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Abstract

Virtual machines (s) have enjoyed a resurgence as a way of allowing the same

application program to be used across a range of computer systems. This flexibility

comes from the abstraction that the  provides over the native interface of a

particular computer. However, this also means that the application is prevented from

taking the features of particular physical machines into account in its implementation.

This dissertation addresses the question of why, where and how it is useful, possible

and practicable to provide an application with access to lower-level interfaces. It

argues that many aspects of  implementation can be devolved safely to untrusted

applications and demonstrates this through a prototype which allows control over

run-time compilation, object placement within the heap and thread scheduling. The

proposed architecture separates these application-specific policy implementations

from the application itself. This allows one application to be used with different

policies on different systems and also allows naïve or premature optimizations to be

removed.
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Chapter 1

Introduction

There is a trend in computer science towards implementing software over a virtual

machine. Such a machine provides the familiar functions and services expected by

computer programs but does so using software rather than hardware. The machine

virtualizes the instruction set, memory and other resources of the underlying physical

machine, thereby presenting application programmers with a standard interface.

The primary motivation for using a virtual machine is that it decouples the design

of computer software from the evolution and diversity of computer hardware and

operating systems. This is because the same application code can be used on any

system that supports the appropriate virtual machine. Advocates of virtual machines

say that it is far more convenient to implement a single virtual machine for each

computer than it would be to re-implement or even just recompile each application

for every different system. Furthermore, a virtual machine that allows one program

to be used on different computers also aids mobility: allowing programs to move

seamlessly between computers, perhaps to follow the user to a different physical

location, or to relocate from a busy computer to an idle one.
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This level of portability becomes particularly important in web-based applications in

which components of the system may be deployed on remote clients’ machines as

downloadable code executed within a web browser.

Unfortunately, the facilities provided by a portable virtual machine are not without

their drawbacks. In fact, these problems stem from the very flexibility that gives virtual

machines their advantages. A virtual machine that provides a uniform programming

environment over a range of processor types cannot provide access to special facilities

that are only available on some of them. Similarly, some form of software-based

dispatching and execution is required because the instruction format of the virtual

machine is different from the native format of the microprocessor. This introduces

complexity into the virtual machine and the time taken for translation can harm

performance.

This dissertation addresses the question of how to reconcile these advantages and

disadvantages. In particular, it concentrates on how the resources of the underlying

computer can be presented more directly to applications without sacrificing the

portability of programs between systems.

By way of introduction, consider the problem of translating a program from the

instruction set of the virtual machine () to the instruction set of a physical machine.

In a modern  it is common for both a compiler and an interpreter to be available

and for some portions of the program to be compiled to native code during the

operation of the  while other portions are only ever executed by the interpreter.

A typical policy is to interpret most of the program and to compile any section that

is observed to execute frequently. This balances the poor performance experienced

when interpreting against the delays introduced as the compiler operates. Since many

programs contain small hot-spots that account for most of their execution time it

makes sense to try to identify these and to spend time compiling only them.
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However, this general-purpose policy does not work well for all kinds of application.

Consider one that decodes and plays digital audio data. In this case the hot-spot

may be the decoding algorithm. However, if the  starts compiling this part of the

program while it is running then the delay introduced may cause an audible glitch

in the sound. Furthermore the initial performance of the application – before the

compiler is invoked – may be unacceptably poor.

In contrast, the  architecture presented in this dissertation allows application-

specific policies to be used. These are defined in a general-purpose programming

language and can consequently perform arbitrary computation – for example to

evaluate and to adapt to the rate of progress of the system. However, the logical

separation between the two permits the same application to be used with different

policies (perhaps when it is used on different systems) and also allows one policy to

be reused with multiple applications (perhaps a default policy suitable for general-

purpose programs).

The work presented in this dissertation defines a common framework within which

policy definitions may be used to control the various resources that an application

uses through a . Aside from the previous example of a run-time compilation

service, the placement of objects within memory and the scheduling of threads within

the  are taken as examples. In each case safe interfaces, accessible by an untrusted

application programmer, have been designed and implemented.

My thesis is that applications can benefit through such control of resources and

services in three ways. Firstly, the speed with which some applications execute is

improved – the facilities provided, particularly those concerned with the placement of

objects within memory, are similar to those exploited by programmers in lower-level

languages to tune the performance of applications. Secondly, even if a program does

not complete more quickly, it may be possible to adjust its performance so that it

is preferable to users – for example by scheduling run-time compilation or garbage
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collection work to occur less intrusively. Finally, many of the proposed interfaces can

also be exploited to trace system behaviour, aiding debugging and profiling.

The dissertation is organized as follows:

Chapter  describes background work relating the historical development of s and

the more recent development of extensible operating systems. The former clarifies

the kind of environment within which the work described here is intended to be

employed. The relevance of the latter comes from the analogy between moving

processing from the kernel of an operating system into untrusted user-space code and

moving -internal facilities into application code.

Chapter  surveys related work. It describes existing projects that exploit the flexibility

in conventional s and identifies areas in which the limited extent of that flexibility

presents a barrier to the use of a  as a ubiquitous execution environment.

Chapter  presents the overall design for an eXtensible Virtual Machine ()

supporting application-specific policies for resource management. A common

framework is developed within which run-time compilation, memory allocation and

thread scheduling policies are taken as examples. In outline, policies are defined in a

general-purpose programming language and are implemented by making invocations

on protected mechanism implementations that are provided by the . A policy registry

records the association between policies and sections of the application.

Chapter  describes the implementation of this infrastructure over the Java Virtual

Machine () as a mechanism for defining application-specific policies to control

run-time compilation. As with the initial example given in this introduction, the

primary purpose of such a policy is to define those parts of the application which

should be compiled, when that compilation occurs and what kinds of optimization

are attempted. An early version of the work on controllable run-time compilation

was presented at the IEEE Workshop on Programming Languages for Real-Time
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Industrial Applications [Harris98].

Chapter  describes the corresponding implementation for supporting policies for

application-specific memory allocation. In this case the policies may control where

objects are placed within the heap – for example to cluster objects that are expected

to be used together.

Chapter  shows the development of an application-level thread scheduling environ-

ment with which an untrusted program may define the way in which its threads are

multiplexed over the s available to the .

Finally, Chapter  concludes and presents ideas for future work.

Contributions1.1

The primary contributions of this dissertation are (i ) the development of a framework

supporting safe application-accessible interfaces to control policy decisions in a safe

execution environment and (ii ) the realization of this framework for controlling

run-time compilation, the placements of objects within the heap and the scheduling

of threads.

In addition the infrastructure developed enables novel policy definitions to be defined.

Particular examples include the background compilation policy (Section .) and the

thread scheduler using allocation inheritance (Section .).

Terminology1.2

Some of the terms in this dissertation have come to be used elsewhere with a variety

of meanings. This section clarifies how they will be used here.
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Virtual machines

The term virtual machine is used in this dissertation to refer to systems such as the

Java Virtual Machine [Lindholm97] and Smalltalk  [Goldberg83], typified by the use

of a non-native instruction set, a substantial set of standard library functions and

an implementation that exposes only high-level interfaces to the resources of the

underlying system. Such systems effectively provide the complete set of services that

an application programmer may expect from an operating system, including device

abstractions and isolation between parts of the system. This is in contrast to systems

based around virtual machine monitors [Creasy81] which export multiple virtualized

instances of the same underlying native system, or simple interpreters which provide

only an instruction set without library support.

Processes and applications

Much of the work described in this dissertation has been implemented in user-space

over the Nemesis operating system, the salient features of which will be described

in Section .. Nemesis distinguishes between different concepts that are coincident

in traditional environments such as . For example it separates the ideas of the

protection domain (the principal for which access control is performed), scheduling

domain (the entity to which resource allocations are made) and activation domain (the

code that implements the application). However this distinction is not used in the

work presented here and therefore the more familiar term process is used throughout.

The term application is reserved for the bodies of code that operate over the  – for

example a word processor or media player.
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Classes and types

In an object-oriented language, classes are the things from which objects are instan-

tiated. Each object is therefore an instance of exactly one class. In contrast, types are

predicates over values, indicating those that are compatible with that type under the

particular rules of the language.

For example, in the Java programming language, the class definition files that

comprise an application can be identified with both classes and reference-types.

An object instantiated from the root class java.lang.Object is an instance

of only the type java.lang.Object. An object instantiated from the class

java.lang.Dictionary is an instance of two types: java.lang.Object

and java.lang.Dictionary. In particular, note that such an object is not an

instance of the class java.lang.Object.

In general it should be clear from context where a name is used to refer to a class and

where it is used to refer to a type.
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Chapter 2

Background work

This chapter presents background information on the design of virtual machines (in

Section .) and extensible operating systems (in Section .).

The emphasis in the first part of this chapter is on the evolution of s and on the

features (and usage patterns) that typify current systems. Subsequent chapters will

draw on that work when describing the rationale, design and implementation of an

extensible virtual machine.

The second part of this chapter concerns extensible operating systems which, in a

different context, share the goals of abstracting certain aspects of a computer system’s

native execution environment and providing isolation between different tasks that

are running. This further area of background work is important to the current

dissertation in two ways: the manner in which interfaces are designed to be safe for

access by untrusted code, and more concretely in that the Nemesis operating system

(Section ..) forms the implementation platform for much of the work in this

dissertation.
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Virtual machines2.1

The individual systems selected for discussion in Sections ..-.. are ones used

primarily for imperative and object-oriented languages. These hold most relevance

to the ideas developed in subsequent chapters. In addition to these systems

s have also been designed for functional languages and for logic programming

languages. Examples include the  machine for Oz [Mehl95], the Brisk machine for

Haskell [Holyer98], and the  and Three Instruction machines [Chitnis95]. However,

the facilities provided by those machines are typically at a higher level and more

specialized to the language, or class of languages, in question.

In this chapter the machines are presented in approximately chronological order of

development. The reality, of course, is not so precise with substantial overlap between

the times at which these systems have been in use, if not between the times over

which they were designed.

INTCODE2.1.1

The  system is a simple intermediate code which lends itself to straightforward

execution by an interpreter [Richards79]. Richards reports that it was used as part of the

bootstrapping process for the  programming language: a simple assembler and

interpreter could be implemented in less than one week. This interpreter could be

used to deploy an  version of the  compiler rapidly without constructing

a separate code generator for each target platform.

The  machine has six special-purpose registers: an accumulator, auxiliary

accumulator, program counter, address register, stack pointer and global-vector

pointer. Instructions are generated from eight basic operations: load, store, add,

branch, branch-if-true, branch-if-false, procedure call and execute. They are encoded
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in an orthogonal bitwise representation in which each instruction specifies some

mechanism of computing an address and some operation to perform between the

contents of that address and one of the machine registers. The design of the

instruction set reflects then-contemporary accumulator architectures [Hennessy90].

Pascal-P2.1.2

The Pascal programming language [Wirth71] was implemented on over sixty different

kinds of computing system during the s [Barron81]. The language enjoyed

particular popularity among educators for its handling of data types and more

generally as a ‘language for structured programming’ [Webster81,Barron81].

Among these implementations, the Pascal-P system is notable in that it was de-

signed to operate over a simple machine-independent  termed the Stack Com-

puter () [Nori81]. The Pascal-P distribution kit included an implementation of the

Pascal-P compiler for use over the . As with the  bootstrap implementation

of  this meant that Pascal could be made available on a new system by merely

implementing the . Nori et al suggest that such an implementation would suffice

‘if the expected use of Pascal is for teaching purposes and only short programs are to

be compiled and executed’ [Nori81].

The  provides facilities superficially similar to those of a conventional microproces-

sor operating in user mode. However, the instruction set includes separate operations

for each of the basic Pascal data types such as characters, pointers, integers and

booleans. This enables a  implementation to select appropriate representations for

each data type.

At run-time the memory of the  is divided into separate regions containing the

code, stack and heap. As suggested by the name of the machine, a stack is used
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for temporary values during computation whereas the machine registers are used

for holding only the program counter and managing the areas of memory. The

instructions available on the  are reasonably high-level – for example the format of

the static and dynamic links between stack frames is prescribed by the implementation

of the operations used to perform procedure calls. A special ‘call standard procedure’

operation is provided to invoke library facilities such as file access or trigonometric

computation.

Smalltalk-802.1.3

Smalltalk was conceived towards the end of the s as a new way that ‘people might

effectively and joyfully use computing power’ [Goldberg83]. In Smalltalk-80 this is

realized in a pure class-based object-oriented programming language [Krasner84] 1.

Unlike impure object-oriented languages (such as C++ [Stroustrup97], Modula-

3[Nelson, editor91] or Java [Gosling97a]) all computation is notionally performed by

dynamic method invocation or equivalently, in the terminology of Smalltalk, by

message send operations. This includes simple arithmetic operations – such as integer

addition – and also control flow operations on objects representing blocks of code and

class definitions themselves. This approach allows common control flow structures

within methods to be implemented as operations on blocks rather than as first-class

language features.

