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Abstract. We outline the design and operation of Pasta, a peer-to-
peer storage system that provides traditional file system semantics while
offering the wide-spread caching and distribution required for publish-
ing networks. Pasta allows users to manipulate shared files and folders
with strong consistency semantics and to collaboratively organize them
in unmanaged decentralized namespaces. Storage quotas regulate con-
sumption and allow the network to offer permanence of content.

1 Introduction

We are developing Pasta, a peer-to-peer system that provides a global mutable
data store that acts as a file system, an archive store and a publication tool. In
this paper we introduce the system and focus on the techniques that it uses to
encourage efficient use of storage space, to support automated replication and
caching and to enable flexible and decentralized namespace management.

Pasta is intended for wide-area use over a federated group of well-connected
peers in the Internet (perhaps located at ISPs or in medium-size organisations).
The peers provide storage space to Pasta and, in exchange, receive system-wide
quota-credits that they can allocate to users. Although diverse in ownership
and physical location, the peers share a trusted third-party that holds a limited
storage management rôle in the network. We envisage clients integrating Pasta
with their local file system to a similar extent as other network file systems –
while not designed for workloads with a high turnover of temporary data, we
expect files held in Pasta to be directly accessible by users.

Pasta builds on the Pastry peer-to-peer routing substrate which it uses to pass
messages between peers and to select nodes at which to locate or insert data [8].
Pastry provides fault-tolerance and scalability. In particular, a message can be
passed between any two nodes in an n node overlay network in log(n) hops,
while maintaining log(n) routing table entries on each node. Further, Pastry
preferentially routes messages between nearby nodes in order to minimise the
distance travelled in the underlying network.

In Section 2, we briefly assess two other peer-to-peer file system projects.
Section 3 outlines the structure of our system. We describe data storage, file
mutability and a decentralized naming scheme, and introduce an approach to
quota management. Finally, Section 4 discusses the direction of our future work
on Pasta and its implementation context.



2 Related Work

We outline the two concurrent projects that are most similar to Pasta; a brief
survey of other large-scale distributed file systems may be found in [3].

As with Pasta, PAST [9] is storage system that is built over Pastry. However,
unlike Pasta, files inserted into PAST are immutable. The system can offer strong
data persistence to users by enforcing storage quotas through a scheme of smart-
cards allocated out-of-band. Storage and retrieval operations are performed at
the granularity of whole files rather than through random-access interfaces. No
human-readable naming scheme exists by which to reference a stored file: rather,
a fileID associated with the insertion must be passed by other means.

CFS [3] is implemented over Chord [11], a distributed hash table scheme sim-
ilar to Pastry. Files are split into fixed-size blocks, which are then distributed to
nodes in the network. Storage can be guaranteed for a set time period enabled by
per-node storage limits based on IP addresses. Users can store files and arrange
them hierarchically in a ‘file system’, which forms the basis of a per-publisher
decentralised namespace. CFS offers coarse-grain file mutability but no means
for collaborative update by multiple users.

3 Design

A Pasta file system is formed from a network of storage nodes that hold data
blocks for clients. Each storage node is assigned an asymmetric key pair and,
when joining the system, computes its nodeID from the SHA-1 hash of the public
key. These IDs are used by Pastry to route messages between nodes.

Files are split into variable-sized immutable data blocks. Each data block has
an associated blockID, computed as the SHA-1 hash of the block’s contents. A
block is stored in the network at the node whose nodeID is numerically closest
to the blockID. We insert, retrieve or withdraw a block by using Pastry to route
an appropriate message with the destination key set to its blockID. Mutable
index blocks contain file metadata and are the basis of the naming scheme. Each
index organises files hierarchically into folders, and describes each file in terms
of the ordered list of blocks from which it is composed.

Clients access Pasta through their physically-closest storage node. This ex-
poses operations to browse and manipulate the file system hierarchy and to
access data via open/close operations and random-access read/write. All these
operations are performed at the storage node on which they are invoked, which
requests and processes data blocks and index blocks as necessary.

3.1 Data Storage

In this section we describe how Pasta clients divide files into blocks in a way
that improves storage utilization and cache performance, then how storage nodes
replicate and cache these blocks for high availability and low fetch latency.



We adopt the content-based chunking scheme used by the Low Bandwidth
File System as a way of splitting files into blocks [5]. This proceeds by calculating
a Rabin fingerprint [6] over a sliding window of 48 bytes at each byte offset within
the file. Block boundaries are placed whenever the least significant portion of
the fingerprint matches a specified break-mark value. Minimum and maximum
block sizes avoid pathological cases.

Since blocks are stored under their SHA-1 content hash, those that are com-
mon to multiple files will be held only once. Our own evaluation, backed by that
in [5], shows that content-based chunking can significantly increase sharing of
blocks between ‘similar’ files: unlike fixed-size blocking schemes it is tolerant to
insertions and deletions within files.

The primary copy of each block is held on the storage node closest in ID space
to the block’s SHA-1 content hash. As with PAST and CFS, fault tolerance can
be controlled by specifying a replication factor, k, causing copies to be placed on
the k− 1 nodes immediately adjacent in the ID space to the primary. Nodes use
storage management techniques similar to those presented for PAST to maintain
these replicas while the block exists in the network, despite nodes leaving, failing,
or joining.

