
Revocable Locks for Non-Blocking Programming

Tim Harris
Microsoft Research

7 J J Thomson Avenue
Cambridge, UK, CB3 0FB

tharris@microsoft.com

Keir Fraser
University of Cambridge Computer Laboratory

15 JJ Thomson Avenue
Cambridge, UK, CB3 0FD

keir.fraser@cl.cam.ac.uk

ABSTRACT
In this paper we present a new form of revocable lock that
streamlines the construction of higher level concurrency ab-
stractions such as atomic multi-word heap updates. The
key idea is to expose revocation by displacing the previous
lock holder’s execution to a safe address. This provides mu-
tual exclusion without needing to block threads. This brings
many simplifications, often removing the need for dynamic
memory management and letting us strip operations from
common-case execution paths. As well as streamlining al-
gorithms’ design, our results show that the technique leads
to improved performance and scalability across a range of
levels of contention.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming – Parallel programming; D.3.2 [Programming Lan-
guages]: Language Classifications – Concurrent, distributed,
and parallel languages; D.4.1 [Operating Systems]: Pro-
cess Management – Concurrency; Synchronization; Threads

General Terms
Algorithms, Experimentation, Performance

Keywords
Non-blocking algorithms, locks, transactional memory

1. INTRODUCTION
It is hard to build scalable concurrent programs using ordi-
nary locks. To ensure correctness programmers must iden-
tify which operations are conflicting. To ensure liveness they
must avoid introducing deadlock or priority inversion. To
ensure good performance they must balance the granularity
at which locking is performed against the number of locks
that threads need to acquire and release.
To sidestep these problems, alternative abstractions have

been developed to provide atomic multi-word updates [12,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-080-9/05/0006 ...$5.00.

16, 6, 11]. For instance, in recent work we showed how
to provide atomic code blocks of the form atomic { S }
in a high level language: the statements in S and all of
the methods that they call are performed atomically with
respect to other code [11, 10]. This abstraction allows single-
threaded operations to be made safe for multi-threaded use.
However, although software implementations of atomic

blocks can scale well, they have high baseline performance
costs – around a factor-of-two overhead in uniprocessor cases
is typical. Our research is looking at how much we can re-
duce these costs: if they are unavoidable then that provides
motivation for hardware support [17, 25]. If costs can be
reduced then that suggests hardware resources should be
deployed elsewhere.
In this paper we make three contributions to the con-

struction of non-blocking multi-word updates. Firstly, in
Section 2 we introduce a new taxonomy of the problems
involved, dividing them into partial update problems and de-
layed operation problems. The former are usually easy to
solve, but the latter are insidious.
Secondly, in Section 3, we define a new form of revocable

lock which allows us to avoid delayed operation problems.
The key novelty is in how conflicts are managed: if a

thread A attempts to acquire a lock held by thread B then the
lock is passed to A and, atomically with this, B’s execution
is displaced to a recovery function which B specified when it
acquired the lock. Typically, the recovery code would either
propagate revocation as a higher level failure (for instance,
returning failed to commit in a transactional memory im-
plementation), or it would retry the operation (after some
contention-management delay to avoid live-locking with A).
As with ordinary locks, it is usually profitable for A to spin

briefly in the hope that B releases the lock before the heavy-
weight revocation operation proceeds. We describe three
implementation schemes based on widely available operat-
ing system support.
Our final contribution, in Section 4, shows how revoca-

ble locks can be used to streamline the implementation of
two non-blocking algorithms from the literature: Green-
wald’s two-handed emulation and our own word-based soft-
ware transactional memory (STM). We obtain major sim-
plifications to both algorithms and, as our results show in
Section 5, these yield improved performance and scalability
across a wide range of workloads.
Revocable locks are not intended for direct use by applica-

tion programmers in the ways that atomic regions, mutexes,
semaphores or barriers may be used. Rather, they are for
use within the implementation of these higher level abstrac-

72



tions. For instance, we use a revocable lock just within the
implementation of an STM commit operation: we do not
need to hold such a lock through a complete transaction.
This allows us to make clear simplifications in building re-
vocable locks – in particular, we allow threads to hold at
most one such lock at a time.
The performance improvements we achieve come from the

fact that the ability to revoke locks allows us to safely sim-
plify the common-case paths through the abstractions that
we build using them, at the expense of high costs when re-
vocation is actually performed. However, as we quantify in
our results, we expect revocation to be extremely rare and so,
as Amdahl’s law suggests, it is a trade-off worth making.
We believe this is an acceptable assumption to make – the

same assumption is made when using optimistic concurrency
in the kind of non-blocking data structures that we can build
using revocable locks. In cases where contention is high, one
could switch to ordinary mutexes and use logging for roll-
back as Welc et al have suggested [27].

2. NON-BLOCKING ALGORITHMS
Non-blocking algorithms have been studied as a way of avoid-
ing the problems caused by traditional locks [13]. For in-
stance, recent algorithms for performing atomic multi-word
updates are examples of non-blocking designs [12, 16, 6, 11].
A system is non-blocking if the suspension or failure of any
number of threads cannot prevent the remainder of the sys-
tem from making progress. This provides robustness against
poor scheduling decisions as well as against arbitrary thread
termination. It naturally precludes the use of ordinary locks
because, unless a lock-holder continues to run, the lock can
never be released.
In common with most contemporary work on non-blocking

systems, we assume the existence of a single word compare-
and-swap operation (CAS):

Single-word CAS operation
word t CAS(addr t a, word t o, word t n)

This operation atomically reads from memory address a and,
if the value seen is equal to o it updates the location to hold
n. It returns the value that it read from memory. CAS
is implemented in hardware on SPARC, IA-32 and IA-64
processors and it can readily be constructed on Alpha, MIPS
and PowerPC architectures.

