
Section 4 show that annotations for regions of 1KB-1MB can be
found in practice.

2.4 Write barrier

Without scoped regions, the write barrier need only track references
from the old generation (ownership value 1) to the young genera-
tion (ownership value 0). Negative ownership values are used for
pages holding code, statics, thread stacks and non-heap data (such
as the ownership value ofnull references). In pseudo-code the
write barrier executed for a store*a = r is:

void write_barrier(void **a, void *r) {
char owner_a = GET_OWNERSHIP_VALUE(PAGE_OF(a));
char owner_r = GET_OWNERSHIP_VALUE(PAGE_OF(r));
if ((owner_a > owner_r) && // Store is old-to-young

(owner_r > 0)) // Stored value is a ref
{

SSB_LOG(a);
}

}

In practice the ownership lookups and comparison are inlined and the
SSB LOG operation is kept out of line. The bytecode-to-native compiler can
perform common-subexpression elimination betweenGET OWNERSHIP VALUE
operations (e.g. to avoid re-fetching the table involved).

To support scoped regions we need to track further kinds of store
which could let objects escape:(i) references from objects in the ordinary
generations to objects in scoped regions,(ii) references from statics to
objects in a scoped region,(iii) references from stack frames outside an
annotated call to objects instantiated during the call. There is a tension
between these requirements – making the first decision precisely may add
complexity to the write barrier, whereas the second and third add more
barriers to the program and so makes it important to keep them fast.

We use two techniques to reduce the cost of write barriers. Firstly, as
Stefanovíc has done [18], we organise the heap so that when executing a
store*a = r, a comparison of the virtual addressesa andr can identify
many cases where no further test is necessary2. Figure 5 shows the layout
we used.

2 In the performance results here we added a similar filter to the ordinary
write barrier (providing a marginal improvement over the original system).

Code, statics, stacks,

non-heap data

GC old

generation

GC young generation

and scoped regions

Figure 5. Virtual address space layout. References from right to
left (higher addresses to lower addresses) never need to be tracked
by the write barrier. References from left to right need to be tracked
if they could let objects escape from scoped regions.

Secondly, we restructure the representation of ownership values. Instead
of representing them by single integer values, we use a packed representa-
tion split into anownership kind and well as anownership age. The packed
form means that ‘kind’ field is more significant than the ‘age’ field. Imple-
mentation limits, keeping the resulting packed value in a byte along with
other flags, provide 4 bits for the age and 2 bits for the kind.

Figure 6 shows how these fields are used. Notice that the particular
numerical values are carefully chosen so that:

• The ordering of ownership kinds means that static data and stack loca-
tions appear younger than the ordinary GC generations but older than
scoped regions.

• The ordering of packed values will detect old-to-young references in the
heap, references from statics and stacks to objects leaking from scoped
regions, as well as references from older scoped regions to younger
ones.

• The LSB of the ownership kind indicates if the page contains objects.

The result of this design is that we add a further test to the write barrier
and change a comparison against zero with a mask:

void new_write_barrier(void **a, void *r) {
char owner_a = GET_PACKED_OWNERSHIP_VALUE(PAGE_OF(a));
char owner_r = GET_PACKED_OWNERSHIP_VALUE(PAGE_OF(r));
if (((owner_a > owner_r) && // Store may be old-to-young

(owner_r & 16)) // Stored value is a ref
|| (owner_r == 0x1f)) { // Referent of unknown age

{
SSB_LOG(a);

}
}

The write barrier does not have any information about which stack
frames correspond to annotated calls – we assume that indirect stores into
the stack are rare and so we choose to log all of those which refer to objects
in scoped regions and filter them on deallocation. We have not observed this
as a problem in practice.