Smalltalk has traditionally been implemented over a stack-based virtual machine

coupled with a suite of standard libraries. These libraries include implementations of

data structures such as sets, sequences and dictionaries as well as common interfaces to

1 Smalltalk-80 succeeds five similarly-named systems developed at Xerox PARC. As the most recent,

well-known and widely studied version, discussion is confined to that revision. Ingalls describes the

prior evolution of the Smalltalk virtual machine and the corresponding development of the Smalltalk

programming language [Ingalls84].





peripheral devices. The majority of these libraries would themselves be implemented

in Smalltalk and compiled to the Smalltalk bytecode format. The exception is

that around one hundred primitive routines are implemented directly within the

virtual machine and handled as special cases during message send operations. These

primitives implement simple arithmetic operations, object allocation, process control

and input/output functions. The bytecode operations themselves are generally

concerned with manipulating the run-time stack and performing message sends. The

initial state of the virtual machine is obtained from a virtual image which describes

the contents of the heap and the initial programs and processes available within the

system. These may include compilers, loaders and development tools.

The programming language, the virtual image and the virtual machine allow

portability at two different levels. Firstly, any Smalltalk program may be executed

unmodified on any hardware platform supporting a conforming implementation

of the . Secondly, existing Smalltalk virtual images may be loaded by different

implementations of the virtual machine and primitive routines. For example

Ingalls reports that substantial parts of the virtual image released with Smalltalk-80

correspond to parts of an original image cloned from Smalltalk-76 [Ingalls84].

Deutsch and Schiffman describe an implementation of the Smalltalk-80 system that

is designed to be efficient on conventional hardware – that is, it should not rely on

the availability of user-microprogrammable instructions [Deutsch84]. They describe

the approach as using dynamic change of representation in which there may be multiple

versions of the same data held concurrently in different formats. In particular the

implementation of a program may exist in both bytecode and native forms. The

Smalltalk bytecode language enforces encapsulation by only providing operations

for accessing data fields within the current object, thereby allowing a native code

generator to use different representations for different classes.

In the Deutsch-Schiffman implementation, method invocations are implemented

using inline caches to reduce the frequency of dynamic look-ups and computed
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branches. An inline cache system operates by assuming that the receiver object is of

a particular class and branching directly to the appropriate implementation of the

method. That method checks the actual class and, if it differs, backs off to perform

a full method look-up. The chosen class to inline may be selected by using run-time

feedback to identify common receiver classes for each call site – a simple feedback

scheme for call sites with few dynamic targets is to update the inline cache after each

full look-up.

The Smalltalk on a  () implementation made further changes to the

Smalltalk-80 system with the aim of improving performance on emerging reduced-

instruction-set architectures. Unlike earlier implementations in which references

identified slots in an object table,  represented object references by the direct

address of the per-instance field data. Such a representation was a more natural

fit for the limited set of addressing modes present on  systems. The new

structure avoids one level of indirection on most object-based operations but

makes the implementation of the becomes bytecode operation 2 more complex:

where previous Smalltalk systems could simply update the pointer in the object

table,  had to update each reference to the object. Consequently the 

system used re-written system classes using explicit indirection in place of such

operations. The implementation recognized that most method invocations occurred

with conventional last-in first-out () ordering and so placed activation records

directly on the processor stack, lazily moving to the heap any that are required by

closures.

2 The becomes operation is a curious one that is not available in mainstream object-oriented

languages. Its effect is to replace one object with another, with the change concurrently updating

all references to the first object. It can be used to provide the illusion of extensible arrays (by

replacing a shorter array with a new longer one) and to model changes in the life cycle of modeled

objects. The becomes operation is troublesome to implement without the indirection provided by

an object table. Furthermore, its utility is diminished by the use of static typing and its applicability

in multi-threaded environments is limited because of potential race-conditions between invocations

by concurrent threads.
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Meta-classes

In addition to its class-based object model, Smalltalk-80 also defines a relatively

straightforward meta-class system. The relationship between meta-classes and ordinary

classes is similar to the relationship between ordinary classes and their instances:

a meta-class is simply a class whose instances are themselves classes. Within the

Smalltalk  a hierarchy of meta-classes is implicitly defined to mirror the ordinary

class hierarchy. For example, if class X extends class Y then the meta-class XClass

will extend the meta-class YClass. The class Object is the root of the hierarchy

of ordinary classes. The meta-class Class is the root of the hierarchy of meta-classes.

Meta-classes themselves are instances of Meta-class which is itself an instance of

Class.

The meta-class system in Smalltalk-80 provides fairly limited functionality. The

intent was that meta-classes would generally be concerned with instance initialization

and with the representation of state that is associated with a class as a whole rather than

with each instance [Goldberg83]. In the Java programming language these functions

are provided by constructors, and static members of ordinary classes [Gosling97a].

Other languages, such as Common Lisp Object System () [Bobrow88,Lawless91],

allow explicit meta-classes to be defined, in contrast to the implicit definitions

generated in Smalltalk-80. These languages dissociate the inheritance relationships

between classes from those between meta-classes. This often permits meta-classes

to be used to control more general aspects of class behaviour – such as the manner

in which methods are invoked – because the same meta-class can be associated

with a group of classes for which common behaviour is desired. A usual idiom is

that the meta-class introduces pre-call and post-call operations around each method

invocation, for example to produce traces of application behaviour, to introduce

locking around invocations or to perform access control checks.
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SELF2.1.4

Unlike Smalltalk,  is a pure prototype-based object-oriented programming lan-

guage [Chambers89]. This means that it uses an existing object, rather than a class

definition, as the ‘blueprint’ when making an instantiation. For example the new

object may obtain methods, fields and field values from the prototype object. A

class-based style of programming is possible by creating separate prototype-objects for

each intended class 3. Being a pure object-oriented language, all data values are treated

as objects and all operations on them are method invocations. As with Smalltalk, 

takes an extreme approach to this by expressing intra-method control flow operations

in terms of method invocations on anonymous code blocks.

The combination of dynamic typing and prototype-based inheritance apparently

conspires to prevent inlining across abstraction boundaries: the target address of each

method invocation must be computed based on the ancestry of the receiving object.

Furthermore, the high frequency of method invocations in pure object-oriented

programming makes it particularly important to provide an efficient implementation.

This area has therefore been the primary focus of the published work on the  .

In a series of papers, Agesen, Chambers, Hölzle, and Ungar describe a number of

mutually-beneficial techniques for the efficient implementation of  [Chambers91,

Hölzle92, Hölzle94b, Hölzle94a, Agesen95]. Type feedback gathers statistics about the

frequency of different targets at each method call site. Adaptive optimization identifies

frequently executed methods and uses an optimizing compiler to translate their

bytecode implementation to native code. A faster non-optimizing compiler is used

for other methods to make the system responsive for interactive use. Dynamic de-

optimization allows source-level debugging, even once code has been optimized, by

recreating non-optimized code and using on-stack replacement of activation records

3 Agesen uses such an idiom when implementing the operations of the  over the  . This work

will be discussed in Section ..
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to switch between the two forms. Finally, polymorphic in-line caches (s) of

frequently executed methods at their call sites enable efficient method dispatch (for

example, by avoiding a computed branch) and collect concrete type information

for the optimizing compiler. Unlike an inline cache, a  records multiple target

addresses.

It is important to note that these techniques were performed dynamically in the

production . They therefore had not only to make judicious optimization decisions

but the infrastructure had to be implemented efficiently so that the cost of the analyses

and code transformations did not detract from the benefits achieved. However, this

dynamic setting does enable the  implementation to exploit differences between

individual runs of an application in a way that is not possible with static or trace-driven

analyses.

The techniques used in the   exploit various forms of locality seen to be

exhibited. In particular, the distribution of concrete types encountered at many call

sites remained fixed over the course of a program execution. As Hölzle reports, typical

benchmark applications contained substantial numbers of monomorphic call sites at

which only a single concrete type was even seen, fewer polymorphic call sites at which

a few concrete types were seen and a small number of megamorphic call sites from

which methods were invoked on many different kinds of object [Hölzle94a].

Hölzle and Ungar argue that the implementation of  invalidates earlier claims

that object-oriented programming languages required special hardware or microcode

support [Hölzle95]. They claim that the optimizations performed at run-time in the

  enable the generation of code which is comparable with that generated from

the C programming language. For example, concrete type analysis is effective at

identifying where native arithmetic operations or formats may be used in lieu of an

object-oriented implementation.
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The Java Virtual Machine2.1.5

The Java Virtual Machine [Lindholm97] is designed to host programs implemented in

Java bytecode [Gosling95], an instruction set used for easy generation from the Java

programming language [Gosling97a]. Java bytecode is an object-oriented stack-based

encoding which was intended for both direct execution by an interpreter and for

run-time compilation to native code. The  loads bytecode from class files –

each of which contains the bytecode instructions and auxiliary information needed to

define a single class. Loading may be triggered explicitly by the programmer through

the reflection  [Gosling97b], or implicitly according to detailed rules set out in the

 specification [Lindholm97].

These rules also prescribe when per-class initialization code is executed and when

errors are reported. This has important consequences for the  implementor:

1. Demand-loading classes means that it is not generally possible to analyze the

complete code of a program in advance. This means that many run-time

optimizations are only safe if dependency information is recorded and the

optimization can be reversed if the underlying assumptions cease to be valid.

For example a method may only be inlined at a call site while it remains the

only possible target, or when a run-time check is performed.

2. Per-class initialization code must be executed at well-defined times, meaning

that it is not possible to speculatively load classes through the normal class

loading mechanism. This also creates problems for an optimizing compiler

performing method inlining. Liang and Bracha describe the  class-

loading mechanism in more detail [Liang98]. McDowell and Baldwin present

the associated problem of unloading classes from a running instance of the

 [McDowell98].

There is little information lost when generating bytecode from a source file written

in the Java programming language. The object model of the  differs solely in

that it identifies methods by return type in addition to name and argument types.
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Aside from the object model, the other notable differences are that the  does not

provide direct arithmetic operations on sub-word integer types, that Java bytecode

provides an intra-method goto operation and that exception handlers are specified

out-of-line in the .class file and need not be nested.

This low semantic gap allows rapid translation from Java source code to Java bytecode.

It also permits reverse compilation in which, in most cases, a close analogue of a source

file can be reconstructed from its .class file representation [Proebsting97]. Code

obfuscation tools can attempt to reduce the quality of the reconstructed source file by

introducing the features that are only expressible directly in Java bytecode [Collberg98].

The  allows safe execution of untrusted programs by sandboxing: limiting an

application’s access to resources that are not deemed safe. This is achieved through

a number of techniques. Firstly, the Java bytecode is verified before execution.

The verification process is defined informally as part of the  specification,

although there have been many attempts to retrospectively fit formal definitions to

both the behaviour of bytecode operations and to the operation of the bytecode

verifier [Bertelsen98,Coglio98,Qian99]. Secondly, run-time checking occurs as part of

many methods in the standard Java s. These checks are implemented as method

invocations on an instance of SecurityManager. The security manager rejects

access by throwing an exception.

Many flaws have been found in the specification and implementation of the

bytecode verifier and trusted classes. Dean et al report implementation errors,

unintended feature interactions and unexpected differences between the expected

and implemented behaviour of Java bytecodes in early implementations of the

 [Dean97].

The standard Java  allows multiple threads of execution to be created. These

can interact, at a primitive level, by accessing shared fields using putfield,

getfield, putstatic and getstatic bytecodes, by acquiring and releasing
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mutual-exclusion locks using monitorenter and monitorexit bytecodes, by

invoking synchronized methods, and by calling native wait, notify and

notifyAll methods on an object locked by the calling thread.

A lock is conceptually associated with every object instantiated. This ‘ubiquitous’

synchronization enables simple locking strategies for enforcing mutual exclusion.

The approach is typified by the reference implementation of the library classes

java.util.Hashtable and java.util.Vector in which most methods

must acquire a lock on the current instance.

Including synchronization in this form in standard libraries also means that locking

operations are frequent. This is true even in applications that are apparently single-

threaded if the same libraries are employed. Initial implementations of the  use

a software-based cache to map from objects to their associated lock structures. This

avoids imposing any per-object space overhead but places the cache look-up on the

critical path of many operations. Recent implementators of the  have developed

techniques for making these operations efficient in the common (uncontended) case.

Bacon et al proposed thin locks [Bacon98] in which atomic updates on a single field are

used to acquire and release the lock in the absence of contention. A contended lock

becomes inflated to form a fat lock including additional structures, such as wait queues

and an operating-system supplied mutual-exclusion lock. Agesen et al report several

disadvantages with this scheme: locks never become thin again, the implementation

admits a possibility for unbounded busy waiting, and the thin lock field introduces

a 24-bit per-object overhead. They designed an alternative representation in which

atomic operations are used to acquire a meta-lock on a multi-use field in the object

header [Agesen99]. The two-bit meta-lock field can represent uncontended states

directly, otherwise it is used to arbitrate access to externally-held locking information

associated with the object. When a lock is contended then the contents of the

multi-use field are displaced to the full lock structure.
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As with many other object-oriented run-time environments, the existing  does

not provide flexible meta-classes in the manner of . Although it is true

that, in some situations, the classes within the  may be considered to be

instances of java.lang.Class, it is more accurate to consider instances of

java.lang.Class merely to represent those classes for the purpose of providing

run-time access to their definitions. It is neither possible to derive subclasses from

java.lang.Class nor to control the run-time behaviour of classes by making

method invocations on it.