2.1 Problems in non-blocking design
It is possible to identify two kinds of difficulty which occur
when building non-blocking algorithms. The first are par-
tial update problems which occur because new operations can
start at any point and may therefore interact with partially-
complete updates being performed by other threads. This
means that system invariants must be maintained by each
individual step of an update, rather than just by the op-
eration as a whole. It also means that sufficient informa-
tion must be available for threads encountering a partial
update to either complete the operation (giving lock-free
behaviour [13]) or to undo it (giving obstruction-free be-
haviour [15]). These problems can be readily solved by hav-
ing threads publish their intentions in shared memory before
starting to perform an operation ([12, 16, 6, 11] give numer-
ous illustrations).

The second, and more severe, difficulty stems from what
we term delayed operation problems. These occur because,
once started, there is no guarantee about when the scheduler
will actually select a given thread for execution. This means
that, for any instruction reachable during an operation, the
scheduler can potentially run the thread to that point, pre-
empt it, and then resume at that instruction at any time
in the future. Non-blocking algorithms must be designed so
that the effect of any delayed operation is benign.
As an example, consider the insertion of a new node hold-

ing the value 15 into a sorted singly-linked list currently
holding nodes with values 5, 10, 20 and 25. The insertion
can proceed in three steps. Firstly, the predecessor and suc-
cessor are identified in the usual way:

10

pred succ

5 20 25

Next, the new node is prepared in thread-private storage:

105 20 25

15

Finally, a CAS is used to splice the new node into the list
between the predecessor and the successor:

105

15

20 25

This example illustrates the three kinds of delayed operation
problem:

• Delayed reads can cause segmentation faults if the ad-
dress being accessed is no longer valid. For instance, a
thread cannot free the memory containing the 5 node
while it might be seen by threads traversing the list.
Solutions include the use of garbage collection or tech-
niques based on threads publishing sets of objects that
they may access in the immediate future [20, 14].

• Delayed writes are more problematic: they have the
potential to update the contents of a memory loca-
tion. The usual way of making these writes benign is
to arrange that they do not affect the logical state of
the system even though they update its physical rep-
resentation. For instance, the writes which initialise
the 15 node are made to thread-private storage and
will not be seen by other threads until the insertion is
complete.

• Delayed CASs can cause segmentation faults as before
and, in addition, can update the contents of a mem-
ory location if it holds the expected value specified by
the CAS. In many cases designers must avoid so-called
A-B-A problems [21] in which a thread is about to per-
form a CAS conditional on a location holding a value
A, but then a series of operations by other threads
changes the value to B and then back to A allowing
the delayed CAS to succeed even though the update
may no longer be correct. Typical solutions to A-B-A
problems are to avoid re-using values while there may

73



be delayed CASs conditional on them – for instance,
during this insertion it would be unsafe to re-use the
storage holding the 20 node.

With these kinds of problem in mind, we can view the use of
traditional locks and conventional non-blocking techniques
as two points in a design space. At one extreme, locking
provides a way for preventing partial updates from being
visible and for preventing delayed operations from occur-
ring. At the other extreme, non-blocking designs without
locking require the programmer to make the algorithm ro-
bust against both kinds of problem.

3. REVOCABLE LOCKS
In this paper we introduce a new kind of non-blocking revo-
cable mutual-exclusion lock which allows us to avoid delayed
operation problems and thereby simplify non-blocking sys-
tems’ design. As with conventional mutexes, these new locks
allow at most one thread to hold them at any instant in time.
However, if a thread A attempts to acquire a lock held by B

then, instead of blocking A, the lock is revoked from B and
passed on to A. Before A’s lock-acquire operation returns, B’s
execution is displaced to a recovery function that B supplied
when it acquired the lock.
As Figure 1 indicates, these semantics provide a middle-

ground between using traditional mutexes and attempting
to build non-blocking algorithms without any form of locks.
They are sufficient to avoid delayed operation problems be-
cause at most one thread can execute code protected by each
lock at any time: revocation has the effect of canceling de-
layed operations which would otherwise occur. Of course,
revocation can occur at any stage through a lock-holder’s
operation and so this means that we cannot prevent partial
updates from being visible.
By avoiding delayed operations we get a number of sim-

plifications in the examples that we have studied. In these
examples we typically associate a revocable lock with some
form of operation descriptor structure in which a thread sets
out the details of a multi-word operation that it is perform-
ing. The lock holder is responsible for performing this op-
eration and has sole use of the structure. This lets us:

• replace dynamic heap allocation with static or on-stack
allocation,

• avoid the need for tracing garbage collection, or for
reference counting the operation descriptors (with its
attendant costs in terms of memory write barriers),

• safely assume that the contents of descriptors are un-
changed by other threads, meaning that we can replace
many CAS operations by direct updates, and change
many other double-word CAS operations into single-
word variants.

We describe these cases in more detail in Section 4. We have
yet to find an algorithm which requires more than a single
revocable lock per thread – revocable locks are typically only
used within critical parts of library functions, for instance in
building the commit operation of an STM, or the contended
lock-acquire case of a mutex implementation. We would
not expect a thread to hold a revocable lock between libary
calls – for instance while executing a software transaction,
or while holding or blocking on an ordinary mutex.

Partial updates Delayed operations
visible possible

Traditional locks No No
Revocable locks Yes No

No locks Yes Yes

Figure 1: Revocable locks provide a middle-ground
between traditional locks and the direct construc-
tion of non-blocking algorithms.

3.1 Hold-release operations
In our current design we associate revocable locks with heap
locations and provide operations to access a data item at
that location along with operations to lock and unlock it.
Four operations are provided in total:

Hold-release operations
hr word t HRRead(addr t a)
void HRWrite(addr t a, hr word t w)
void HRHold(addr t a, pc t r)
void HRRelease()

HRRead and HRWrite correspond to conventional reads and
writes. The data values they deal with are of type hr word t

which, in the implementations we present in Section 3.2, is
an ordinary machine word with one bit reserved.
The third operation, HRHold, acquires a revocable lock on

the location a. The lock is held until either (i ) the thread re-
leases it with a HRRelease operation, (ii ) the thread invokes
HRHold on a different location, or (iii ) the lock is revoked
by another thread performing a HRWrite or HRHold opera-
tion on the same location. If the lock is revoked then the
program counter of the thread holding it is moved to the
revocation target r.