4 2006/6/20

Page kind Ownership kind Ownership value Packed
Oldest GC generation 0x3 0xf 0x3f
Youngest GC generation 0x3 0x0 0x30
Code, statics, stacks 0x2 0x0 0x20
Mixed ownership 0x1 0xf 0x1f
Outermost scoped region 0x1 0xe 0x1e
Innermost scoped region 0x1 0x0 0x10
Unused or unallocated 0x0 0x0 0x00

Figure 6. Revised structure of ownership values. Thepacked column shows how the combinedkind andvalue bit-fields compare numerically.

2.5 Region management

We now turn to a number of policy decisions about how to organise the
creation and reclamation of scoped regions.

The first question is how to manage the limited number of scoped
region ages that are available with the current form of ownership table –
the problem is what happens if we try to execute an annotated call when we
are already performing allocations within a region using the most deeply
nested ownership value.

One option would be to ‘flatten off’ the nesting hierarchy at that point,
so that once we reach the maximum depth, any subsequent annotations are
disregarded. However, following on from the observations about nesting
and composability in Section 2, we chose not to follow this path because
it interacts poorly with hierarchies of nested calls in which the bulk of the
allocation work occurs deep within the hierarchy.

Instead, if we exceed the maximum nesting depth, weabandon the
current set of nested scopes and start again with the outermost ownership
value. Our heap layout makes it straightforward to do this: we update the
page ownership table for the existing scopes, marking all but the most recent
page as part of the young generation, and marking the most recent page as
unknown. Figure 7 illustrates this.

The second major point where a policy decision is needed is how to
proceed when returning from an annotated call. In general there are two
options: attempt toreclaim the region, ordefer the region by merging it into
its enclosing one or into the young generation. If we defer a region then
dead objects in it will be considered for reclamation the next time we exit
an enclosing region.

Primarily the reclaim/defer decision is a trade-off between the opportu-
nity to reclaim storage space versus the computational effort required to do
so safely. A secondary consideration, given appropriate annotations, is that
deferring a region is appropriate if objects have escaped from it to an en-
closing region – waiting until the enclosing annotated call returns will give
these escapees a chance to be recaptured.

The default policy we use is based on statistics that are available quickly
on returning from an annotated call. We defer only if:

• We are dealing with an enclosed scoped region rather than the outer-
most one – we always reclaim the outermost scoped region because a
number of enclosed regions may have already been deferred into it.

• Some SSB entries have been logged during the region’s execution
(conversely, if no entries have been logged, then no objects can have
escaped from the region and so it is trivial to reclaim it).

• We are still using the same local allocation buffer as when we started
the call – this means that there is little potential benefit in reclamation
at this time.

2.6 Deferring a region

As when abandoning regions, the heap structure means that deferring the
collection of one region into its parent is largely a case of updating the page
ownership table for the pages being transferred.

However, there is one subtle problem that occurs: we need to remove
any SSB entries relating to stores in stack frames of methods that have now
returned. This is necessary in case that memory is re-used for stack frames
which store non-pointers at those addresses.

2.7 Reclaiming a region

At a high level, reclaiming a region on return from an annotated call
involves preserving the objects transitively reachable from SSB entries that
were logged during the call, along with the return value (if it is an object

reference), or any exception object being raised (if, as usual, it was allocated
during the call).

Following our assumption that few objects escape from annotated calls,
we use a compacting scheme to avoid fragmenting the heap. For implemen-
tation simplicity, and to avoid a further pass over the space being reclaimed,
we actually use a two-copy design, evacuating any escaped objects to fresh
pages3 before copying them back to the start of the memory that the region
occupied; an ordinary mark-compact collector could of course be employed
to avoid one of these copies.

Figure 8 illustrates the heap during these steps.

2.8 Interaction with garbage collection

Ordinarily, our run-time system collects the young generation after a given
volume of allocation. To incorporate scoped regions, we instead collect
whenever the total volume of space occupied by the young generation and
the currently active scoped regions exceeds a given volume. This gives
the same collection behavior when scoped regions are not in use, while
allowing collection to be deferred while scope reclamation is allowing the
same memory to be re-used. When a garbage collection occurs, we abandon
the currently active scoped regions as described in Section 2.5.