It is highly desirable for blocks to be held on nodes physically close to where
they are being requested. This minimises fetch distance for a block and balances
the query burden between nodes. Pastry’s property of local route convergence [1]
means that separate requests for a block from nearby nodes are likely to converge
at a node physically near to these while also close in the ID space to the block
sought. As such, when a requested block has been obtained, the penultimate
node in the lookup path caches a copy before forwarding it toward the client.
A frequently requested block will develop cached copies ‘drawn out’ from its
storage nodes along the paths by which requests are being routed.

We anticipate that the sharing introduced by content-based chunking will
improve the effectiveness of caching: accesses to one file will benefit from the
previous caching of blocks shared with other files. In particular, when a popular
file is modified, cached blocks that are common between the two versions remain
valid.

3.2 Mutability and Naming

File system metadata is held in mutable index blocks. Each index block has an
asymmetric key pair, generated by the user when the block is first inserted; the
SHA-1 hash of an index’s public key determines its blockID, and any updates
to its contents must be signed by the associated private key. As with SFSRO, a
voucher is attached to each index block containing the public key and a secure
hash of the current contents [4].

Each index block describes a fragment of a user’s namespace. Files and
mount-points are arranged to form an arbitrary hierarchy of folders, up to the
system’s maximum block size. This scheme allows file metadata to be modified
efficiently by updating a single index block, unlike, for example, CFS where a
series of directory and inode blocks must be updated. Pasta allows entries in an



index block’s namespace to be drawn from other index blocks, enabling larger
file systems to be constructed either by simply mounting subtrees, or by union
mounting the composite contents of all the index blocks specified.

Files are described as a sorted list of (file offset, blockID, indirect) tu-
ples which specify that the bytes of the file at file offset can be read from
blockID. Large files may use indirect blocks, each of which can contain fur-
ther indirection entries, forming a tree. Pasta adopts a close-to-open consistency
model on the basis of each index block. After inserting any new data blocks,
the client attempts to reinsert the updated index block as a commit operation.
Pasta detects and rejects conflicting updates by including the content hash of
the block’s previous contents in the update request. The client then fetches the
updated index block and attempts to merge its modifications by replaying a log
of the changes made.

Users may use some out-of-band mechanism to advertise the blockID of the
root index block of file systems they wish to publish, allowing other users to ‘link’
to them, as happens on the Web today. Writing to regions of a namespace stored
in another user’s index block will cause new entries to be created in a locally-
owned index so that the other user’s files and folders are overlaid. Similarly,
overlays can be used to ‘delete’ files or folders from the local view of another
user’s namespace. If two or more users choose to import each other’s views then
collaborative work spaces may be created.

We envisage that ‘authorities’ on particular topics will emerge and over time
be linked together to form a structure akin to a Google or Yahoo directory, that
most users will choose to have as their own root view that they extend and
customize as desired.

Pasta adopts the same caching policy for mutable index blocks as for data
blocks in order to distribute file metadata toward clients. To ensure consistency
over updates, nodes holding copies of an index block must subscribe to a mul-
ticast tree rooted at the primary store node of the block. Currently, this tree
propagates cache invalidation messages – we intend to experiment with incre-
mental updates and differentiating between passively cached copies and indexes
in active use. An application-level multicast system similar to Scribe is used [10].
When a node caches a block, it routes a ‘subscribe’ message with key equal to
the blockID, attaching itself in the multicast tree to the node one hop along the
original request path. This is the node from which it obtained the block and is
therefore already subscribed.

3.3 Quotas and Accounting

Pasta offers persistent storage: any file inserted is maintained until explicitly
withdrawn. System-wide per-user quotas are used to regulate consumption. These
are enforced by nodes acting as principal accountants: when a user inserts a block
each node storing a replica informs the user’s accountants – a set of nodes gener-
ated by iterated hashing of the user’s ID. A quorum protocol provides tolerance
to Byzantine accountant failures [2].



Storage nodes are responsible for allocating quotas to users: each node pro-
vides the system with a fixed unit of storage and may distribute some portion
of this as quota credits (the remainder being used for caching). Storage node ac-
countants track which users have been credited by which nodes. This structure
removes the trusted authority from ordinary operations.

4 Ongoing Work

We are currently incorporating Pasta into the Xenoserver [7] project, which is
building a public infrastructure for wide-area distributed computing. It provides
a low-level customizable execution environment over which users can deploy not
just their own applications but also their own operating system instances. Pasta
will fulfil the rôle of a global file system accessible from all Xenoserver nodes. It
will be used to hold user-submitted applications for execution on Xenoservers and
also to hold the operating system images and standard components necessary
for the platform to operate. This context makes Pasta’s provision of flexible
namespace management with content-based caching particularly attractive.

We intend to evaluate the effectiveness of content-based chunking using file
system traces suited to this scenario. We also wish to explore automated meth-
ods of structuring files within Pasta. For instance, re-organizing index blocks
to reflect common access and update patterns, or exploring different chunking
policies to reduce false sharing and reflect known file formats.

We are very grateful to Antony Rowstron of Microsoft Research for the public
release of the Pastry simulator, and for his support and insightful comments.
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