3.2 Implementation of hold-release operations
In this section we describe three software-based implementa-
tions of the hold-release operations. In all cases, heap loca-
tions acted on by these operations have a single reserved bit:
ordinarily this is 0 and said to be unmarked; if the location
is held then it is 1 and said to be marked. The operations
MARK, UNMARK and IS MARKED are used to set, clear and in-
terrogate such bits and are implemented using the obvious
bit-wise operations.
If a location is not held then its contents are stored di-

rectly in it as an unmarked value. If a location is held then
it contains a marked pointer to a statically allocated per-
thread structure of the holder. The format of this struc-
ture is shown in Figure 2 (hr per thread t). If addr is
non-NULL then it indicates the address currently held by
the thread and displaced holds the value logically held
at that location. The two counters, holds started and
holds completed are incremented respectively before and
after the thread performs a HRHold operation.
In each of our three implementations the representation

used in memory is the same; the differences lie in how re-
vocation is implemented. We exploit this commonality by
presenting the implementation in two stages, firstly using a
FETCH operation which returns the current contents of the
address after revoking any thread holding it, and secondly
by showing showing how FETCH is implemented.

74



struct {
addr t addr;
word t displaced;
int holds started;
int holds completed

} hr per thread t;

hr word t HRRead(addr t a) {
if (a == st −> addr) {

return st −> displaced;
} else {

do {
owner = *a;
if (IS UMMARKED(owner)) return owner;
holds started = owner −> holds started;
if (owner −> addr == a) {

val = owner −> displaced;
if (owner −> holds completed ==

holds started) {
return val;

}
}

} while (TRUE);
}

}

void HRWrite(addr t a, hr word t w) {
if (a == st −> addr) {

st −> displaced = w;
} else {

do {
expected = FETCH (a);

} while (CAS(a, expected, w) != expected);
}

}

void HRHold(addr t a, pc t d) {
HRRelease();
st −> holds started ++;
do {

expected = FETCH(a);
st −> addr = a;
st −> displaced = expected;

} while (CAS(st −> addr, expected, MARK(st)) != expected);
st −> holds completed ++;

}

void HRRelease() {
if (st −> addr != NULL) {
*(st −> addr) = st −> displaced;
}
st −> addr = NULL;

}

Figure 2: Implementation of the hold-release oper-
ations. FETCH performs revocation where necessary.
The identifier st refers to the per-thread data struc-
ture of the current thread.

FETCH operation
hr word t FETCH(addr t a)

HRRead and HRWrite act on displaced if the thread holds
the indicated location. Otherwise, for HRRead, there are two
cases to consider: if the value in the location is unmarked
then it can be returned directly, if the value is marked then
the value from the owner’s displaced field is returned. The
owner’s holds started and holds completed fields are used

to allow the reader to take a consistent snapshot of the addr
and displaced fields.
HRWrite proceeds in two stages if the invoker does not

hold the indicated location. The first stage is to FETCH the
location, meaning to revoke the current holder (if any) and
to return the location’s current value. The second stage is
to perform a CAS on the location from the value FETCHed
to the new value: this ensures that the location has not
become held again since retrieving its value. HRHold also
uses a FETCH operation: the location is fetched, the caller’s
structure is updated and then a CAS is used to install a
marked pointer to the structure. Figure 2 provides pseudo-
code implementing these operations.
The first implementation of FETCH is a straightforward one

which does not provide non-blocking behaviour: instead of
performing revocation, the fetcher waits until it reads an
unmarked value from the location.
The second implementation, for Solaris UNIX, does al-

low revocation. It uses the /proc/ interface to suspend the
thread currently holding a location and then to update its
PC to its revocation target. In order to prevent deadlocks,
for instance two threads suspending each other at the same
time, a process-wide lock is employed to allow at most one
thread to be performing a suspend operation at any time.
This prevents the implementation from being non-blocking,
however, we do not believe that this is a practical concern
in a multi-threaded application running in a single process.
We use the schedctl interface to discourage a thread hold-
ing the suspension lock from being descheduled. Similar fa-
cilities for thread suspension and control exist in the Win32
Platform SDK and other operating systems.
The third implementation, again for Solaris UNIX, allows

revocation and is non-blocking. In it, each thread runs a
separate copy of any functions executed while holding a re-
vocable lock. Revocation is implemented by using mprotect

to remove execute permission from the page holding the
owner’s copy of the functions.
In our performance results in Section 5 we use a hybrid

scheme in which threads spin for a short while, waiting for
the current holder of a location to release it voluntarily, be-
fore taking a slow path which uses the /proc/ interface to
revoke them. As with common implementations of mutual
exclusion locks, this anticipates that the incumbent is likely
to release the location in the near future. Even a modest
spin limit (1000 iterations of a tight loop) is sufficient to
make the slow path virtually never executed: the heavy-
weight cost of taking it is rarely incurred. We quantify this
in Section 5.

4. USING HOLD-RELEASE OPERATIONS
In this section we consider two example non-blocking data
structures from the literature and show how their design can
be simplified by using revocable locks. The purpose of this
is to demonstrate that revocable locks provide a general so-
lution to delayed operation problems and that algorithms
designed using it are simplified and more ‘clearly correct’
than their original counterparts. In Section 4.1 we consider
Greenwald’s two handed emulation scheme and then in Sec-
tion 4.2 we consider our word-based STM [11].