3. Profiling
In practice we expect scoped regions to be identified from profiling al-
though, of course, expert programmers may choose to manually annotate
their code.

We built a simple profiling tool to identify plausible annotation sites.
This tool instruments each function call site to record (i) the number of
times that the call was executed, (ii) the total volume allocated during those
calls, (iii) the maximum volume allocated within any one call. This does
not show whether or not the allocated objects escape from the call, but it
serves to eliminate calls which are either executed very frequently (where
the cost of scope entry or exit would become important), within which small
volumes are allocated (and so the possible benefits of reclamation are low),
or where very high volumes of data are allocated in single calls (and so a
garbage collection is likely to be triggered, causing the scoped regions to be
abandoned).

The volume of allocation recorded by the tool provides an upper bound
on the volume that could be reclaimed by annotating the associated call
site: the actual amount reclaimed will be reduced because (i) some of
the allocated objects may escape, (ii) some of the allocation may be of
large objects, placed directly in the old generation, (iii) the calls might
nest so deeply that some of the scoped regions are abandoned, and (iv) an
ordinary garbage collection may also cause the active scoped regions to be
abandoned.

In our prototype we examined the call sites identified by the tool,
ranked according to the volume of data allocated within them, and tried
the highest ranked entries within which at least a few kilobytes and at
most a few megabytes was allocated per call. This policy has the effect of
excluding calls which are executed very frequently or very infrequently. As
we point out when discussing related work, there is clearly scope for a fully
automated method for producing annotations and there are many promising
techniques for doing so.

3 We back off to triggering an ordinary GC if such pages are not available.

5 2006/6/20

Young gen. Mixed Region 1 Mixed

a(0) a(1) a(2)

1. Initially, scoped regions 0..2 are associated with the callsa(0), a(1) anda(2).

Young gen. Young gen. Young gen. Mixed

a(0) a(1) a(2)

Region 0

a(3)

2. The scoped regions are abandoned by marking their pages as part of the young generation. Scoped region 0 can now be re-used for the
call toa(3).

Figure 7. Abandoning scoped regions to re-use ownership values in nested calls.

Young gen. Mixed Region 1 Mixed

a(0) a(1) a(2)

1. Initially, scoped regions 0..2 are associated with the callsa(0)..a(2).

Young gen. Mixed Region 1 Mixed

a(0) a(1) a(2)

2. The call toa(2) continues and eventually returns. Any objects escaping from region 2 are copied out.

Young gen. Mixed Region 1 Region 1

a(0) a(1)

3. The escaping objects are now copied back to be contiguous with region 1 fora(1)’s execution. We can now represent region 1’s ownership
more precisely.

Figure 8. Reclaiming storage allocated in scoped regions.

4. Performance
In this section we present performance results taken from allocation-
intensive C# benchmarks modeled on theijpeg, go, andli programs used in
the SPEC CINT95 suite, and thecrafty chess player.

Figure 9 shows the overall timing results of the four benchmarks when
run with young generation sizes of 1MB, 2MB, 4MB, 8MB, and 16MB.
We study a range of young generation sizes because the performance of the
baseline garbage collector is highly dependent on the amount of memory in
the young generation – the time spent in the garbage collector we use is, of
course, highly dependent on the size of the young generation.

We break down execution time in terms of (i) time spent reclaiming
objects (GC and scope management), (ii) time spent in storage management
as a whole (GC, scoped region management, and clearing memory), (iii)
total run time (including all these direct costs of storage management,
plus the associated write barrier work in the mutator thread). The results
presented are the median of 7 benchmark runs. We will consider the four
benchmarks in turn, in increasing order of the volume of storage space that
they allocate.

4.1 ijpeg

Profiling ijpeg showed that two calls are made from itsparse args method
to go execute compression and decompression accounted for 29%
and 31% of memory allocation, each being executed 64 times and the
maximum volume allocated in any invocation being just over 200KB. A

total of 29MB is allocated within these calls, of which 70KB escapes.
The escaping objects are arrays which become reachable from fields of the
ijpeg object.