The Mite Virtual Machine2.1.6

Mite is a  designed to provide a common execution platform which is independent

of both the underlying machine and the programming languages with which it is

used [Thomas99]. It provides a layer of abstraction above the native facilities of the

processor and, in doing so, allows almost all of the code in a system to be executed

within the . Unlike the heavyweight systems of the Smalltalk and Java s, Mite

does not attempt to provide a full programming environment in itself: the intent is

that functionality normally present in the operating system (or code libraries) will be

implemented over the , rather than being an integral part of it. The goal of this

approach is that these other components, in addition to normal applications, will

benefit from the portability and potential code-reuse enabled by a common low-level

programming interface.

The portable binary format defined for Mite is designed for quick translation to native

code without sacrificing language-neutrality, processor-neutrality or the quality of

native code that could be generated. The instruction set uses a -inspired three-

operand code. Programs are concretely represented in a simple bytecode format

comprising a module header and instruction stream. Constant data and static data

areas are defined within data blocks specified inline in the instruction stream.
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Heterogeneity in machine word sizes is tackled by using three dimensional numbers

to represent the sizes of data items and offsets within data structures. An expression
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has the value
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, in which
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is a number of bytes,
�

is

a number of words,
�

is a number of ‘roundings up’ and
	

is the size (in bits) of the

representation of a memory address.

In addition to code and data, the binary format can contain hints to the native code

generator. These are intended for use in decisions that must be guided both by

high-level information known to the language-to-bytecode compiler and by low-level

information known to the  implementation. An example is in the association

between program variables or compiler-produced temporary values and the physical

registers of the machine.

The Microsoft Common Language Runtime2.1.7

The Microsoft Common Language Runtime () forms part of the .net frame-

work. As a whole.net is intended to provide facilities for constructing and deploying

applications in a flexible manner – for example partitioning code between client-side

and server-side execution. The system supports multiple programming languages,

including mainstream languages (C, C++, Visual Basic), current research languages

(Mercury, Haskell) and at least one new language (C#, pronounced ‘c-sharp’).

As with the Java and Smalltalk virtual machines, code presented to the language

runtime is expressed using a bytecode format. The particular operations available are

in some ways similar to those of the Java Virtual Machine in that the basic execution

model is a stack based object-oriented language with single inheritance of method

implementations. However, there are notable differences.
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Firstly, the basic integer formats available include unsigned as well as signed variants

of each type. This may simplify the use of the  as a target for languages that require

unsigned types. In contrast the designers of the  claimed that it was sufficient to

provide only signed types along with a guarantee that negative numbers are held in a

twos’ complement representation.

More substantial differences lie in the approach that the two virtual machines take

to safety. As described in Section .., the  requires that classes are subject to

load-time bytecode verification – effectively ensuring the correct construction and

type safety of the contents of the Java .class files. If an application needs to

perform operations that cannot be verified as correct then those sections of it must

be distributed in a separate system-specific binary format. In contrast, the structure

of the Microsoft  permits a mixture of verified and un-verified methods to be

provided in a portable bytecode format: some bytecode operations (such as direct

access to memory locations) may only be used in un-checked code because their use

cannot generally be verified. There are mechanisms to control how un-verified code

may come to be executed on a particular instance of the . Previous systems,

such as Modula-3 [Nelson, editor91], have provided similar facilities to allow a single

language to be used to write both safe and unsafe portions of an application.

A further innovation of the Microsoft Intermediate Language (), compared with

Java bytecode, is the introduction of ‘hints’ from the -generator to subsequent

native code generators. These hints are encoded directly in the instruction stream as

operations. In the current specification these can be used for a number of reasons.

Firstly, hints can identify particular programming idioms, such as sequences of 

instructions passing method parameters, so that these may be translated more easily

into efficient code. Secondly, they can be used to describe how the local variables

manipulated by the  map back to a static single-assignment () form [Cytron89]

– the aim being that run-time code generators would not need to derive such a

representation.
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Miscellaneous virtual machines2.1.8

Cint is a run-time system for the C programming language driven by the principles

used to design  processors [Davidson87]. As with the , the Cint  () uses

stack-based operations in the expectation that this simplifies both compilers targeting

the Cint system and the production of simple interpreter-based implementations.

The  uses separate stacks for evaluation (the -stack) and for function invocation

(the -stack). Although the authors claim that the  is inspired by  principles,

it includes higher-level operations that are usually implemented in the C standard

libraries – for example the string manipulation function strncpy is provided as a

primitive. Function call and return, with fixed on-stack layouts, are also provided as

basic operations.

Clarity MCode is a high-level machine-independent intermediate representation

used as part of the tool chain for compiling Clarity, a C++ dialect influenced by

 , Modula-3 and . As with the previously-described systems, the basic

operations are stack based. However, the conventional control flow operations

of C, such as switch statements, are represented explicitly in the bytecode so

that a compiler back-end can select an appropriate implementation. The MCode

distribution format carries some optimization details from the front-end, such as

variable aliasing information and flags to identify leaf procedures.

Liedtke proposes an ‘unconventional’ code distribution format: the user-space oper-

ations and instruction formats of the x microprocessor along with a standardized

interface to the operating system and services [Liedtke98]. He motivates this choice

by observing that there are many compilers and tools for that architecture and that

the execution environment is already widely deployed – either as actual workstations

using the x processor, or as existing binary-translation tools.
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Discussion2.1.9

The development of the virtual machines described in this chapter has spanned more

than thirty years. A number of trends are apparent, both in terms of the situations in

which s are used and the structure of the systems themselves.

Performance of simple implementations

Foremost among these trends is the commercial acceptance of -based environments

for deploying general-purpose applications – either directly interpreting bytecode

instructions (as in early implementations of the ) or by using a simple run-time

code generator [Agesen00]. The widespread availability of more powerful computer

systems enables such simple  implementations to operate adequately for many

tasks.

However, there has been much more development in how high-performance 

implementations are created. In particular, the use of feedback-directed optimization

is now well-established as the focus of research, rather than the implementation of

efficient interpreters. The , Smalltalk and  systems described here all use

some form of dynamic feedback to improve the performance of method invocations

– either in place of a whole-program class-hierarchy analysis that might be used in a

static compiler, or as a mechanism for specializing common library implementations

according to the applications within which they are used.

Meta-information to aid run-time compilation

The second trend, apparent in the MCode, Mite,  and Microsoft  systems

is again related to program optimization. Those systems all provide some way for
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a bytecode-generating compiler to signal ‘hints’ about the code to a run-time code

generator. Of course, such hints could also be used by a traditional off-line code

generator producing an ordinary native binary format, but the motivation appears

primarily to be reducing the work done by the run-time compiler, rather than simply

to avoid loss of information. The co-design of an appropriate instruction format

and meta-information remains a subject for future research. Other authors have

investigated alternatives to bytecode representations, most notably Kistler and Franz’

Slim Binaries [Kistler96] in which the distribution format is a compressed version of

the Abstract Syntax Tree ().

Object-oriented type system

The third trend is the de-facto standardization on an object-oriented programming

model with single inheritance of method implementations – for example as seen

in the Smalltalk,  and Microsoft  platforms. As we shall illustrate more

thoroughly in Section ., such an object model (with some extensions) is sufficiently

flexible to form the basis of a target language for many compilers. Furthermore, it

is directly suited to contemporary languages such as C# or the Java Programming

Language and, more pragmatically, can be implemented with reasonable performance

by associating a single virtual method table structure with each class.

Convergence with OS functions

Finally, more recent  designs, including Smalltalk, the  and the Microsoft

.net system, provide many of the facilities that have traditionally been associated

with computer operating systems. In each of those cases the environment exposed

to the programmer includes abstractions for input/output devices, network access

and (to varying extents) some analogue of process management. This is a substantial
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departure from earlier designs such as  which were intended to provide only

an abstraction of the processor itself rather than of a complete execution environment.

The degree to which different s provide these facilities does still vary a great deal.

For example, from within the Microsoft , the programmer can make invocations

on general Component Object Model () interfaces – when allowed by the

security policies in place. The Mite  is a notable exception to this trend; however

it was intended to provide a very lightweight abstraction layer over which traditional

Operating System () functions could be provided if desired.

Extensible operating systems2.2

Section . described a number of contemporary s along with earlier designs from

which they were developed. One of the observations made in that section was

that current systems were taking on many of the tasks that had traditionally been

performed by the operating system. Of course, there are close analogues between

the purpose of a  and the purpose of an operating system: both are concerned

with providing isolation between various parts of the systems and with building an

abstraction of the underlying system.

This section concentrates on work in the field of extensible operating systems –

meaning ones in which policy decisions (and typically implementations) are devolved

either from code executing in kernel mode to code executing in user mode, or

from code executing with administrator privileges to code executing on behalf of an

ordinary user. This has been done, for example, to allow applications to control

network protocol implementations, thread scheduling, file layouts and on-disk meta-

data formats. Chapter  will then draw on this work in the design of an extensible

virtual machine with the aim of similarly devolving control from trusted to untrusted

code.





Seltzer et al discuss the problem from five points of view [Seltzer97]: the technology

that is used to extend the system, the trust and failure of extensions, the lifetime over

which a particular extension remains in effect, the granularity with which aspects

of the system may be extended and the approach that the system takes to conflict

arbitration between incompatible extensions.

As an example, consider the design of the contemporary Linux kernel against these

criteria. Aside from the simple mechanism of ‘extending’ the system by re-compiling

and booting a new kernel image, Linux supports dynamically loaded modules

containing privileged binary extensions. These are typically used to introduce

support for new network protocols or new devices. The trust and failure of extensions

are handled crudely: modules must be loaded by trusted users and thereafter operate

with the full privileges of kernel code. Extension failure can have arbitrary effects.

An extension may be loaded and unloaded while the system is operating and it

consequently has a flexible lifetime which need not correspond to machine reboots.

The granularity with which the system may be extended is fixed for a particular

kernel image: modules are supported by hooks in various parts of the kernel and so

extensions can only be supported where these hooks are present. The task of conflict

arbitration must be performed manually by updating configuration files.

Seltzer et al also introduce a broad classification of extensibility in the operating

systems that they surveyed in .

Static extensibility

A statically extensible system is reconfigured at compile time. This allows customization

to a specific workload – either by omitting parts of the system which would be unused,

or by selecting between different implementations of a particular interface which

provide different trade-offs. This is typified by the Scout operating system, designed

to handle media streams [Montz95]. A running Scout system comprises modules whose

interconnections are specified at build time, allowing cross-module optimization.
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Dynamic extensibility

A dynamically extensible system allows reconfiguration to be performed while the sys-

tem is running. The approach taken in microkernel operating systems, such as Mach,

is to move functionality from the kernel into user-level server processes [Tanenbaum92].

These server processes may be changed without restarting the kernel. However, the

server processes interact with the kernel through privileged interfaces and so system

configuration must be performed by a trusted administrator.

Library extensibility

A library extensible system goes further in that it moves functionality from privileged

server processes into untrusted applications. The system is library extensible in that

most applications are expected to draw on implementations of this functionality from

shared libraries. However, if an application programmer so desires, they may bypass

the shared library code and obtain direct access to unprivileged lower-level interfaces.

The exokernel design provides one example of such a system, in which it is envisaged

that a number of different libarary operating systems can be supported (each library

operating system resembling a different traditional ) [Kaashoek97].

Extensibility through downloaded code

Finally, a system based on downloadable code takes the opposite approach: rather

than allowing functionality to be implemented in user-space it allows applications

to download code into the running kernel. This approach is exemplified by

 which uses it with the aim of allowing applications to extend operating

system interfaces and implementations so that they are better matched to the

application’s requirements [Bershad95]. This is motivated by examples from the

database, distributed-programming, multi-media and fault-tolerant programming
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communities. By downloading code into the kernel  aims to co-locate extensions

with existing services and thereby support low-cost communication between the two.

The safety of the resulting system is ensured by requiring that the extensions are

written in a type safe language (Modula-3 [Nelson, editor91]) and compiled using a

trusted compiler. This safety allows  to use pointers as capabilities for access to

kernel resources. These can be passed to untrusted user-space applications (which

need not be implemented in Modula-3) by exporting them as indices into a protected

per-process capability table. Extensions have been developed in  to control paging

to disk, thread management and specialized network protocol stacks.

Discussion

Two systems, the Xok exokernel and the Nemesis operating system, will be described

in more detail in Sections .. and ... Their design is most relevant to this

dissertation because they share the aim of allowing untrusted users to deploy

system extensions, rather than simply providing extensibility as a mechanism for

administrators to reconfigure or tune an operating system.

A further category of extensibility, for which the recent work post-dates the survey

of Seltzer et al, are systems that are based on hierarchical confinement. These allow

individual processes to control many aspects of the environment in which their

sub-processes execute. Consequently a process that appears, at one level, to be an

application, can appear to its sub-processes to fulfill many of the roles of the operating

system. Section .. describes this work in more detail.