4.1 Two-handed emulation
In his paper at PODC 2002, Greenwald introduces the mech-
anism of two-handed emulation as a way of simplifying the

75



(a) (b) (c) (d)

10 30

20

insert(20)

step 0

node:

op:list:

10 30

20

insert(20)

step 0

10 30

20

insert(20)

step 1

10 30

20

insert(20)

step 2

Create update record (op) DCAS(&op -> step, 0, 1, DCAS(&op -> step, 1, 2, DCAS(&op -> step, 2, 3,

and node in private storage &node->pred->succ, &node->succ->pred, &list->op,

node->succ, node) node->pred, node) op, NULL)

CAS(&list->op, NULL, op)

Figure 3: Insertion of a node into a doubly-linked list using two-handed emulation. Shaded boxes indicate
the locations that are to be accessed by a CAS or DCAS in the current step.

(a) (b) (c) (d)

10 30

20

insert(20)

step 0

10 30

20

insert(20)

step 0

10 30

20

insert(20)

step 2

10 30

20

Construct update record
and new node in private
storage. Hold list->op

Publish update record in
case of contention

Perform updates using
ordinary reads and writes

Remove update record,
then release hold on
location

Figure 4: Insertion of a node into a doubly-linked list using hold-release operations. The grey rectangle
indicates the location being held. Other memory accesses use ordinary read and write operations. DCAS is
not required.

construction of non-blocking data structures [8]. Greenwald
posits that his design provides evidence in favour of hard-
ware support for a double-word compare-and-swap (DCAS)
operation which takes six parameters:

Double-word CAS operation
bool t DCAS(addr t a1, word t o1, word t n1,

addr t a2, word t o2, word t n2)

DCAS acts as a double-word version of CAS, checking the
contents of addresses a1 and a2 against o1 and o2 and, if
both addresses hold their expected values, updating them
with n1 and n2 respectively. In general DCAS returns a
boolean result indicating success or failure. Although many
published algorithms use it, DCAS has not been supported
in hardware since the Motorola 68k processor family [1].
To perform non-blocking updates using two-handed emu-

lation, each shared data structure is augmented with a cur-
rent operation field. If any thread is performing an operation
on the structure then this field points to a record describing
the operation being done and how far that operation has
progressed through a series of steps. An operation proceeds
by using DCAS to increment the step counter while per-
forming an update relating to the current step. The ‘two
hands’ refer to the two atomic accesses which DCAS is able
to make at each step. The scheme leads to a non-blocking

implementation because if a thread A encounters thread B

performing an operation which obstructs it, then A can help
B complete its operation. The step counters avoid delayed
operations during this helping.
For instance, Figure 3 shows how a thread performing

an insertion into a doubly-linked list could proceed. Step
(a) installs an operation record describing the insert. Step
(b) links the new node in the ‘forward’ direction. Step (c)
links the node in the ‘reverse’ direction. The final step, (d),
removes the operation record.
However, the use of DCAS makes this design ineffective

for two reasons. Firstly, no modern processor provides a
hardware implementation of DCAS. Although software im-
plementations exist, they expand each DCAS into a series
of CAS operations (7 in the original design [12]) and require
temporary dynamically allocated data structures. Secondly,
in cases where contention is rare, the processor’s ability to
re-order memory accesses will be constrained by the need to
serialise the execution of the DCAS operations.
In contrast, an implementation of insertion in doubly-

linked lists can be developed using hold-release without need-
ing DCAS. The new design proceeds using the same basic
steps as two-handed emulation, but with the thread per-
forming the insertion holding list->op. This ensures that
that thread remains the only one acting on the data struc-
ture.

76



Figure 4 shows the resulting steps. Note that the opera-
tion record must still be published in the list structure in or-
der to give non-blocking behaviour: it allows other threads,
after revoking the hold, to continue the operation that was
in progress. However, the design based on hold-release can
use ordinary memory accesses to make the actual updates to
the data structure and to the step counter without needing
either CAS or DCAS. In some algorithms – although not in
this list-based example – it may still be necessary to refactor
the design to make each step idempotent since steps are no
longer performed atomically with the step count updates.

4.2 Streamlined STM
In this section we show how the hold-release operations can
be used to produce a streamlined word-based STM based
on our design at OOPSLA 2003 [11]. After presenting the
interface that the STM exposes we outline the common-case
implementation of the STM for non-contended transactions
in Section 4.2.1. Then, in Section 4.2.2 we discuss contended
heap accesses and show how the hold-release operations can
be used to avoid the delayed operation problems that occur.
Four operations are provided for transaction management:

Transaction management
void TransactionStart()
void TransactionAbort()
boolean TransactionCommit()
boolean TransactionValidate()

These have their usual meaning in transaction processing.
Invoking TransactionStart begins a new transaction within
the executing thread. TransactionAbort aborts the trans-
action in progress by the executing thread. TransactionCommit
attempts to commit the transaction in progress by the exe-
cuting thread, returning true if this succeeds and false if it
fails. TransactionValidate indicates whether the current
transaction would be able to commit.
Two operations are provided for performing memory ac-

cesses within a transaction:

Memory accesses
word t TransactionRead(addr t a)
void TransactionWrite(addr t a, word t w)

The memory locations accessed through TransactionRead

and TransactionWrite are disjoint from those accessed di-
rectly through ordinary read and write operations.