Figure 10 shows the heap size while executing part of the benchmark.
The sawtooth seen on the dark line shows how the heap is filled completely
between young generations and how, when collections occur, they are timed
at points where the heap contains live data. In contrast, collection using
scoped regions occurs more frequently, but always when the heap is almost
empty (the bottom points of the light sawtooth remain horizontal).

4.2 crafty

Profiling crafty showed that 217MB of the total 224MB allocation occurs
within calls toABSearch while selecting the next move to make. There are
84767 such calls and very few objects escape. The large number of calls
means that a significant amount of reclamation time is spent in entering
and leaving scoped regions, despite their effectiveness in replacing garbage
collections.

On average around 2KB is allocated within each annotated call, mean-
ing that many will complete without moving off a single page in the heap.
However, there are a few calls which allocate large volumes, up to a max-
imum of 17MB, which cause young-generation GC to be triggered. This
means that only 78% of storage space is reclaimed from scoped regions,
even though 97% of objects are allocated during annotated calls.

The objects that escape are particularly interesting because the same al-
location site generates escaping and non-escaping objects – the escapees

6 2006/6/20

correspond to repeated board positions that are encountered while the game
progresses4. Around 512KB escapes, comprising 13% of the objects allo-
cated at the site in question.

4.3 go

Profiling showed that 709MB of the 732MB allocated during the go bench-
mark occurs within 296 calls togetmove from the main loop. None of these
objects escapes because scalar fields are used to indicate the move that is
selected. The high volume of allocation made within each invocation means
that scoped regions only become worthwhile when the young generation is
sufficiently large to contain an entire scoped region – the technique is effec-
tive only with 8MB and 16MB heaps.

4.4 li

The profiles observed for the Lisp interpreter are the most complex of the
benchmarks we have tested. During the benchmark, the interpreter loads
and executes a series of Lisp programs by calling thexlload method.
Profiling revealed that 99% of storage was allocated within these calls.
However, there are only 20 calls made, and thus numerous young generation
collections would have occurred before a call returns. Another possible
annotation would be a call toevform which also corresponds to 99% of
allocation but which allocates only 50 bytes on average per call. However,
this is inappropriate because of the high number of calls (41M) and the fact
that the allocated storage is likely to be returned from the method.

We ultimately selected calls toevfun and doloop for annotation –
the former covers 99% of allocation with 2.4M calls and the latter covers
64% with 0.1M calls. At run-time, we reclaim a total of 1.2GB and 0.8GB
respectively – GCs occuring duringevfun limit the effectiveness of that
annotation and, of course, some nested calls involve both methods. The
performance results in Figure 9 are particularly encouraging for 1MB and
2MB young-generation sizes. With 8MB and 16MB young generations, the
cost of scope entry and exit dominates the cost of the garbage collections.

5. Related work
Tofte and Talpin introduced the idea of using a stack of allocation regions as
a mechanism for automatic storage management [19, 20]. In their original
design, allocations can be made into any region in the stack and storage
space is reclaimed by removing an entire region from the top of the stack
when it is certain that none of the objects contained in the region will be
accessed. For instance, temporary data used during a function’s evaluation
may be placed in a new region, but a data structure that is returned to the
function’s caller may be placed directly in the caller’s region (or indeed in
any older region).

They describe how region management annotations can be integrated
into ML-like languages and a region inference system can be added to
safely introduce these annotations automatically. The ability to allocate
into regions at multiple levels would lead to fragmentation with the kind
of sequential allocation used in our work and most run-time systems for
object-oriented languages.

The Real-Time Specification for Java (RTSJ) contains a form of allo-
cation region [4]. RTSJ describes this system in terms of run-time checks
performed on assignment, raising an exception should an old-to-new refer-
ence be created in terms of region ages. This design is more restrictive than
Tofte and Talpin’s because it is expressed in terms of the shape of the object
graph rather than the actual accesses made.