Exokernel2.2.1

Xok is an exokernel implementation for Intel-x based machines. ExOS is a library

operating system () for Xok which provides a -like environment, including

fork-based process creation, inter-process signals, pipes and sockets [Kaashoek97].
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Proponents of exokernels give three reasons for providing applications with low-level

resource access [Engler95]. Firstly, an application may take advantage of hardware

advances without requiring that the kernel be upgraded. Secondly, an application

may gain improved performance by tailoring policies to its own requirements – for

example page replacement in a virtual memory system. Finally, designing policy

implementations for particular applications rather than for the general case may

enable specialization.

These goals were translated into four design principles [Kaashoek97]:

� Protection and management should be separate, meaning that the exokernel

should provide the mechanisms needed to control access to resources but that

management decisions should not be dictated by the kernel.

� Allocation and revocation should be exposed to applications, so that they may be

designed to operate within a particular resource budget and, if their resource

allocation changes, they can control which instance of a particular resource to

relinquish.

� Physical names should be used wherever possible in order to avoid unnecessary

translation steps.

� System information such as configuration and global performance metrics should

be exposed so that applications may make informed decisions about the likely

effects of trade-offs.

Although the exokernel design generally fits in the category of library-based extensibil-

ity, its realization in the Aegis and Xok/ExOS implementations also uses downloadable

code techniques. This is to avoid the runtime costs of frequent up-calls to user-space

libraries.

Xok uses a number of techniques to protect the kernel from errant library operating

systems and to allow one library operating system to control access to its data
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structures from the applications that it manages. These include software regions,

which are areas of memory supporting fine-grained protection by requiring that all

accesses are made through system calls, simple critical sections which are available in

some environments by disabling software interrupts, and hierarchical capabilities that

must be provided with particular system calls and may be delegated from one 

to the applications running over it.

The disk storage system employs a novel design to retain protection while allowing

applications to determine their own on-disk meta-data formats and file-layout

policies [Kaashoek97]. A  developer specifies the behaviour of their algorithm by

providing an untrusted deterministic function () to translate the -specific

on-disk meta-data format into a standard representation that the kernel understands.

A  is deterministic in that the output of the function must depend only on the

inputs and not, for example, on other aspects of the system or  state. Each

different meta-data format has a function owns which maps from a piece of meta-data

( � ) to the set of blocks accessible from � . When a  requests that a block is

allocated to � (and, correspondingly, should a block be revoked from � ), the kernel

evaluates the  with the original value of � and with the new value, �
�
, proposed

by the . The kernel only accepts �
�
if the result of the  reflects the requested

update.

Nemesis2.2.2

Nemesis was conceived as a multi-service operating system, meaning that it should

be capable of handling a diverse and changing mix of applications and that these

applications would extend beyond traditional workstation tasks to include capturing,

processing and displaying multi-media streams [Leslie96]. To that end it places

a particular emphasis on accurate resource accounting and resource management
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because these are particularly important when handling media streams – overload is

the common case and so it is necessary to arbitrate between the different tasks.

The primary design principles in Nemesis are that resources should be multiplexed

at the lowest level and that physical resources should be exposed to applications

wherever possible. As an example of the first of these tenets, if a system is handling

network connections then data should be demultiplexed as soon as soon as possible

upon receipt and further processing should be performed by the application requiring

the data. As an example of the second, applications should be explicitly aware of the

amount of processing time and physical memory that they have been apportioned.

Although the motivations differ, this design leads to similarities between Nemesis

and library-based exokernel systems.

Low-level demultiplexing makes it feasible to account the resources used by each

task. This is because when handling de-multiplexed data there is a direct association

between the stream of data and the task to which it is being accounted. In contrast,

when handling aggregates, it is much harder to account usage back to particular

tasks. This leads to QoS crosstalk where application performance depends critically on

shared resources whose allocation or scheduling cannot be controlled [Tennenhouse89].

The interfaces defined in Nemesis provide applications with control over many of

the resources that are required for their execution:

Disk I/O

In Nemesis, User-safe disks (s) provide an extent-based interface for data stor-

age [Barham97]. Clients perform / operations over stream-based rbufs chan-

nels [Black94] with which resource allocations or disk scheduling parameters may be

associated. Access control is performed on an extent-level granularity by a trusted
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user-space filesystem driver. The  driver maintains a cache of permission checks

and makes call-backs to the filesystem driver upon cache misses.

Memory management

Self-paging is used by applications which require virtual memory [Hand98, Hand99].

Separate interfaces are used for allocating (or potentially revoking) physical and

virtual address space. The application is responsible for electing which physical

frames should back which regions of its virtual address space and for paging data

to disk where necessary. This design aids the accountability of resource usage (for

example, accounting disk operations to the application requiring them) and local

optimization (for example to avoid writing a page containing unallocated space in

the heap).

Thread scheduling

Although Nemesis provides applications with firm guarantees of processing time,

beyond this it is the responsibility of the application itself to multiplex the time

that it receives between different threads of execution. An application does this by

providing a user-level thread scheduler to implement a particular scheduling policy.

The design is conceptually similar to the scheduler activations developed by Anderson

et al [Anderson92]. However, the interface through which the user-level scheduler

interacts with the kernel scheduler is notably different.

The key fact about Anderson’s scheme is that the user-level scheduler is informed

explicitly when it is allocated the . Rather than transparently resuming execution

at the point at which it was suspended, the process scheduler invokes the user-level
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scheduler by making an up-call to its activation handler. It is then the responsibility

of the activation handler to select which thread to resume. Separate notifications

inform the user-space thread scheduler when a thread becomes blocked or unblocked

during /.

Anderson’s scheduler activations handled preemption by having the process scheduler

record the pre-empted state and pass it back to the application when it was next

activated. The activation handler could elect to resume from that saved state, or it

could switch threads by resuming from a different saved state that it may have stored.

This approach is problematic because it is unclear how to proceed if an application

is preempted before its activation handler has resumed from a saved context.

The approach taken in Nemesis differs from Anderson’s in two ways:

� Firstly, complete state records are not passed between the process scheduler

and the user-level scheduler. Instead, each application has an allocation of

context slots in which saved processor states can be recorded. The activation

handler selects which slot is used to hold the processor context next time that

application is preempted. This allows the kernel to maintain control over the

saved contexts, since they may contain privileged registers which should not

be modified by the application.

� Secondly, the user-level scheduler may disable activations. If the application

is preempted while activations are disabled then the context is recorded in

a designated resume slot. When the application is next scheduled then it is

restarted directly from the resume slot, rather than by activation. Furthermore,

whenever activation occurs, the process scheduler atomically disables further

activations. This avoids the potential race condition when an application is

preempted before the handler resumes from a saved context. An atomic resume

and enable activations operation is used to resume threads.
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This scheme allows Nemesis to support a spectrum of user-level scheduling policies.

It also enables lightweight critical sections to be implemented in pre-emptive uni-

processor environments: thread switches within an application can be prevented by

disabling activations.

Many traditional thread scheduling policies can be implemented directly. For

example, the activation handler in a preemptive round-robin scheduler need only

maintain a circular list of runnable threads and resume each of these in turn. A

non-preemptive version differs in that it continues to resume a particular thread in

the list while it remains runnable, at which point the scheduler advances to the next

thread. A priority-based scheduler can be developed as a simple extension to these by

sorting the threads according to their priorities.

More interestingly, this system enables policies in which threads receive their own

soft-real-time guarantees. A number of implementation schemes are possible, the

most straightforward of which is for the user-level scheduler to maintain its own

accounting information about the requirements of its threads and for it to use this

information to select which thread is resumed upon activation. An alarm timer allows

the user-level scheduler to cause itself to be re-activated when the timer expires. If the

application is preempted before this happens then the process scheduler cancels the

timer. The alarm timer therefore allows a user-level scheduler to set an upper limit

on the length of time which it can donate to a thread.

Fluke2.2.3

A common concern over library-based extensibility is that it favours local optimization

within each application in preference to global optimization over the entire system.

Kaashoek et al attempt to address this in Xok/ExOS by providing mechanisms for

controlled sharing of data between applications using the same library operating system.
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They speculate that superior global performance may be possible by using the newly-

enabled intra-application optimization to reduce resource wastage, by allowing groups

of applications to perform inter-application management of shared resources and by

designing adaptive applications which can employ different algorithms depending on

which resources are scarce. However, they admit that ‘global performance has not

been extensively studied’ [Kaashoek97].

Ford et al present an alternative approach based on recursive virtual machines [Ford96a].

They use the term ‘virtual machine’ more generally than in this dissertation, using it

to denote any execution environment such as that provided by an operating system

to the applications running over it and interacting with it through a virtual machine

interface (). A recursive virtual machine is therefore one  running over another,

usually customizing the  in some way.

This architecture was implemented in Fluke [Ford96a]. It enables a modular 

design in which functionality may be implemented at different levels within a series

of nested s or nesters. Unneeded services may be removed and existing services

re-implemented or customized. Nesters form a hierarchy and so different applications

or groups of applications can access different s depending on the topmost nester

over which they are executing. Ford et al envisage that many nesters will export s

which match the hardware architecture on which the system operates and also that

the  will only cover low-level operations, such as the instruction set and system

calls available to an application. Higher-level operations, such as file-system access,

will be via inter-process communication () to user-level servers. Although this is

similar to a virtual machine monitor [Creasy81], Ford et al claim that the rationale

for the design is different: now it is a desire for flexibility rather than a means of

multiplexing scarce resources without changing application software.

Fluke is implemented for x-based hardware. This processor does not provide native

support for self-virtualization (that is, for exposing an identical x ): there are

unprivileged instructions which reveal ‘global’ state to which a nester cannot prevent
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access. This problem is avoided by restricting applications to a particular subset of

the x instruction set. An interface which replaces the missing functionality is made

available.

This design allows flexibility between exposing low-level Application Program Inter-

faces (s) to programmers (and structuring applications as in a library-extensible

system) and exposing s similar to those in a traditional . Furthermore, a single

running instance of the system can use both approaches concurrently by defining

global policies within nesters over which groups of applications run. For example,

a shared buffer cache could be provided by a nester over which all applications

run, or separate caches could be implemented within each application. This there-

fore allows system-specific trade-offs between intra-application and inter-application

optimization of resource usage.

Ford and Susarla present inheritance scheduling as an example mechanism for use

in such a system [Ford96b]. Schedulers are organized in a hierarchy in which they

receive resources from their parent and donate these, in some scheduler-specific

fashion, to their children. Ford and Susarla illustrate the case with a  scheduler in

which the hierarchy may consist of schedulers representing different administrative

domains within an organization. A low-level dispatcher implements primitive thread

management functions such as marking threads blocked or unblocked and waking

threads after timeouts expire. This is the only part of the system which does not

operate in user mode. Donation is performed by a schedule operation which specifies

a target thread, a wakeup sensitivity which controls when the scheduler should regain

control – for example if the scheduler should be woken if the target to which it

donates blocks, or if the scheduler should be woken if another of its client threads

becomes runnable. Resource donation need not follow the scheduler hierarchy – the

ability to perform arbitrary donation allows a natural approach to handling priority

inversion since a thread which blocks may donate the remainder of its time to the

thread which is holding the contended lock.
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Discussion2.2.4

Sections ..-.. have described approaches taken in the design and implementation

of extensible operating systems. As stated in the introduction to this section, one

common rationale for the systems presented here – the Xok exokernel, Nemesis, 

and Fluke – is that they can allow policy decisions to be deferred until much later

in development than with traditional monolithic designs. Engler argues an extreme

version of this case in his workshop paper [Engler95].

As we have seen, these policies typically relate to managing resources that must

ultimately be controlled by code operating in privileged mode. Thus although

many decisions can be delegated to untrusted code within applications some form

of policing must be performed on the resulting decision before it can be put into

effect. Canonical examples are checking that user-assembled network packets contain

correctly formed protocol headers, or that direct-access rendering operations are made

only to windows owned by the associated application.

This need both to delegate decision making, enabling policies to be tailored to

application-required behaviour, while still policing results to ensure globally safe

behaviour, has led to a characteristic separation of control-path and data-path

operations in these operating systems. Typically, control path operations – such as

opening windows or creating network connections – are expected to be in the minority

and can consequently admit a more heavyweight implementation. In contrast, data

path operations – such as individual rendering operations or packet transmissions

– are expected to be frequent and any checking of application behaviour must be

lightweight. An example is the use of downloadable code in the  operating

system: when a new extension is downloaded substantial effort may be expended to

link it into the operating system kernel (for example, in the optimization phase of

compilation).
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The design presented in Chapter  for an extensible virtual machine will use similar

techniques to safely devolve  policy decisions on a fine granularity to untrusted

applications.
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Chapter 3

Flexibility in existing VMs

Chapter  documented the evolution of virtual machines (s). The discussion

there described how current systems, typified by the Java Virtual Machine () and

Microsoft Common Language Runtime (), have adopted substantially similar

type systems with single-implementation and multiple-interface inheritance.

This chapter concerns the way in which s of that design have been used and

extended. In particular it considers the trade-offs in flexibility and performance

that exist when using such a  as an execution platform rather than compiling

applications directly to native code.