4.2.1 Non-contended transactions
The STM uses a form of optimistic concurrency control with
a commit operation based on version numbering. Transac-
tions initially execute in private, building up values in a
transaction descriptor which sets out the memory accesses
that it has performed. We indicate such accesses using the
notation a1:(o,vo)->(n,vn) to indicate an access to heap
address a1 updating it from value o at version number vo

to value n at version number vn. For a read-only access,
n==o and vn==vo. For an update, vn==vo+1. Additionally,
the descriptor has a status field indicating that it is either
ACTIVE, COMMITTED or ABORTED.
The TransactionCommit operation then attempts to val-

idate these updates and, if successful, atomically exposes
them to other threads. The STM uses a set of owner-
ship records (orecs) to co-ordinate concurrent validation and

Application
heap

Transaction
descriptors

Ownership
records

a2

r1a1

200

100

r2 version 21

t1

Status: ACTIVEversion 15

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

(a) The transaction executes in private until it at-
tempts to commit.

a2

r1a1

200

100

r2 version 21

t1

Status: ACTIVE

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

version 15

a2

r1a1

200

100

r2

t1

Status: ACTIVE

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)
version 21

(b) CAS is used to acquire ownership records r1 and
r2, replacing the expected version number with a
pointer to the transaction descriptor.

a2

r1a1

200

100

r2

t1

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

Status: ACTIVE

(c) CAS is used to set the status to COMMITTED.

a2

r1a1

r2

t1

Status: COMMITTED200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

(d) The updates are written back to the heap.

a2

r1a1

r2

t1

Status: COMMITTED200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

a2

r1a1

r2

t1

Status: COMMITTED200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

version 16

(e) Ownership is released on r1 and r2, installing the
new version numbers.

Figure 5: An uncontended commit swapping the
contents of a1 and a2. Grey boxes show where CAS
operations are to be performed at each step. While
an orec is owned, the logical contents of the locations
involved are available via the transaction descriptor.

77



commit. An ownership function maps each heap address to
an associated orec – this may be a many-to-one mapping
and, in our implementation, we simply take a fixed number
of the significant low-order bits of the heap address. Each
orec either holds a reference to the transaction currently
owning it, or it holds a version number indicating how many
updates have been committed to locations associated with
the orec.
An uncontended transactional commit proceeds in four

stages. In the first stage it acquires ownership of the orecs
associated with the locations that it has accessed, installing
a pointer to the transaction descriptor in each of them us-
ing CAS. This serves two purposes: as well as acquiring
ownership, it confirms that each orec held the version num-
ber expected by the transaction. In the second stage the
transaction’s status is set to COMMITTED using CAS. This is
the point at which the update appears to occur atomically:
threads reading from the locations while they are owned will
take values from the owner’s transaction descriptor on the
basis of the status field. This single update therefore has
the effect of atomically updating the logical contents of all
of the locations involved.
In the third stage the transaction’s updates are made to

the heap. Finally, in the fourth stage, it releases ownership
of the orecs it acquired, updating the version numbers.
Figure 5 illustrates this process for a transaction which is

attempting to swap the contents of heap addresses a1 and
a2.

4.2.2 Delayed operation problems due to contention
Contended heap accesses pose two problems. Firstly, a call
to TransactionRead or TransactionWritemay be performed
on an address whose orec is currently owned, meaning that
the version number is not directly available and that the
value held in the location may be out of date (for instance
just after the state shown in Figure 5(c)). This can be dealt
with by obtaining the information from the owning transac-
tion descriptor.
The more insidious problem is that one thread A per-

forming TransactionCommit may encounter an orec which
is already owned by another thread B. In order to get non-
blocking behaviour it must be possible for A to continue with
its commit without having to wait for B. There are a num-
ber of cases to consider based on the state of B’s transaction
descriptor:

• If B’s transaction descriptor is currently ACTIVE then
A can set it to ABORTED using CAS. This gives rise to
potential A-B-A problems which prevent descriptors
from being re-used directly: re-use would allow a de-
layed CAS by A to abort a subsequent transaction by
B.

• If B’s transaction descriptor is already set to ABORTED

then A can proceed to unlink B from the orecs that
it acquired. This unlinking step again gives rise to
potential A-B-A problems if the descriptor were re-
used while A was unlinking a previous version of it.

• If B’s transaction descriptor is currently COMMITTED

then A cannot revoke B’s ownership: B may be per-
forming its updates to the heap (Figure 5(d)) and,
even though A may perform those updates on behalf
of B, there is nothing to prevent B being scheduled at

some time in the future and performing the updates a
second time.

In the first two cases, A-B-A problems can be dealt with
by reference counting descriptors in order to prevent re-use.
This requires that descriptors are dynamically allocated and
adds reference counting operations (and associated memory
barriers) to the STM’s implementation.
In the third case, delayed writes can be made benign by

avoiding unlinking a transaction descriptor from an owner-
ship record until it is certain that no delayed writes may
exist. This is done by adding an ownership count to each
orec, holding the number of threads which may be perform-
ing writes to locations associated with that orec (i.e. step
(d) in Figure 5). The version number is only restored to the
orec when the count reaches zero. When one thread wishes
to steal an orec from another, the thief merges the victim’s
transaction descriptor into its own and then performs an
atomic update to swing ownership to the new record and to
increment the ownership count.
This scheme based on stealing has three problems. Firstly,

each orec must be large enough to accommodate the count
field as well as a pointer to the owning transaction descrip-
tor. This means that double-word-width CAS must be used
to update them.
Secondly, if a thread is preempted while holding owner-

ship records then, although others can make progress by
stealing ownership, the orecs involved cannot be released
until the original thread resumes execution. This slows
TransactionRead operations to locations managed by the
orec because they must search the transaction descriptor
rather than being able to read directly from the heap.
Finally, when merging transaction descriptors before steal-

ing ownership, the thief must ensure that sufficient space
exists in their descriptor to accommodate the new entries.