Deters and Cytron designed an algorithm for identifying RTSJ-style
scoped regions in Java programs [10]. Their algorithm is based on execution
traces and does not aim to be safe because the trace coverage may be
incomplete. However, a variant of their algorithm could provide an excellent
mechanism for automatically producing the annotations we require.

Cherem and Rugina designed a safe region analysis system for Java-
like languages [7]. It allows non-lexically scoped regions and, unlike RTSJ,
dangling references from regions where they can be shown to be safe. As
with Deters and Cytron’s design, combining static analysis with our own
scheme to eliminate write barrier operations would be a promising direction
for future work.

Qian and Hendren’s work on dynamically identifying non-escaping
objects using write barriers is similar to ours in that it allows allocations

4 The rules of chess say that a game is declared a tie if the same board
position occurs more than three times.

0

50

100

150

200

250

300

350

400

3.00E+07 3.05E+07 3.10E+07 3.15E+07 3.20E+07 3.25E+07 3.30E+07 3.35E+07 3.40E+07 3.45E+07 3.50E+07

Bytes allocated

H
e

a
p

 s
iz

e
 (

p
a

g
e

s
)

0

50

100

150

200

250

300

350

400

450

500

1.25E+09 1.26E+09 1.26E+09 1.27E+09 1.27E+09 1.28E+09 1.28E+09 1.29E+09 1.29E+09

Bytes allocated
H

ea
p

si
ze

 (p
ag

es
)

Figure 10. Heap size while executing part ofijpeg (left) and li
(right), both with a 1MB young generation. The dark line shows the
heap size solely using garbage collection and the light line shows
the size using scoped regions as well.

to be optimistically made in local regions, under the assumption that an
object will not esacpe [16]. Their design works without any annotations or
a statistics-gathering phase. However, it does so by associating a scoped
region with every static call site; we have only ever seen good performance
when annotations are placed judiciously. Their design also did not allow
allocation sites classified as ‘global’ to revert to allocating in a local heap.

Corry’s thesis, completed in parallel with our work, examines stack-
based memory management in object-oriented languages [9]. Unlike our
work, he associates scoped regions with loop iterations rather than with
method calls. This fits with some plausible scenarios for stack-based mem-
ory management; ultimately we would expect a practical system to support
both kinds of annotation (if only by re-factoring loop bodies into their own
methods). Corry designed analysis techniques and a simulation framework
for assessing different memory management policies (rather than an actual
implementation). It would be promising to combine the results of that work
with the practical run-time techniques that we have developed.

Buytaertet al. explored the link between program structure and GC
costs [5]. They used offline profiling to identify favorable collection points
(FCPs) at which the volume of live data is low. This is done using the
Merlin algorithm [14] to collect traces of object lifetimes which can then
be tied to method entry points. They saw substantial reductions in GC work
in SPECjvm98 benchmarks because collection at FCPs is cheap and overall
allows costly full-heap collections to be replaced by nursery collections.
In some cases these benefits are due to the cyclic nature of the benchmark
harness, but it is easy to imagine larger scenarios where the technique would
be valuable.

Buytaertet al.’s work is complementary to this paper because the two
schemes operate at different timescales. Buytaert’s results show that FCP-
based collection allows GC cylces to coincide with program work, with a
broadly unchanged number of GC cylces occuring. In contrast, our scoped
regions are effective over much shorter timescales within a single collection
cycle.

The use of escape analysis to enable on-stack allocation has often been
proposed. This is an attractive proposition for simple cases. However, it runs
into practical problems as well as those raised by the completeness of the

7 2006/6/20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

1 2 4 8 16

Young generation size (MB)

Re
cl

am
at

io
n

tim
e

(s
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

1 2 4 8 16

Young generation size (MB)

St
or

ag
e

m
an

ag
em

en
t t

im
e

(s
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 4 8 16

Young generation size (MB)

To
ta

l t
im

e
(s

)

1. ijpeg (image compression and decompression) 45MB total allocation, originally 45 GC cylces (1MB young gen) .. 2 GC cylces (16MB
young gen).