This chapter is divided into three parts. Firstly Section . describes how current

s have have formed platforms for the implementation of various languages and

language-extensions. Secondly, Section . identifies a number of areas in which the

interface provided by contemporary s prevents optimization opportunities that

are used in non--based systems. Finally, Section . relates these areas to the

dissertation as a whole. In summary, the theme is that while the interfaces provided

by current s are adequate for most programming tasks, the only interfaces currently

exposed are at a much higher level than their counterparts in an . This means that
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much functionality is fixed early in the development of a  and therefore many of

the criticisms made of monolithic operating systems may also be made here.

Support for multiple languages3.1

This section describes recent compilation projects which use the  as their target.

The range of source languages considered is interesting because it includes many for

which tension appears between the language features and the design of Java bytecode.

For example, Java bytecode provides strong static typing, whereas Lisp [Steele, Jr.90]

and Scheme [Abelson98] are dynamically typed. In addition, the inter-method control

flow operations in the  are designed for a class-based object-oriented language

rather than for supporting higher-order functions, for example, or for selecting

between methods on the basis of pattern matching.

MLJ3.1.1

The  [Benton99] compiler translates the functor-free subset of Standard  () to

Java bytecode [Gosling95];  is a functional programming language which supports

parametric polymorphism and higher order functions [Milner97]. It is subject to eager

evaluation. In this case, the use of Java bytecode as a target language is attractive

because it allows  applications to operate on a broad range of platforms. The low

semantic gap between  and Java (compared, for example, with  and C) permits

safe inter-operability between parts of applications written in the two languages –

both for Java code to call methods implemented in , or the  programmer to

work with libraries available for the .

The system operates as a three-phase whole-program compiler. The first phase parses

and type-checks the structure definitions ( code modules) which comprise a project

and translates them to terms in a typed Monadic Intermediate Language (). The

second phase aggregates the  terms and transforms them to low-level Basic Block
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Code (), a -form intermediate language from which the final phase generates

Java class files. The majority of the transformations are performed on the 

representation.

The basic  data types are represented by the primitive types of the . For example

a Java int is used in place of an  int and an instance of java.lang.String

in place of a  string.

Product types in  are represented by Java classes containing successive fields of the

product (some of the Java classes introduced by this mapping could be avoided by

generating a canonical representation which is shared between multiple  product

types).

Summation types are represented by defining a Java class for each different type of

summand. Each of these is a direct sub-class of a single ‘summation’ super-class

which contains an integer tag field containing different values to differentiate between

summands. The  compiler detects two particular idioms which are handled more

efficiently. Firstly, a summation type with only nullary constructors is represented

by the primitive integer type. Secondly, summations which add a single nullary

constructor to an existing data type are translated by introducing a new distinct value

of the existing type and using this to represent values of the additional constructor (in

many cases the Java null value may be used directly). Each  exception declaration

is mapped to a new sub-class of an ‘exception’ super-class.

Functions in  are handled in three different ways:

� Functions which occur only as tail calls are placed inline in the generated code.

The  function application is translated to a goto bytecode.

� Functions used in a higher-order context are converted to closures. For each

different function type occurring as a closure an abstract apply method is added
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to a designated class, F. For each different set of free variables accessed within a

closure, a new sub-type of F is created in which the values of the free variables

are held in instance fields. The code within the closure is generated as an

implementation of the abstract apply method within the appropriate sub-

type of F. A similar representation is used in Pizza [Odersky97], the Intermetrics

Ada 95 compiler [Taft96] and in , a pre-processor which generates Java source

code from a Java-like language which is extended to include block closures.

� Other functions are collected as staticmethods on a designated class. They

are generally called with the invokestatic bytecode, although this can be

translated to a goto branch in the case of a self-tail-call.

Polymorphic functions are translated multiple times – once for each instantiation of

their type scheme. The risked exponential code expansion has not been observed

in benchmark applications. Producing multiple translations allows each to be

specialized, and for the arguments of primitive types to be passed in an unboxed

representation. A similar approach is proposed by Odersky and Wadler in their

heterogenous implementation of parametric polymorphism for the Java programming

language [Odersky97].

The performance of the translator itself was found to be poor when compared with

Moscow  (- times) or with / (- times) because of the whole-program

analysis performed by  [Benton99]. The performance of the generated code

depends on the implementation of the . The developers of  reported that

gathering results with early just-in-time compilers were hampered by errors in the

 implementations. Qualitatively, the performance was found to be good on

numerically-intensive benchmarks because basic arithmetic operations continued to

operate on primitive types which the  compiler would recognise and translate to

single assembly language instructions. Conversely, code which exploited higher-order

functions behaved poorly. Benton et al suggest that this may have been a consequence

of poor memory management within the implementation of the  [Benton99].
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Kawa3.1.2

Scheme is a non-pure functional language which provides first-class functions, lexical

scoping, dynamic typing and eager evaluation with side effects [Abelson98]. Kawa is a

toolkit which contains a substantially-complete implementation of Scheme through

compilation to Java bytecode [Bothner98].

All Scheme types are mapped to classes in the . This is even necessary for

primitive arithmetic types because of the sub-typing relationship that exists within

Scheme between successively specific numeric formats (for example, a Scheme real

number is considered to be a subtype of a complex number). Similarly, classes are

defined for Scheme collection types such as sequences, fixed-length mutable strings,

fixed-length vectors, lists and pairs. Scheme symbols are represented by instances of

the immutable java.lang.String class.

Binary arithmetic operations in Scheme may be based on the type of both of their

arguments. This cannot be expressed directly in the  which supports only method

dispatch based on the receiver class rather than a more general multi-method dispatch

based also on the argument classes [Bobrow88,Chambers92]. In general a subtraction

x-y is implemented by a method invocation x.sub(y). The implementation

of sub in the existing numerical classes tests the class of its argument and, if it

is unknown, returns y.reverseSub(x). This allows the hierarchy of numeric

types to be extended without requiring changes at every level. In a similar manner to

 first-class functions are implemented as sub-classes of an abstract Procedure

class.

Kawa provides limited support for continuations. The call-with-current-continuation

operation is implemented by instantiating a Java exception object and passing this

to the called function as the ‘continuation’. A continuation is taken by throwing

the exception object. The site of the call-with-current-continuation

operation is covered by an exception handler which compares any exception objects

caught against the one that it instantiated. If the exception references are identical

then execution may continue from that point. Otherwise the exception is propagated.



If no handler is found then the continuation was generated by a call-with-current-

continuation operation that is no longer on the stack. This case is not currently

implemented because the most direct approach to providing complete support for

continuations would require stack frames to be heap allocated if they are captured as

part of the state of a continuation. The  does not provide access to stack frames

as first-class entities.

Pep3.1.3

Pep is a Just In Time () compiler for Java which operates by translating Java

bytecode for execution on the   [Agesen97a]. As described in Section .., 

is a prototype-based pure object-oriented language.

Each Java class is compiled to two objects: one representing the static methods

and fields, and another defining the ordinary methods and fields as a prototype

for any instances that are created. Systematic ‘name mangling’ is used to reconcile

some differences between the two object models, such as the distinction (required

in Java, not in ) between field and method names, and the fact that a Java

field definition may be hidden by a field of the same name defined in a subclass.

Most Java methods are translated into two  methods. The first is used for

normal virtual method dispatch. The second has a modified name, incorporating

the name of the defining Java class, to support direct invocation through the Java

invokespecial bytecode. Synchronized methods require a third translation to

handle lock acquisition and release. Compilation to  bytecode is performed

lazily by installing stub methods which trigger the translation of code upon its first

invocation.

In general, Java integers must be handled as objects, although small (-bit) values

may be held in an unboxed representation. Floating point numbers are represented

directly in , although this diverges from the  semantics used in the 

because the underlying  implementation reserves two bits in each value. This

approach necessitates the use of an abstract interpretation when translating the dup



and pop bytecodes because it is necessary to determine the type of the value on top

of the  stack 1.

Exceptions are not primitive to  and so the control flow that results from throwing

a Java exception must be encoded explicitly by translating the athrow bytecode

into a method invocation which searches a stack of exception handlers. This has the

unfortunate effect of introducing a cost for entering and leaving regions protected by

handlers (because it is necessary to update the exception handler stack). Extensions to

the   are proposed which would avoid this cost for ‘passive’ exception handlers.

In the Java programming language any object reference may be used as the target for

a monitorenter or monitorexit bytecode or for an invocation of the wait,

notify or notifyAllmethods. In contrast locks must be instantiated explicitly

in , so each object in the generated code has an associated lazily-allocated lock

object that is created when the object is used for the first time as the target of a

synchronization operation.

Control flow within   methods is provided by three mechanisms: closure-like

code blocks, a restart-current-method operation (used, for example, in tail call

elimination) and non-local return. Branch bytecodes were added to the   to

handle some cases of the more general goto operation available in Java bytecode.

Some limitations are introduced by assuming that the input to the translator was

generated by a particular compiler – for example that exception handling regions are

nested.

In general Agesen found that Pep performed well on programs written in an object-

oriented style – that is, programs using method dispatch as the primary control flow

structure. It performed less well on computationally intensive applications – for

1 Readers familiar in detail with the  may wish to note that it is invalid for generic dup or pop

operations to operate on values of unknown type within a bytecode subroutine, so it is unnecessary to

duplicate subroutine code as later proposed by Agesen et al for other reasons [Agesen98].
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example a slight slowdown was reported when executing javac when compared

with version .. of the Java Development Kit. Agesen suggested that these effects

were due to the use of type feedback to optimize method dispatch in the   and

to the use of boxed representations for primitive types.

Ada 953.1.4

Intermetrics have implemented an Ada  compiler which generates Java byte-

code [Taft96]. Each Ada package is translated into a class on which library-level

variables are defined as static fields. Each record type within a package is

translated to a separate Java class. Non-tagged operations on the record become

static methods. Tagged operations become instance methods. Record extension

is implemented by causing the class generated for the extended record type to extend

the class generated for the base record type. Record types with names derived in

idiomatic ways from the enclosing package are treated as a special case in which,

rather than generating a separate class, the fields and tagged operations are generated

directly on the class representing the package. This reduces the number of classes

generated and allows the generated code to present a more natural interface to other

classes executing on the .

Variant record type definitions are translated into sets of classes in which one class,

representing the common fields, is extended by class definitions for each of the variant

choices. Run-time checked casts are introduced to select the appropriate sub-class

when accessing fields within a variant record.

Protected type definitions are translated to separate classes on which the associated

protected sub-programs are defined as synchronized methods. The semantics

associated with Ada entries and queues are implemented by additional code on the

exit of each method. Ada tasks map to sub-classes of java.lang.Thread.

Each Ada exception is translated to a separate class. These are ultimately sub-classes of

java.lang.RuntimeException and so their use does not have to reflected

in the throws clauses of the generated methods. (Ada does not require code to be



flagged with which exceptions it may raise).

Multi-dimensional Ada arrays are flattened to a single dimension rather than being

represented by multi-dimensional arrays in the . This provides a more efficient

implementation since accessing a field within a multi-dimensional  array requires

a succession of aaload bytecode operations – this is necessary for implementing

non-rectangular arrays, but these are not available in Ada.

In general it is possible to use the scalar types of the  directly. However, this is

complicated by the requirement that signed integer arithmetic in Ada  signals an

exception on overflow (the integer arithmetic operations in the  are defined to

wrap around using a twos’ complement representation [Lindholm97]). The proposed

implementation uses wider integer types where overflow is possible and introduces

run-time tests to check for out-of-range values. An alternative would be to introduce

run-time tests on the parameters of each operation that may overflow.

If a primitive value may be accessed by reference then it is represented in the generated

code as a heap-allocated object and accessed through a wrapper object.

NESL3.1.5

Hardwick and Sipelstein describe using the Java programming language as the target

of a compiler for , a high-level parallel language [Hardwick96]. They present three

arguments for using Java as a viable intermediate language. Firstly, strong typing in

the intermediate language can aid debugging the high-level compiler. Secondly, the

inclusion of automatic storage management in the intermediate language can simplify

the translation made by the high-level compiler and avoid the need to implement a

new garbage collector. Finally, the commercial success of Java and the widespread

deployment of the  provides a wide base of machines on which the generated

code can be executed.

The -to-Java translator is implemented in Perl and replaces an earlier version



which generated native code using the  library [Engler96]. However, both

translators generate code that relies on a large library of native vector-manipulation

functions for numerically-intensive computations. Java is thus being used essentially

as a scripting language to control the computation rather than being used for the

direct expression of the program.

AspectJ3.1.6

Aspect oriented programming [Kiczales97] is a technique for structuring software

so that the code implementing each aspect of a program’s behaviour is grouped

together. Examples of different aspects include control over synchronization, error

recovery, replication or object migration. The rationale is that separating such

code from the main algorithms of a program aids readability (by allowing the

reader to focus on one aspect of the system at a time) and aids code evolution (by

enabling the implementation of one aspect to be changed while retaining the code

implementing other aspects). A complete program is re-constructed from the separate

implementations of each aspect by using a weaver to re-combine them.