4.2.3 Using hold-release
The hold-release operations provide a remarkably simplified
mechanism for avoiding these delayed operation problems.
During a commit operation, each thread holds the status
field of the transaction descriptor that it is working on. This
means that, while the thread is still executing the commit
operation, it can be certain that it is exclusively responsible
for performing the operations set out in the transaction de-
scriptor: in Figure 5 stages (b)–(e) are all performed while
holding the descriptor.
If a thread A encounters an orec owned by another thread

B then A releases the status field on its own transaction de-
scriptor and instead takes hold of the status field of B’s de-
scriptor. At that point, it can be certain that it is the only
thread acting on B’s descriptor because B will have been dis-
placed to its revocation target. Once A has completed B’s
operation it can release the status field of B’s descriptor, take
hold of its own, and re-try its original commit operation.
In effect, the transaction descriptors are used to represent

pieces of work which some thread wishes to perform. The
revocable locks provide a way to ensure that at most one
thread is performing the work specified in a given descriptor
at a given time. This lets us make a series of simplifications
to the implementation of the STM:

• Transaction descriptors can be statically allocated and
a thread can immediately re-use its descriptor after
committing a previous update in it.

78



The single-ownership enforced by hold-release takes
the place of memory management schemes such as ref-
erence counting, PTB [14] or SMR [20] in preventing
A-B-A problems caused by delayed CAS instructions.
This simplification (i ) removes memory management
operations from the commit code, (ii ) means that a
thread can continually re-use the same descriptor, per-
haps giving improved data-cache locality and (iii ) re-
moves a level of indirection between a per-thread struc-
ture and that thread’s current descriptor.

• Since revocation prevents delayed writes, it is no longer
necessary to allow multiple threads to own the same
orec at the same time. This removes the need for own-
ership counts in the orecs and removes the need to
merge updates from one descriptor into another.

This simplifies the acquire and release steps (b) and (e)
and, in our implementation, means that orecs can be
updated with a single-word CAS rather than a double-
word CAS.

5. RESULTS
In this section we evaluate the performance of a system built
using revocable locks. We are concerned with two aspects of
performance: the overall run-time of a variety of workloads
and the likelihood of needing to perform a lock revocation.
Our baseline is a non-blocking implementation of the STM

design from Section 4 built directly from CAS. This incor-
porates a number of low-level optimisations which are not
present in the published algorithms. Instead of being a single
table, the orecs are split into page-sized chunks with a main
table giving the address of each chunk. This lets chunks
be distributed throughout the memory on a ccNUMA ma-
chine in order to reduce contention in the interconnect. We
also use a ‘second chance’ commit operation for read-only
transactions: a read-only transaction can commit if all of
the locations accessed still contain the values seen, even if
the version numbers seen are no longer current. We com-
pare this baseline against the equivalent STM built using
revocable on each transaction descriptor.
We use a 106-processor ccNUMA SunFire e15k machine

and perform experimental runs with 1..96 processors on an
otherwise unloaded system. For workloads using small num-
bers of processors we confirmed that the results from this
machine were consistent with those from a 4-way SMP sys-
tem using the same processor family. In our tests we mea-
sure the CPU time required for each operation on a shared
data structure and present median-of-five results with error
bars indicating the minimum and maximum results seen.
We use two synthetic benchmarks built by implementing

red-black trees and skip lists over the word-based transac-
tional memory interface. A specified number of threads loop
performing insert, delete and lookup operations on the tree.
We can produce various forms of contention by varying (i )
the number of active threads, (ii ) the proportion of updates
versus reads, (iii ) the range of key values used.
The HRHold operation was configured to spin up to 1000

times before attempting revocation. As Figure 6 indicates,
this was sufficient to avoid almost all revocations. Notice
that, unlike two-phase locking with mutexes, our revoca-
ble locks are held only when committing a transaction, not
throughout the transaction’s execution. Furthermore, two
threads only contend for a revocable lock when they attempt

to access the same STM orec concurrently: this means that
non-conflicting commit operations will usually not contend
with one another.
Figure 7 compares the performance of the streamlined

STM with our original design when performing red-black
tree operations. The simplifications to the fast-path code
for uncontended updates reduce the mean time taken to per-
form a tree update by over 30% on a single-threaded work-
load. This speed-up remains typical on workloads with low
contention, for instance when performing operations with a
key space 0 . . . 220. The STM based on hold-release scales
better under higher contention than the original scheme –
with a key space 0 . . . 210 at most 12% of commit operations
fail when using hold-release, compared with over 18% when
using CAS directly.
Figure 8 presents similar results from a skip-list imple-

mentation over the two STM designs.

6. RELATED WORK
Herlihy and Moss first introduced the concept of a trans-
actional memory [17]. Their hardware design builds on ex-
isting multiprocessor cache-coherency mechanisms to buffer
accesses within a private transactional cache, the contents of
which are exposed to other CPUs and written back to main
memory at the end of a successful transaction.
Rajwar and Goodman explore similar implementation tech-

niques for automatically executing lock-based operations us-
ing hardware transactions [25]. As with their earlier work
on speculative lock elision, they suggest that the processor
can identify operations that are likely to be implementing
locks [24]. This allows existing lock-based code to be exe-
cuted.
These hardware schemes have the potential to allow very

fast commit operations. They also allow direct sharing of lo-
cations between transactional and non-transactional access.
However, they inevitably impose limits on the number of
locations which can be buffered within the CPU.
Shavit and Touitou proposed the first software-based non-

blocking transactional memory [26]. As with other early
designs, it used nesting LL/SC operations. These are not
directly supported by hardware and possible implementa-
tions, using basic LL/SC or CAS, operate by reserving per-
processor ‘valid’ bits or counters in each word [22] or by
having several per-processor data structures for each word
in the heap [18]. These space costs make the design imprac-
tical for general use.
Recently a number of practical STMs have been devel-

oped directly from CAS. As well as the word-based inter-
face studied here, other researchers have investigated object-
based STMs in which transactions ‘open’ the objects that
they are acting on and are provided with a private copy
which they then access directly. Usually each object is im-
plemented with an additional level of indirection from an
object header which points to the current contents of the
object: a commit operation updates the object headers in
a way that atomically installs the transaction’s updates as
the current versions of the objects. Herlihy et al designed
an obstruction-free object-based STM [16]. Fraser produced
a lock-free design [6]. Revocable locks could be applied to
either design: as in Section 4.2, one lock would be associated
with each transaction descriptor.
Other researchers have investigated using operating sys-

tem support to help the design of non-blocking systems.