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 4 8 16

Young generation size (MB)

Re
cl

am
at

io
n

tim
e

(s
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 4 8 16

Young generation size (MB)

St
or

ag
e

m
an

ag
em

en
t t

im
e

(s
)

0

1

2

3

4

5

6

7

8

1 2 4 8 16

Young generation size (MB)

To
ta

l t
im

e
(s

)

2. crafty (playing chess) 224MB total allocation, originally 224 GC cylces (1MB young gen) .. 14 GC cylces (16MB young gen).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 4 8 16

Young generation size (MB)

Re
cl

am
at

io
n

tim
e

(s
)

0

0.5

1

1.5

2

2.5

1 2 4 8 16

Young generation size (MB)

St
or

ag
e

m
an

ag
em

en
t t

im
e

(s
)

0

2

4

6

8

10

12

14

16

18

1 2 4 8 16

Young generation size (MB)

To
ta

l t
im

e
(s

)

3. go (playing go) 732MB total allocation, originally 732 GC cylces (1MB young gen) .. 45 GC cylces (16MB young gen).

0

1

2

3

4

5

6

7

1 2 4 8 16

Young generation size (MB)

Re
cl

am
at

io
n

tim
e

(s
)

0

1

2

3

4

5

6

7

8

1 2 4 8 16

Young generation size (MB)

St
or

ag
e

m
an

ag
em

en
t t

im
e

(s
)

0

10

20

30

40

50

60

1 2 4 8 16

Young generation size (MB)

To
ta

l t
im

e
(s

)

4. li (Lisp interpreter) 2.1GB total allocation, originally 2062 GC cylces (1MB young gen) .. 128 GC cylces (16MB young gen).

Figure 9. Timing results from four benchmarks. Within each graph, the results shown in the lightest (leftmost) bar are using scoped regions
as well as garbage collection with the defer/reclaim heuristic from Section 2.5, the second bar uses the simpler policy ofalways reclaiming
storage, the third bar has the run-time support for scoped regions included but does not use any annotated calls, whereas the darkest (rightmost)
bar is the original system using only garbage collection. The left hand four graphs record the time spent in storage reclamation (GC and scope
management). The center four record the time spent in storage management (GC, scope management, and page zeroing). The right hand four
graphs record total execution time.

8 2006/6/20

static analyses used: space further up a traditional stack cannot be reclaimed
and allocations in loops or during recursion may cause overflow.

Blanchet [3] and Choiet al. [8]’s recent papers discuss experiences in
this area. Blanchet’s results show that many objects can be stack allocated
in small benchmarks such as Dhrystone. In larger programs they still see
significant volumes of on-stack allocation, such as 43% (by volume) or 18%
(by count) in a run of thejavac compiler during which a total of about
7.5MB was allocated. Our results show much larger numbers of objects
being allocated in scoped regions, due to a combination of (i) avoiding
concern over stack overflow, (ii) being able to optimistically allocate objects
that may escape. This gap suggests that a combination of stack-allocation
and scoped regions would be effective: allocate on-stack where statically
safe and low in volume, and use scoped regions otherwise.

Analyses have also been designed to enable objects to be allocated in
thread-local storage. Domaniet al. allowed objects to be optimistically
managed as thread local (for instance, to elide synchronization) by asso-
ciating aglobal flag with each object which is maintained by the write bar-
rier [12]. Steensgaard’s escape analysis is notable in that it can also handle
some uses of static fields which do not allow objects to escape their cre-
ating thread [17]. Our design could readily be extended to multi-threaded
programs for which this kind of analysis is effective; however, few object-
oriented multi-threaded benchmarks currently exist to explore this direc-
tion.