AspectJ is a framework to support such an aspect-oriented approach in the Java

programming language. It is intended that the basic algorithms of a program are

implemented in standard class definitions which are then woven with a series of

aspect definitions that insert code around the methods. A method may therefore be

extended many times before reaching its complete definition. AspectJ allows code

to be introduced before each invocation, after each normal invocation, as a catch

clause to handle exceptions thrown in the method and as a finally block which is

executed whether the enclosed code completes normally or by throwing an exception.

Additionally new weaves, applied to classes rather than to methods, introduce further

fields or method definitions [Lopes98].

By using AspectJ, Lippert and Lopes achieved a reduction by a factor of  in the
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number of lines of code related to exception detection and handling in a Java-based

framework for interactive business applications [Lippert99]. The candidate application

had been created using a design by contract convention in which the parameters and

results of cross-interface invocations were checked against pre- and post-conditions.

Using AspectJ enabled the enforcement of these conditions to be segregated from the

main logic of the application. This approach allows checks to be entirely removed

after testing. As an example, one common post-condition was that all methods

returning object references must not return the null value. This test was originally

replicated throughout the code. AspectJ allowed it to be written once as a block to

execute after each invocation of any method whose return signature is a reference

type.

Jamie3.1.7

Jamie is a pre-processor based extension to the Java programming language that

implements automated delegation. Viega et al claim that this provides a viable

alternative to using multiple inheritance of method implementations [Viega98]. Jamie

allows a class definition to include a forwards clause after the specification of its

superclass.

This takes the form forwards Intrfc to Fld and has the effect that invo-

cations of operations on the Intrfc interface are forwarded to the corresponding

operation on the instance referred to by the Fld field of the class being defined.

The programmer must, of course, define a Fld field and initialize it with a reference

to a class which implements the Intrfc interface. Forwarding is implemented by

adding delegation methods for each of these operations.

This approach gives some of the benefits that have been claimed for multiple-

inheritance of method implementations [Waldo91]. In particular, it allows multiple

specialization in cases where different parts of the behaviour of an object are
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not closely related – for example an InputOutputStream could delegate to

separate InputStream and OutputStream objects that are initialized, upon

construction, to refer to the same file. It is still necessary for the programmer to

manually avoid (or resolve) conflicts when multiple interfaces contain operations of

the same signature.

Jamie does not attempt to allow delegation of field accesses because there is no clear

translation of this into Java bytecode.

OpenJava3.1.8

OpenJava is a pre-processor based extension of the Java programming language [Tatsu-

bori99]. It implements a compile-time Metaobject Protocol () in which meta-level

classes define transformations that are applied to any ordinary classes tagged by a

new instantiates key word and the name of the meta-class. A meta-class

can transform the definition of a base class in various ways, including introducing

caller-side and callee-side code in method invocations whose target is an instance of a

class that instantiates the meta-class. As with AspectJ (described in Section ..) this

can be used to separate error handling from the main logic of the program and as with

Jamie (described in Section ..) it can implement delegation between instances.

An example application of OpenJava is in providing language level support for design

patterns [Gamma94]. Tatsubori and Chiba describe the use of the  to generate

glue-code automatically and to make explicit the rôle of each class that participates in

a pattern [Tatsubori98]. They illustrate this by considering an adapter class that is used

to implement a new interface in terms of an existing object which implements an

old interface. In the terminology of the pattern, the adapter class contains a field of

the type of the adaptee and methods which implement the new interface in terms of

operations that are supported by the adaptee. They use an AdapterPattern meta-class

to generate the majority of the adapter class and to implement methods which may

be delegated directly to the adaptee.
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VMLets3.1.9

Folliot et al ’s Dynamically configurable, multi-language execution platform is a flexible

virtual-machine-based system designed to be able to execute programs written in

any bytecoded language [Folliot98]. An application is ‘typed’ with the name of an

appropriate VMLet that describes how the bytecode implementation of the program

can be converted into a language-neutral internal representation.

Kimera3.1.10

The University of Washington’s Kimera project is described as a distributed virtual

machine [Sirer98]. It is distributed in the sense that the functionality of a system

such as the  is decomposed into separate components such as the verifier, the

execution service and the resource management service. This approach may increase

the overall integrity of the system by containing the failure of individual components

– for example by separating the address spaces within which the components operate.

The manageability of the system can be enhanced by requiring that a common

verification service is used within an organization, under the close control of the

system administrators. Finally, this decomposition hopes to enable performance

gains and scalability by performing resource-intensive tasks such as compilation and

verification on dedicated machines.

Vanilla3.1.11

The Vanilla project at Trinity College, Dublin [Dobson98] is a system in which

parsers, type checkers and interpreters can be constructed from language fragments.

Each of these components implements a language feature and describes how the

feature is realized in concrete syntax, how it is represented in the abstract syntax tree,

how it affects the assignment of types to program fragments and how the language

feature should be implemented at run time. A language definition file identifies the
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Object o;
o = new Object();
...

...

Native code

cmpl %eax, 4(%ebp)
...

...

movl 0(%ebp), %eax

Application

source code

representation

Bytecode

anew Object

...

dup
invokespecial ...

1

Figure 3.1: Possible execution paths for an application. In (1) it is compiled directly to native code, whereas in (2)

it is compiled to a bytecode representation and subsequently (3) to native code.

components that need to be combined to construct the required language.

Limitations to flexibility3.2

In systems such as those described in Chapter  the bytecode format of the  is

being used in place of a native binary format. As illustrated in Figure ., if the

 itself employs a run-time code generator, the compilation of an application is

effectively divided into two steps with the format of the  bytecode defining the

interface between the two. As explained in the introduction, such a division of

responsibilities allows the evolution and deployment of the two compilation steps to

be de-coupled – so long as the bytecode format remains fixed. With that separation

of responsibilities comes a need to co-ordinate changes made to the bytecode format.

However, in existing systems, that bytecode format provides the only mechanism for

presenting application code to the . The bytecode operations, because they are

semantically close to the source language, deal in terms of much higher level entities

than contemporary native code formats: for example the Smalltalk-80 ,  and

Microsoft  all provide operations for object allocation and method invocation.

Referring again to Figure ., in a traditional -based system, optimizations at stage

(3) can only be performed by the  implementor and – at least in the case of

untrusted code – there is no option of sidestepping this by re-writing portions of the

application directly in native code or in an unsafe bytecode.
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This section discusses a number of areas in which the style of interface exposed by ex-

isting s either restricts their suitability as general-purpose execution environments,

or may be detrimental to performance.

It is naïve to view these restrictions, in themselves, as a problem. One of the potential

benefits of using a high-level portable bytecode as a distribution format is that it

enables optimization decisions to take into account the characteristics of the computer

on which an application is being executed, or to allow its execution to benefit from

developments in optimization technology. Similarly, if compilation is delayed until

run-time then value-based or cross-module specialization may be possible. Franz

advocates such a system in which code from various sources is combined dynamically

into a single ‘quasi-monolithic’ image [Franz97].

However, one of the key tenets of the virtual machine proposed in Chapter 

is that such concerns may be addressed by separating the underlying application

from its specialized execution policies – thereby retaining flexibility for both the 

implementor and the application programmer.

Loss of information3.2.1

In some cases the ‘lost’ opportunities for optimization may be avoided by passing

hints from the bytecode generator to the run-time compiler. For example, although

the bytecodes provided by the Mite  (Section ..) present the abstraction of an

infinite set of virtual registers, a native code generator may assume that numerically

lower registers should be allocated to those of the physical processor in preference

to higher ones. The  provides a general mechanism for including auxiliary

information alongside standard class definitions -- in an extreme case this could

include full native-code method implementations produced by a trusted compiler in

combination with some form of code-signing system.
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Without such facilities, other opportunities for optimization may be harder to recover

– for example whether data flow dependencies exist between particular instructions

(and consequently whether they can be reordered during compilation). Using a

single  as an execution target for multiple programming languages exacerbates

this problem: a simple type-based analysis, in which mutually-incompatible object

references cannot be aliased, loses precision if distinct types in the source language

become coincident after compilation. It is easy to hypothesise various kinds of

additional hints that could express such information (in much the same way as

very long instruction word () processors require instructions to be presented in

bundles that may be executed concurrently [Hennessy90]).

Implementation of standard APIs3.2.2

The comparatively high level of abstraction presented by the  interface places it

above the level at which decisions must be made, for example, concerning which

conventions are used for laying out fields within objects or objects within the

heap. Similarly, if library implementations are responsible both for implementing

abstractions (e.g. of an object-based stream over a byte-based  network connection)

and for protection (e.g. restricting the network addresses to which a connection may

be opened) then both aspects of this behaviour may be moved outside the control of

untrusted applications.

Heydon et al identified a number of examples within the Java 1.1 core libraries during

their implementation and evaluation of a multi-threaded web crawler [Heydon00].

Library implementations of standard data structures were found to have been written

to acquire and release mutual-exclusion locks on most operations – for example

all insertions and deletions from a hashtable. Presumably intended to aid novice

programmers, this degraded performance when the locks were unnecessary – either

because the application was not multi-threaded or because access to the data structure

was arbitrated in some other fashion.
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Heydon et al cite particular examples in the use of StringBuffer objects during

string concatenation, the acquiring and releasing of locks during low-level /

operations (e.g. on each byte of a multi-byte quantity) and the updating of a cache

used during network name-to-address resolution.

In other cases the implementation of the standard libraries leads to larger-than-

necessary volumes of allocation on the heap. Various examples are identified, but the

BufferedInputStream class is typical in that the target of the stream (that is,

the lower level stream over which it provides buffering) is set only in the constructor

of the object. Their is no way to re-target the buffer without re-allocating the buffer

it uses.

In some cases these problems could be circumvented by re-implementing the library

operations as part of the application. However, this is not always possible – either

because the replacement cannot be implemented using facilities available to the

untrusted programmer, or because it is invoked from a class which cannot itself be

changed.

Run-time services3.2.3

As shown in Chapter , -based environments such as the  and Smalltalk-

typically provide extensive run-time services in addition to the underlying code-

execution platform. In these cases, for the user’s perception of the system to remain

good, it is necessary not only to execute the application itself efficiently but also to

ensure that the services on which it depends operate appropriately.

These arguments apply equally to applications executed directly within a computer

operating system and they provided part of the motivation for the extensible

operating systems described in Section .. In each case the performance observed by

the user depends both on decisions taken by the application programmer and also
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on decisions taken within the implementation of the enclosing environment. This

section describes examples of major  components for which the selection of an

appropriate implementation depends on the application.

Dynamic compilation

Section .. described a number of areas in which the native code generated from

a portable bytecode may be less efficient than similar code generated directly from

the source language. A -based environment using a dynamic compiler faces the

additional problem of scheduling this compilation work so that it presents acceptable

performance at run-time: time spent during compilation can reduce time available to

the application itself.

A simple approach to dynamic compilation is to invoke the compiler whenever a

body of code is encountered for the first time – for example, in an object-oriented

language, upon the first invocation of a particular method implementation. This

so-called just-in-time scheme provides two principal benefits over compiling the

entire application at load-time: only methods that are executed become compiled

and this work is spread across the start-up phase of the application and so may be

less perceptible to the user. In fact, facilities such as dynamic class loading make it

generally impossible to compile an entire application in a single step.

A number of concerns have been identified with simple  compilation:

� Firstly, the quality of the native code generated by the  compiler is typi-

cally poor compared with the output of a traditional ahead-of-time system.

This is due both to the need to perform compilation quickly and also to

the piecemeal fashion in which the compiler operates – preventing optimiza-

tions that may require a whole-program analysis such as Class Hierarchy

Analysis () [Dean96].
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� Secondly, the time spent during compilation may be poorly scheduled within

the execution of the application. For example, an interactive application may

spend substantial periods of time blocked for user input and then – when input

is received – spend time compiling the methods responsible for generating

output. It may have been worthwhile to compile those methods in advance

during idle time. In contrast, for a -bound application, it is unreasonable to

defer compilation until the system is idle because that opportunity will never

arise.

� Finally, if an application is executed multiple times, then each instantiation of

the  will need to perform the compilation afresh. This provides opportunities

for run-time value-based profiling and for optimizations based on the particular

inputs to the application, but such techniques are not currently used widely

and – in any case – may not be practicable to implement within the run-time

budget available to a  compiler.

A number of systems have used heuristics to select which bodies of code should be

compiled. Typically these identify hot-spots in the application – that is, regions which

are executed frequently – and compile those in preference to less-frequently executed

sections. This scheme exploits locality of execution. Just as those parts may come

to be held in the instruction cache when executed as native code, there is a greater

benefit to be had when compiling them from bytecode. Implementations differ in

exactly how hot-spots are identified and how they are treated when compared with

the remainder of the application. A simple technique is to count the number of times

each method implementation is called and to invoke the compiler when this attains a

threshold value. Some systems use an interpreter for initial invocations while others

vary the level of optimization according to whether a method is being compiled for

the first time (in which case a fast non-optimizing strategy is selected) or whether it

is being re-optimized after identification as a hot-spot.