79



 0

 20

 40

 60

 80

 100

 120

 140

101 102 103 104 105 106

C
P

U
 ti

m
e 

pe
r 

op
er

at
io

n 
/ µ

s

Spin limit

64 CPUs

16 CPUs

4 CPUs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

101 102 103 104 105 106

N
um

be
r 

of
 th

re
ad

 s
us

pe
ns

io
ns

 p
er

 o
pe

ra
tio

n

Spin limit

64 CPUs

16 CPUs

4 CPUs

(a) Operation duration (b) Number of thread suspensions

Figure 6: The impact of delaying a thread before attempting to revoke a held location. Threads execute
search, insert and delete operations on a skip list with keys uniformly picked from 0 . . . 210 and 75% read-only
operations.

 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60  70  80

C
P

U
 ti

m
e 

pe
r 

op
er

at
io

n 
/ µ

s

CPUs

Word-based using CAS

Word-based using H-R

 0

 5

 10

 15

 20

 25

 10  20  30  40  50  60  70  80

C
P

U
 ti

m
e 

pe
r 

op
er

at
io

n 
/ µ

s

CPUs

Word-based using CAS

Word-based using H-R

(a) Key space 0 . . . 210 (b) Key space 0 . . . 220

Figure 7: Red-black tree performance using an STM built directly from CAS (top lines) and one built using
hold-release (lower lines) performing operations on a red-black tree. 75% of operations were read-only.

Bershad describes how CAS can be implemented on systems
which lack it as a native operation [3]. On a uniprocessor
system the OS can inspect the state of the previous process
when switching from it and determine if it was executing
within a special library function that implements CAS. The
operation is rolled forward if the shared location has been
updated. Otherwise it is rolled back. This uniprocessor
scheme can, of course, be generalized to other operations,
as Greenwald and Cheriton do in their software implemen-
tation of DCAS [9].

Alemany and Felten describe how the OS can help main-
tain a count of ‘in progress’ operations which the sched-
uler reduces after preempting a thread performing an oper-
ation on a shared data structure [2]. Threads use this count
to avoid contending with other threads which are actively
working on the same structure. They also describe a roll-
back scheme in which each process builds a change log which
the OS can use to restore the shared structure if the process
is preempted before completing its update.
Implementation schemes based on revocation notifications

or thread suspension have been used in a number of systems.

80



 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60  70  80

C
P

U
 ti

m
e 

pe
r 

op
er

at
io

n 
/ µ

s

CPUs

Word-based using CAS

Word-based using H-R

 0

 5

 10

 15

 20

 25

 30

 10  20  30  40  50  60  70  80

C
P

U
 ti

m
e 

pe
r 

op
er

at
io

n 
/ µ

s

CPUs

Word-based using CAS

Word-based using H-R

(a) Key space 0 . . . 210 (b) Key space 0 . . . 220

Figure 8: Skip-list performance using an STM built directly from CAS (top lines) and one built using
hold-release (lower lines) performing operations on a skip-list. 75% of operations were read-only.

Dice and Garthwaite consider the problem of controlling
access to state such as memory allocation meta-data that
is CPU-local (rather than thread-local). They introduce
multiprocessor restartable critical sections during which a
thread receives an up-call if it is preempted or migrated to
another CPU [5].
Burrows describes a scheme for implementing fast-path

operations in a mutex implementation by using thread sus-
pension and controlled roll-forward [4]. Kawachiya et al used
the same underlying technique as our revocable locks in their
implementation of mutexes for Java [19]. They allow each
Java mutex to be reserved by a thread and use thread sus-
pension and displacement when one thread wishes to acquire
a lock reserved by another.
Pizlo et al implemented implemented atomic transactional

methods for real-time Java [23], logging the values over-
written when executing inside a transactional method and
restoring these if the transaction is aborted. Their imple-
mentation allowed at most one active transaction at any
time – a subsequent transaction would abort an ongoing
one by causing an exception to be raised in it. Revocable
locks might provide a way of extending this infrastructure
to support multiple ongoing transactions – although care
would be needed if the analyzability necessary for real-time
performance is to be retained.
Welc et al used a roll-back mechanism to allow locks to

be preempted from Java threads [27]. Preemption is trans-
parent to the programmer – the updates made within a syn-
chronized block are rolled back and execution of the thread
resumes at the start of the block. The implementation of
roll-back is simpler than with a non-blocking transactional
memory because the program is written in ordinary Java us-
ing locks rather than using optimistic concurrency control.
In distributed systems, leasing can be employed to avoid

bad interactions between mutual exclusion and failures [7]:
other processes can be certain that a lease has expired once
sufficient time has elapsed. The benefits of our revocable

locks have a similar feel, except at shorter timescales and
using termination that is explicit rather than implicit.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how to build a form of revo-
cable lock which simplifies the design of many non-blocking
data structures. The key novelty in the design is to expose
lock revocation by displacing the previous holder to a safe
location, avoiding a class of problem relating to delayed op-
erations.
When applied to Greenwald’s scheme of two-handed em-

ulation it allows CASs to be used in place of DCAS. When
applied to our word-based STM it simplifies the management
of temporary data structures, allows their size to be bounded
by the number of locations accessed in a single active trans-
action and reduces the size of the ownership records used to
co-ordinate transactions.
We originally considered whether the hold-release oper-

ations would be suitable for implementation in hardware:
with the usual MESI cache coherence protocol, a held lo-
cation would have to be retained in modified or exclusive
mode and revocation would be triggered if it was invalidated.
However, at least in the algorithms that we have studied,
the short durations for which locations are held seem to
make software implementations sufficient when coupled with
a brief period of spinning before performing revocation.