6. Future work and conclusions
In this paper we have shown that a practical run-time system can be built
to support dynamically-checked allocation regions and can significantly re-
duce the time spent in storage management even when used with optimised
code, running applications that allocate large volumes of storage. Our re-
sults show that the technique is most effective when running with smaller
young generation sizes – reclamation using scoped regions reduces or elim-
inates the need for full collection cycles, allowing memory to be reclaimed
without scanning the threads’ stacks. Coupled with the restriction to single-
threaded use, the performance on small heaps suggests that scoped regions
may be most appropriate for devices with limited physical memory and
without parallelism in hardware – for instance managed code running on
mobile phones. As our results show, larger heaps allow traditional garbage
collection to operate efficiently (as one would expect given the asymptotic
costs involved).

There are several directions in which we would like to develop this
approach. Firstly, as we discussed in the previous section, we see this
approach as complementary to work on stack-allocating objects; we can use
scoped regions for objects that static analysis cannot prove as non-escaping
but which profiling suggests are unlikely to escape in practice.

Secondly, we would like to extend our system to support multi-threaded
applications beyond the simple uni-processor idea of abandoning the cur-
rent scoped regions on a context switch. Although assuming single threaded
execution is currently sufficient for many client-side applications, multi-
processor machines are increasingly common as, of course, is concurrency
within frameworks such as GUI systems.

There are two aspects to this problem. Firstly, our heap design assumes
a simple linear ordering of the ages of different scoped regions, both in
terms of the use of ownership values and in the address-based comparisons
made in the write barrier. In a multi-threaded system, threads would enter
and leave regions independently. Secondly, in the presence of concurrency,
deallocating a region may not be safe ifany of the objects contained in it
haveever been reachable from other threads – for instance, if a reference to
the object is assigned to a static field that is read by another thread, even if
the field is subsequently overwritten bynull).

Aside from the complementary static analyses for identifying thread-
local objects, another promising direction is integrating dynamic techniques
such as King’s optimistic heaplets [15]. An initial combined design could
introduce per-thread scoped regions within heaplets. Profiling would be-
come particularly important to distinguish between objects escaping to
other threads versus objects escaping to enclosing regions.

Finally, there is a synergy between our work on scoped regions and on-
going work on atomic transactions for shared-memory concurrency [13, 6]
– allocation scopes which coincide with, or are contained within, transac-
tional code can be treated as if they are single-threaded. That is safe because
these systems rely on forms of optimistic concurrency control in which ob-
jects remain thread-local until their allocating transaction commits.

References
[1] A LPERN, B., ATTANASIO, C. R., BURTON, J. J., BURKE, M. G.,

CHENG, P., CHOI, J.-D., COCCHI, A., FINK , S. J., GROVE, D.,
HIND, M., HUMMEL , S. F., LIEBER, D., LITVINOV, V., MERGEN,
M. F., NGO, T., RUSSELL, J. R., SARKAR, V., SERRANO, M. J.,
SHEPHARD, J. C., SMITH , S. E., SREEDHAR, V. C., SRINIVASAN ,
H., AND WHALEY, J. The Jalapeno Virtual Machine.IBM Systems
Journal 39, 1 (2000), 194–211.

[2] BAKER, H. G. Cons should not cons its arguments, or, a lazy alloc is
a smart alloc.SIGPLAN Not. 27, 3 (1992), 24–34.

[3] BLANCHET, B. Escape analysis for Java: Theory and practice.ACM
Trans. Program. Lang. Syst. 25, 6 (2003), 713–775.

[4] BOLLELLA , G., BROSGOL, B., DIBBLE, P., FURR, S., GOSLING, J.,
HARDIN, D., TURNBULL, M., AND BELLIARDI , R. The Real-Time
Specification for Java. Addison Wesley, June 2000.

[5] BUYTAERT, D., VENSTERMANS, K., EECKHOUT, L., AND BOSS-
CHERE, K. D. Garbage collection hints. InHiPEAC 2005 Interna-
tional Conference on High Performance Embedded Architectures and
Compilers, LNCS 3793 (Nov. 2005), pp. 233–248.