Recent work has evaluated the benefits of preserving compiled code between runs of

a Java  [Serrano00]. However, in earlier work on the Smalltalk , studies found
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that the cost of recompilation may be less than the cost of saving and restoring the

generated code and ensuring that changes to the bytecode cause re-compilation to

occur [Deutsch84].

To evaluate dynamic compilation Hölzle introduced the notion of pause clusters –

the aggregate delays produced by run-time compilation of multiple methods in quick

succession [Hölzle94a]. He defined a pause cluster to be a maximal series of delays in

which a specified proportion of the interval was accounted to compilation. With that

definition in mind, a run-time compiler was found to perform better if compilation

occurred only once a method had been executed several times.

The ‘HotSpot’ implementation of the Java Virtual Machine contains separate bodies of

code for ‘client’ and ‘server’ deployments. In this case the ‘client’ system is intended

for use on a desktop machine with an interactive workload and a consequent

emphasis on avoiding long pause clusters whereas the ‘server’ system is intended for

bulk-processing tasks, perhaps with a preference for high-throughput over low-latency

responses.

Memory allocation

Barrett and Zorn studied C programs which placed heavy demands on dynamic

storage allocation [Barrett93]. They use profile-driven full-run feedback based on

observed object lifetimes. Their motivation is to reduce the fragmentation caused by

long-lived objects scattered throughout the heap. They are able to reduce the cost of

allocating short-lived objects by placing them contiguously and delaying deallocation

until large batches become free.

They attempt to correlate short object lifetimes with the most recent � return

addresses on the execution stack. They found that there is typically an abrupt step

in the effectiveness of prediction when � reaches some critical value. These critical
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values varied between applications, but were usually not greater than .

The effect of using these predictions was evaluated through simulation with allocation

traces. Each entry in the traces contained an identifier representing the object size

and the complete call-chain to the allocation site. They estimate that the cost of

computing a reasonable approximation to such an identifier may be between  and

 -style instructions for each memory allocation made. Such an overhead is,

perhaps, reasonable for a free-list based allocator from the libc library. However,

the fast-path of a simpler allocator may use fewer than 10 instructions and so even

the best-case overhead of a further 9 instructions appears unsatisfactory [Harris01].

Zorn and Seidl used a similar profile-driven approach in which three special categories

of objects were identified: highly referenced (), not highly referenced (n) and short

lived () [Zorn98]. A separate heap region was allocated for each of these three

categories and the profiling results were used to modify allocation behaviour on

subsequent runs. These divisions are designed to improve the program’s usage of

virtual memory pages. Their intuition is as follows: highly referenced objects should

be densely packed together so that the pages they occupy will form part of the

working set of the program, non-highly referenced objects should also be held with

one another but segregated from other kinds of object, in the hope that the pages

they occupy will not form part of the working set. Short-lived objects should also

be held separately from the rest of the heap in order to avoid fragmentation in the

remainder of the heap.

Cheng, Harper and Lee describe profile-based pre-tenuring in a generational garbage

collector for an  compiler [Cheng98]. They identify allocation sites by their

program counter – this is perhaps more effective for  rather than C because it is

not customary for allocations to be made through layers of wrapper functions.

Cheng et al do not comment on whether the effectiveness of pre-tenuring is influenced

by the usage patterns of heap-allocated data in functional languages (illustrated, for
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example, in Stefanovic and Moss’ analysis based on / [Stefanovic94]). The major

differences observed are a higher allocation rate of data records and a reduced update

rate of existing data. However, it is unclear whether these language-level differences

in the manipulation of data structures will be reflected in the native code generated

by an optimizing compiler.

In contrast to such profile-based feedback-directed work, Vo exposes direct control

to the programmer through the Vmalloc interface [Vo96]. The heap is divided

into separate regions, each of which has a discipline (which defines how to obtain

further memory with which to extend the region) and a method (which defines how

the memory in the region should be divided to satisfy allocation requests). The

programmer can define new kinds of region and can specify into which region an

allocation is placed. A nested structure may be created using a discipline to obtain

memory from an upstream heap rather than from an operating system allocator.

Vo observed that different definitions were effective with different workloads. A

‘never free’ policy is appropriate for a region in which the allocation lifetime will

extend to the termination of the program. It may be more compact than a traditional

‘first fit’ or ‘best fit’ policy because the heap need not track the size of allocated

blocks and so per-object headers can be avoided 2. A futher policy, which allowed

only the most recently-allocated block to be de-allocated, was found to work well

with workloads which had generally-long-lived structures and needed occasional

temporary storage.

Chilimbi et al investigated techniques for improving locality of reference by cache-

conscious handling of data structures [Chilimbi99]. Their analysis considered tree-based

read-mostly data structures and reorganized them at run-time between their creation

and their use. They clustered data structures which are used together onto the same

memory pages and used memory colouring, based on a description of the cache

2 Vmalloc was implemented for use with the C programming language which does not require a

mechanism for determining the size of an allocated block from its address.
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hierarchy, to avoid introducing conflicts in the cache. Previous work used a copying

garbage collector to reorganize the heap at run-time [Chilimbi98].

Chilimbi et al also investigated further techniques for cache-conscious structure defini-

tion. This focussed on the internal layout of data within a block of allocated memory

rather than on the external organization of allocated blocks within the heap. An

implementation for the Java programming language translated class definitions into

hot and cold portions based on profile feedback. As with the  and n regions

in the work of Zorn and Seidl, the intent is that hot portions can be co-located to

reduce (in this case) the number of cache-line fetches. Fields were also reordered so

that those accessed with high temporal affinity were placed together.

Wilson et al present an extensive survey of techniques for dynamic storage and

attempt to develop a conceptual framework and terminology for the discussion of

the subject [Wilson95]. They identify the fundamental dilemma when implementing

a storage allocator as the fact that the number and size of live blocks are controlled

by the execution of the application: the only possible influence from the storage

allocator is to decide where in memory to satisfy a request (or whether to reject the

request). It must make such decisions judiciously to avoid fragmenting the heap into

isolated blocks. In the general case it is impossible to avoid fragmentation without

knowledge of the workload imposed by the application on the allocator [Robson74].

However, Johnstone and Wilson report that the worst-case bounds of fragmentation

are not observed in current benchmark applications [Johnstone97].

In their survey paper Wilson et al study the effectiveness of different allocation

schemes with six allocation-intensive benchmarks. They conclude that:

� Program behaviour is usually time-varying, meaning that the characteristics of

the allocations requested will vary during a single execution of an application.

� Fragmentation at peaks is more important, because peaks in memory usage

correspond to times when the allocator used by the application may need to
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request further memory from the underlying operating system allocator.

� Fragmentation is caused by time-varying behaviour, because an application

phase-change may alter the sizes of blocks requested.

� Known program behaviour invalidates previous experimental and analytical results,

because much of the work Wilson et al surveyed were based on synthetic

models of allocation requests whose behaviour differed significantly from the

benchmark applications studied.

� Different programs may display characteristically different behaviour, for example

in terms of object lifetimes, the total volume of active objects over the

application execution or in terms of the phases exhibited during an application

execution.

Garbage collection

Different garbage collection algorithms have very different run-time performance.

For example, considering the basic schemes described in Wilson’s second survey

paper [Wilson92]:

� A reference-counting garbage collector associates an integer count with each

allocated object, increasing this count when a new reference is created to

the object and decreasing it when a reference is removed. An important

consequence is that storage space may be reclaimed immediately that the

count reaches zero. Disadvantages include heap fragmentation, the inability

to reclaim cyclic data structures and the need for count-manipulations when

traversing data structures in addition to when modifying them.

� A mark-sweep garbage collector traverses the heap, recursively marking each

object that can be reached by the application. When a fixed-point is reached

any unmarked objects are known to be inaccessible to the application and may
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be swept – i.e. returned to the free list. A mark-sweep collector can reclaim cyclic

data structures. However, it requires careful co-operation between application

threads and the garbage collector – either suspending the application while

garbage collection takes place or by introducing barriers on each access that

the application makes to the heap. As with reference-counting, work must be

performed for each object freed and freed space may be fragmented among

retained objects.

� A mark-compact garbage collector, as with mark-sweep, uses an initial marking

phase to identify live objects. It then compacts the heap by moving live objects

so that they are contiguous. This means that work is performed proportional

to the amount of data that remains live rather than the amount of data that

is freed. It can enable straightforward memory allocation by placing objects

contiguously in that free space.

� A copying garbage collector operates by recursively traversing objects reachable in

the heap and copying them to a new area of memory. A simple implementation

may divide the heap into two equally-sized semispaces and copy from one

semispace into the other. As with compacting collectors, the work performed

is proportional to the amount of live data.

In each of these cases numerous alternative implementations are possible. At a fairly

broad level a garbage collector may be implemented so as to be:

� Stop-the-world, meaning that application threads must be suspended while

the garbage collector operates. This may simplify the implementation of the

collector or avoid the need for barriers in the application.

� Incremental, meaning that it can operate in a series of small steps – typically

so that it is not necessary to suspend all of the application threads during each

collection cycle. Reference counting is an example of an incremental scheme.
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� Concurrent, meaning in addition to incremental, that the steps taking by the

collector may occur at the same time as the execution of application threads 3.

In some cases a concurrent collector may dedicate a separate thread to garbage

collection, or it may perform small increments of collection work as part of

each object allocation.

� Parallel meaning that the collection algorithm is itself implemented using

multiple threads.

Consequently, these different schemes provide a range of performance characteristics

in terms of the immediacy with which space may be reclaimed, the ability to manage

arbitrary data structures, the space overhead needed during collection (e.g. for

semispaces or housekeeping information), whether work is done in proportion to

the amount of live data, live objects, dead data, dead objects or heap size, whether

it de-fragments free space and any additional work (e.g. barriers or reference-count

manipulation) that may be required of the application threads. Jones provides

detailed information in his reference text [Jones96].

As with storage allocation, the selection between different garbage collection algo-

rithms is an area in which the use of a  can provide both positive and negative

effects on application performance. In particular run-time compilation can introduce

appropriate barrier code at the point of application accesses to the heap. In contrast,

if an application is distributed as native code, then the correct barrier must be selected

when the application is compiled.

Conversely, as we have seen elsewhere, current s provide not only an ability for the

garbage collector to be selected at run-time, but also a requirement that it takes place

at that time, for example by the user invoking the  with appropriate command-line

options. An application with known behaviour cannot directly communicate this to

the .
3 Some authors use the terms concurrent and parallel interchangeably. The definitions used here follow

those by Printezis and Detlefs [Printezis01]
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Thread scheduling

In a multi-threaded application the thread scheduler is responsible for multiplexing

the available processors between the threads which are eligible for execution.

In some applications this decision may appear straightforward – for example there

is only one benchmark among those in the  suite which is explicitly

multi-threaded. However, even in the remaining  benchmarks, the behaviour of

the thread scheduler may become significant where the  performs housekeeping

tasks using multiple threads. In the case of the  these include threads dedicated

to other system services, such as concurrent garbage collection, run-time compilation

or the execution of finalizer methods on otherwise-unreachable objects.

It is easy to see how the decisions made by the thread scheduler affect the performance

that a user experiences. As an example consider the difference between a mutli-

threaded batch-mode application and an alternative application in which each thread

performs user-visible interaction. In the first case, if output is only generated upon

completion, the primary concern is the overall resource requirements of the program

– the user is unaware if the system switches between sub-tasks frequently or rarely

(and equally if it switches regularly or sporadically). In the second case, where an

application run of the same overall duration may interact with the user, then the

goal may be to reduce the latency or variability with which each interaction occurs.

The tension here is that any fixed overhead associated with each thread switch will

degrade the overall execution time of the application.

More subtle concerns exist in a multi-processor multi-threaded environment. In that

case there may be natural groups of application threads which should be scheduled

on the same processor and other groups of application threads which should be

scheduled concurrently but on different processors. Such situations arise from the

communication patterns between threads and the extent to which the performance

of a particular thread depends on state in per-processor caches or other resources.
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Applications executing directly using native code may have various facilities available

for controlling thread scheduling. The Solaris operating system provides a two-

level mechanism which is of particular use in multi-processor environments. The

application associates threads with Lightweight Processors (s) which, in turn, are

scheduled by the  over the physical processors available to the process. Threads

which should be executed on the same processor may be bound to the same  and,

conversely, threads which should execute concurrently on different processors may

be bound to separate s. This scheme also enables an application to indicate that

it is using multiple threads to simplify its own definition rather than in expectation

of genuine parallel execution.

Where these facilities are not available the  may provide sufficient primitives

for a native code programmer to implement a user-supplied thread scheduler – as

described, for example, in Section .. this may be achieved by using specialized

schemes in an extensible operating system. Additionally, and particularly where

non-preemptive uni-processor scheduling is acceptable, the programmer may effect

manual context save/restore operations by switching between multiple saved register

sets. While potentially simple, such implementations are unsuitable for general

workloads because the  treats the entire collection of ‘threads’ as a single process

which may therefore block.