8. REFERENCES
[1] Motorola M68000 Family Programmer’s Reference

Manual. Motorola Inc, 1992.

[2] Alemany, J., and Felten, E. W. Performance
issues in non-blocking synchronization on
shared-memory multiprocessors. In Proceedings of the
11th Annual ACM Symposium on Principles of
Distributed Computing (Aug. 1992), ACM Press,
pp. 125–134.

81



[3] Bershad, B. N. Practical considerations for
non-blocking concurrent objects. Technical Report
CMU-CS-91-116, Carnegie Mellon University, School
of Computer Science, Oct. 1991.

[4] Burrows, M. How to implement unnecessary
mutexes. In Computer Systems: Theory, Technology
and Applications (Dec. 2003), Springer-Verlag.

[5] Dice, D., and Garthwaite, A. Mostly lock-free
malloc. In Proceedings of the third international
symposium on Memory management (2002), ACM
Press, pp. 163–174.

[6] Fraser, K. Practical lock freedom. PhD thesis,
University of Cambridge Computer Laboratory, 2003.

[7] Gray, C., and Cheriton, D. Leases: an efficient
fault-tolerant mechanism for distributed file cache
consistency. In Proceedings of the twelfth ACM
symposium on Operating systems principles (1989),
ACM Press, pp. 202–210.

[8] Greenwald, M. Two-handed emulation: how to
build non-blocking implementations of complex
data-structures using DCAS. In Proceedings of the
21st Annual Symposium on Principles of Distributed
Computing (PODC-02) (July 2002), ACM Press,
pp. 260–269.

[9] Greenwald, M., and Cheriton, D. The synergy
between non-blocking synchronization and operating
system structure. In Proceedings of the 2nd
Symposium on Operating Systems Design and
Implementation (OSDI ’96) (Oct. 1996), pp. 123–136.

[10] Harris, T. Exceptions and side-effects in atomic
blocks. In Proceedings of the 2004 Workshop on
Concurrency and Synchronization in Java programs
(July 2004), pp. 46–53. Proceedings published as
Memorial University of Newfoundland CS Technical
Report 2004-01.

[11] Harris, T., and Fraser, K. Language support for
lightweight transactions. In Object-Oriented
Programming, Systems, Langauges & Applications
(OOPSLA ’03) (Oct. 2003), pp. 388–402.

[12] Harris, T. L., Fraser, K., and Pratt, I. A. A
practical multi-word compare-and-swap operation. In
Proceedings of the 16th International Symposium on
Distributed Computing (Oct. 2002), pp. 265–279.

[13] Herlihy, M. A methodology for implementing highly
concurrent data objects. ACM Transactions on
Programming Languages and Systems 15, 5 (Nov.
1993), 745–770.

[14] Herlihy, M., Luchangco, V., and Moir, M. The
repeat offender problem: a mechanism for supporting
dynamic-sized, lock-free data structures. In
Proceedings of the 16th International Symposium on
Distributed Computing (Oct. 2002), pp. 339–353.

[15] Herlihy, M., Luchangco, V., and Moir, M.

Obstruction-free synchronization: Double-ended
queues as an example. In 23rd International
Conference on Distributed Computing Systems
(ICDCS’03) (May 2003).

[16] Herlihy, M., Luchangco, V., Moir, M., and

Scherer, III, W. N. Software transactional memory
for dynamic-sized data structures. In Proceedings of
the 22nd Annual ACM Symposium on Principles of
distributed computing (2003), ACM Press, pp. 92–101.

[17] Herlihy, M., and Moss, J. E. B. Transactional
memory: Architectural support for lock-free data
structures. In Proceedings of the 20th Annual
International Symposium on Computer Architecture
(May 1993), IEEE Computer Society Press,
pp. 289–301.

[18] Jayanti, P., and Petrovic, S. Efficient and
practical constructions of ll/sc variables. In
Proceedings of the twenty-second annual symposium on
Principles of distributed computing (2003), ACM
Press, pp. 285–294.

[19] Kawachiya, K., Koseki, A., and Onodera, T.

Lock reservation: Java locks can mostly do without
atomic operations. In OOPSLA (2002), pp. 130–141.

[20] Michael, M. M. Safe memory reclamation for
dynamic lock-free objects using atomic reads and
writes. In Proceedings of the 21st Annual ACM
Symposium on Principles of Distributed Computing
(July 2002), ACM Press, pp. 21–30.

[21] Michael, M. M. ABA prevention using single-word
instructions. Tech. Rep. RC-23089, IBM Research
Division, Jan. 2004.

[22] Moir, M. Practical implementations of non-blocking
synchronization primitives. In Proceedings of the 16th
Annual ACM Symposium on Principles of Distributed
Computing (Aug. 1997), pp. 219–228.

[23] Pizlo, F., Prochazka, M., Jagannathan, S., and

Vitek, J. Transactional lock-free objects for real-time
Java. In Proceedings of the 2004 PODC Workshop on
Concurrency and Synchronization in Java Programs
(July 2004).

[24] Rajwar, R., and Goodman, J. R. Speculative lock
elision: Enabling highly concurrent multithreaded
execution. In Proceedings of the 34th Annual
International Symposium on Microarchitecture (Dec.
2001), IEEE Computer Society TC-MICRO and ACM
SIGMICRO, pp. 294–305.

[25] Rajwar, R., and Goodman, J. R. Transactional
lock-free execution of lock-based programs. ACM
SIGPLAN Notices 37, 10 (Oct. 2002), 5–17.

[26] Shavit, N., and Touitou, D. Software transactional
memory. Distributed Computing, Special Issue 10, 2
(1997), 99–116.

[27] Welc, A., Hosking, A. L., and Jagannathan, S.

Preemption-based avoidance of priority inversion for
java. In Proceedings of the 2004 International
Conference on Parallel Processing (ICPP) (Aug.
2004), pp. 529–538.

82