[6] CARLSTROM, B. D., CHUNG, J., CHAFI, H., MCDONALD, A.,
MINH, C. C., HAMMOND , L., KOZYRAKIS, C., AND OLUKO-
TUN, K. Transactional execution of Java programs. InPro-
ceedings of the OOPSLA 2005 workshop on Synchronization
and Concurrency in Object-Oriented Lanaguages (SCOOL) (Oct.
2005). Also available in the University of Rochester digital archive
http://hdl.handle.net/1802/2096.

[7] CHEREM, S., AND RUGINA, R. Region analysis and transformation
for Java programs. InISMM 2004: Proceedings of the 4th Interna-
tional Symposium on Memory Management (2004), pp. 85–96.

[8] CHOI, J.-D., GUPTA, M., SERRANO, M. J., SREEDHAR, V. C., AND

MIDKIFF, S. P. Stack allocation and synchronization optimizations
for Java using escape analysis.ACM Trans. Program. Lang. Syst. 25,
6 (2003), 876–910.

[9] CORRY, E. Stack Allocation for Object-Oriented Languages. PhD
thesis, Department of Computer Science – Daimi, University of
Aarhus, June 2004.

[10] DETERS, M., AND CYTRON, R. Automated discovery of scoped
memory regions for real-time Java. InISMM 2002 Proceedings of
the Third International Symposium on Memory Management (Berlin,
June 2002), pp. 25–35.

[11] DETLEFS, D., FLOOD, C., HELLER, S., AND PRINTEZIS, T.
Garbage-first garbage collection. InISMM 2004: Proceedings of
the 4th International Symposium on Memory Management (New
York, NY, USA, 2004), ACM Press, pp. 37–48.

[12] DOMANI , T., GOLDSHTEIN, G., KOLODNER, E. K., LEWIS, E.,
PETRANK, E., AND SHEINWALD , D. Thread-local heaps for Java.
In ISMM 2002: Proceedings of the 3rd International Symposium on
Memory Management (New York, NY, USA, 2002), ACM Press,
pp. 76–87.

[13] HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. InObject-Oriented Programming, Systems, Langauges
& Applications (OOPSLA ’03) (Oct. 2003), pp. 388–402.

[14] HERTZ, M., BLACKBURN, S. M., MOSS, J. E. B., MCKINLEY,
K. S., AND STEFANOVIĆ, D. Error-free garbage collection traces:
how to cheat and not get caught.SIGMETRICS Perform. Eval. Rev.
30, 1 (2002), 140–151.

[15] KING, A. C. Removing Garbage Collector Synchronisation. PhD
thesis, University of Kent at Canterbury, September 2004.

[16] QIAN , F., AND HENDREN, L. An adaptive, region-based allocator for
Java. InISMM ’02: Proceedings of the 3rd International Symposium
on Memory Management (June 2002), pp. 127–138. A longer version
of this paper appears as Sable Technical Report 2002-1.

[17] STEENSGAARD, B. Thread-specific heaps for multi-threaded
programs. InISMM 2000: Proceedings of the 2nd international
symposium on Memory management (Oct. 2000), pp. 18–24.

9 2006/6/20

[18] STEFANOVIĆ, D., HERTZ, M., BLACKBURN, S. M., MCKINLEY,
K. S., AND MOSS, J. E. B. Older-first garbage collection in practice:
evaluation in a Java Virtual Machine. InMSP 2002: Proceedings of
the workshop on Memory System Performance (2002), pp. 25–36.

[19] TOFTE, M., AND TALPIN, J.-P. Atheory of stack allocation in
polymorphically typed languages. Tech. Rep. Computer Science
93/15, University of Copenhagen, July 1994.

[20] TOFTE, M., AND TALPIN, J.-P. Region-based memory management.
Information and Computation 132, 2 (Feb. 1997), 109–176.

[21] UNGAR, D. M. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm.ACM SIGPLAN Notices
19, 5 (Apr. 1984), 157–167.

10 2006/6/20