Discussion3.3

This chapter has described a number of compilers and pre-processors which allow

a reasonably diverse set of languages to be executed over s designed for other

languages. In practice most of these examples form part of the recent body on

work on the Java Virtual Machine and consequently use that as a target. The work

illustrates how, although the bytecode operations provided by the  were originally

tailored for the Java programming language, they nonetheless provide reasonable

facilities for supporting other languages.
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The compilers considered here vary substantially in terms of how ‘natural’ the

generated code appears. One way of assessing this more methodically is the extent to

which the translation maintains abstractions that are present. For example:

� Whether data type definitions in the source code generate corresponding type

definitions for the target machine, in the way that  translates product and

sum  data types, or the way that Pep maps class definitions in the source

language into prototypical objects for the target.

� Whether control flow structures in the source code map to typical control flow

structures for the target  – for example as Kawa maps Scheme operations

on numeric types into method invocations on objects in the , or  maps

non-tail function calls into static method invocations.

� Whether the generated code is executed directly by the  or whether the

‘translation’ introduces a further interpretive layer over the . Such an

approach was apparently taken originally in the JPython compiler from the

Python scripting language to Java bytecode, however it has not been reported

in the literature.

� Whether storage management is performed using the mechanisms provided

by the  (as in all of the systems described here) or whether storage space is

modelled explicitly using a large array of bytes or similar construct.

Many of the areas in which abstractions are not preserved under translation to

Java bytecode are either ones that may be ameliorated by proposed extensions to

the  (in particular support for parametric polymorphism in the translation of

 [Bracha98,Agesen97b,Myers97,Solorzano98,Odersky97]) or by the additional control-

flow operations available in the Microsoft .

More formally, Abadi introduces the term full abstraction to describe a translation

between two languages that maintains both pairwise equivalence and pairwise
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non-equivalence between expressions [Abadi98]. He uses it to illustrate flaws in some

simple translation schemes from the spi-calculus [Abadi99] to the pi-calculus [Milner92].

However, that notion appears less relevant here. Firstly, the languages in question are

rarely associated with a definition of what it means for two programs to be equivalent.

Secondly, experience with existing language- pairs (such as Java and the  or

Smalltalk and the Smalltalk-) shows that these cases do not exhibit full abstraction

and so it is unrealistic to expect that other languages targetting the same  would

do so.

Component-based virtual machines, such as the VMLets or Kimera systems described

in Section ., address some of these concerns of flexibility and extensibility. However,

their approaches are more akin to a microkernel design than to systems such as

Nemesis or the Xok exokernel. For example, the components from which a language

is developed in Vanilla must be designed so that they do not conflict with one another

and so that one component does not destroy invariants or security properties on

which another depends. Similarly, although the decomposition proposed in Kimera

allows a choice over where parts of the  are implemented, these decisions need to

be taken by the system administrator rather than on a per-application basis under the

control of the programmer.

In summary, the compilers and translators described in Section . support the claim

that the bytecode formats supported by existing s are sufficient for use as the target

code for multiple programming languages – even if that is not the purpose for which

they were originally conceived. Furthermore, the discussion of Section . argued

that – in spite of this kind of flexibility – the abstractions presented by existing s

preclude many traditional opportunities for optimization, or for run-time services to

exploit application-specific characteristics.
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Chapter 4

The design of an extensible
virtual machine

Chapter  argued that although existing virtual machines can form execution targets

for a large set of programming languages they provide little control over low-level

aspects of how particular applications come to be executed. Furthermore, Section .

identified a series of areas in which that kind of low-level control can make application

execution more efficient. This chapter develops those observations into a design for

a prototype eXtensible Virtual Machine () drawing on the techniques developed

for other kinds of extensible system.

The design presented here has four main requirements:

[R1] Applications should not be required to exercise control over low-level implementation

details. It is often appropriate to use a default policy (e.g. for general-purpose

or prototype applications). By analogy, both the Xok and Nemesis library-

extensible operating systems provide standard implementations of common 

abstractions.

[R2] Nave or premature optimization should be discouraged. That is, once a low-level

interface is exposed then it may be that programmers use it inappropriately
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or that their own ‘optimizations’ prove to be ineffective as new techniques

are developed or as computer systems evolve. Such usages and optimizations

should be discouraged.

[R3] Code reuse should be promoted by allowing particular policy implementations to be

used with multiple applications and, conversely, by allowing a single application to

be used with multiple low-level implementations. This is essentially an argument

promoting a modular design in which clear interfaces demarcate boundaries.

[R4] The new facilities exposed to untrusted programmers should not allow the safety

of the  to be compromised. Informally, new interfaces exposed to the

programmer should provide control over how the  executes some portion of

an application, without extending the range of possible paths that execution

may take. Safety concerns are addressed separately and in more detail in

Section ..

Framework4.1

This section describes the framework within which application-accessible run-time

policies have been defined. Subsequent chapters will develop this further by describing

the way in which this framework has been applied in particular problem domains.

There are three overall principles on which the design is based:

[P1] Applications can be used without modification and, if executed using default

policies, will behave without significantly degraded performance. This promotes

[R1] by allowing existing applications to be used rather than mandating that

they are revised to include low-level implementation details.

[P2] Policy implementations are expressed separately from application code. This

promotes [R1] because it encourages programmers to distinguish their concerns

over application logic from those over execution policies. In so doing it provides
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a defence against inappropriate optimization because a policy can be replaced

without updating the remainder of the application [R2].

[P3] Fully-featured programming languages are used, where practicable and appropriate,

for expressing policy implementations. The intent is that using a Turing-complete

policy definition language enables the expression of non-trivial policies – for

example, the allocation inheritance thread scheduler described in Chapter . In

practice, a conventional programming language is chosen to take advantage of

existing development facilities. The design of an appropriate domain-specific

language remains a possible area for future research [van Deursen00].

The framework proposed here consists of four kinds of entity: Policy Reg-

istries (s), Untrusted Policy Implementations (s), Protected Mechanism Im-

plementations (s) and class isotopes. These are described in Sections .-.

respectively.

In overview, the s implement application-supplied policies by receiving up-calls

from the  and making invocations on domain-specific s. The s associate

sections of the application program with the policy implementations that should be

used. The fourth kind of entity, class isotopes, provide a mechanism for controlling

the granularity at which policy decisions are made – they are collections of objects

that have the same class but which should be distinguished by run-time policies.

Figure . outlines this structure and illustrates the communication paths that exist

between the application code,  infrastructure and policy implementations.

Policy registries4.2

A  provides a name service that maps from sections of the application to the

policy implementations that should guide execution. Separate registries exist for each

different aspect of execution over which the application may exercise control.





Policy definition

"Allocate in memory

Policy definition

"Allocate in memory

Object o;
o = new Object();
...

...

Application code

5

3

Policy definition

...region 3"

...

...

"Allocate in memory

1

4

2

T
ru

st
ed

 c
od

e
U

nt
ru

st
ed

 c
od

e

VM infrastructure

mechanism
implementation

Policy
registry

Protected

Figure 4.1: Overall system structure. Arrows indicate (1) the invocations made by the application on VM services,

(2) by the VM on the selected policy definition and (3) by that definition on a protected mechanism implementation.

Additional communication may occur (4,5) between the application code and policy definition.

In the extended implementation of the  described here, sections of the application

are identified by their position within the package namespace. For example one

policy may be associated with the java.lang standard libraries and another may

be associated with code within the uk.ac.cam.cl.tlh20 set of classes.

Figure . shows how the  concerned with run-time compilation is used, along

with different compilation policies, to co-ordinate the execution of a particular

application. The standard classes whose names begin java.* are registered

with a policy that loads a pre-compiled implementation – one that was gen-

erated off-line with a highly optimizing compiler. Classes whose names begin

uk.ac.cam.cl.tlh20.*will be compiled in the background (see Section .).

The single class uk.ac.cam.cl.tlh20.UserInterface will not be com-

piled at all. Other classes will be handled according to the system’s default policy.
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compiler. In this example, standard classes are loaded from pre-compiled versions, part of an application is

compiled in the background and another part will not be compiled at all. Ambiguity is resolved by selecting the

most specific match.

Untrusted policy implementations4.3

A  is responsible for implementing the policy decisions required for the application

by the run-time system. A programmer defines a new policy by creating an appropriate

 and passing it to the policy registry for that resource.

Concretely, policies are defined as classes that implement per-resource interfaces. For

example, a CompilationPolicyIfc interface defines the operations required

of a run-time compilation policy. The policy itself is expressed in arbitrary Java

bytecode and therefore subject to the usual security mechanisms of the .
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Protected mechanism implementations4.4

The third type of entity are the Protected Mechanism Implementations. s are

used by Untrusted Policy Implementations to communicate their decisions to the .

For example the protected mechanisms used within a run-time compilation policy

include operations to invoke a native code generator and to perform various kinds of

code-specialization, described fully in Section .. Similarly, the implementation of a

storage management policy can use operations for allocating space in various kinds

of heap.

These mechanisms are protected in that they could not be implemented directly by

the application programmer within a . For example, over the , protected

mechanisms must be provided by native methods -- indeed they may be implemented

and accessed through the standard Java Native Interface (). Section .. described

how, in an unmodified , the implementation of certain standard s could not

be changed by the programmer: in the proposed  those implementations could

be divided into s (which could be changed) and s which would be inviolable.

Class isotopes4.5

The previous sections have described how policy registries map from sections of the

application to run-time policy implementations, implemented by s on the basis

of the program state at the point at which a policy decision is required. For example,

a  controlling object allocation would select into which region of the heap the

new object should be placed. It could be invoked once for each static allocation

site and this decision could be cached within the application – either by inlining

the appropriate allocation function during run-time compilation or by updating a

bytecode implementation for future use by the interpreter. This enables an efficient

implementation because policy invocations are not required on subsequent passes

through that section of the application.
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However, this binding between policy decisions and static points in the application

code introduces substantial limits on the kinds of policy that may be implemented.

As an example, suppose that a hashtable data structure is defined using two classes:

Hashtable provides the external interface to the data structure and, internally,

refers to instances of HashtableEntry which in turn contain key-value pairs. If

this forms part of a library of standard data structures then it may be used in many

parts of an application where differing policy decisions are appropriate. In particular,

the allocation mechanism for a particular site instantiating HashtableEntry

may differ according to the mechanism used for the enclosing Hashtable – for

example so that the buckets are placed in the same region of the heap as the overall

table. Such a policy cannot be expressed if a single decision is bound to each static

allocation site.

There are a number of possible schemes that could be used to allow more flexibility

in the definition of policies:

� Firstly, in this particular case, a new allocation mechanism for buckets could be

defined to examine the kind of enclosing Hashtable for which a particular

bucket is destined to be used. This has many unsatisfactory aspects – it

introduces extra complexity on each execution of the allocation (rather than

simply on each policy decision), it may require additional facilities for run-time

introspection, and it is predicated on the ability to define such an elaborate

mechanism.

� Secondly, the programmer could reformulate their application so that separate

classes are used wherever different policy decisions may be desired – perhaps,

in this example, defining a separate LongLivedHashtable class. This

approach is unwieldy in any reasonable application. Even in this example it

would not be possible simply to define LongLivedHashtable as a sub-

class of the existing definition. This is because the site allocating instances of

the bucket class would still only statically occur once in the application whereas,

to implement different policy decisions between the two kinds of table, the
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allocation site must occur multiple times. This approach consequently detracts

from the retroactive definition of run-time policies and the separation between

application code and policy definitions. The need to consider such policy

decisions directly within the application code detracts from the modularity

and reusability of standard libraries. Furthermore, even if the application and

policy classes are developed cooperatively, then there are situations in which

the desired reorganization is not possible – for example if the class is final or

sealed, meaning that further sub-classes cannot be derived, of if explicit tests

are made on the class of the instances being manipulated.

The alternative approach taken here aims to combine some aspects of each of these

schemes while avoiding their respective problems. It provides facilities through

which a run-time policy definition may identify static program points which should

be handled in different ways in different situations. A separate policy look-up is

performed for each of those situations with the intent that, as before, the results may

be cached inline.

This organization is achieved by separating the idea of an object’s class (which defines

the behaviour of its methods, the fields available from it and its relationship to other

classes in the type system) from the idea of an object’s isotope (which is the granularity

at which run-time policy decisions are applied to groups of objects). Objects with

the same class behave in the same way from the point of view of the application

programmer. Objects that additionally have the same isotope are implemented in the

same way within the . Isotopes are subdivisions of classes, so any pair of objects

belonging to the same isotope will necessarily belong to the same class. For example,

the instances of the Hashtable class may be divided between isotopes representing

long-lived hashtables, short-lived hashtables and unknown hashtables.

Objects are assigned to isotopes under the control of the allocation policy in force

at the point of their instantiation. This is because, as with the choice of allocation

mechanism, selecting an isotope when compiling or interpreting an allocation site for
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the first time lends itself to a straightforward and efficient implementation through

inlining or bytecode rewriting.

A further conceptual decision is whether objects may by transmuted during their

lifetime (that is, changed between different isotopes belonging to the same class).

The running example of segregating long-lived and short-lived data suggests that

the ability to make dynamic changes may be desirable in applications that exhibit

different phases of execution. Such behaviour has been observed in common

benchmark applications for the  [Harris01].

Changes to an object’s isotope are not directly visible to the application. This follows

from the fact that each isotope provides method implementations derived from the

same bytecode definitions and that the language type system is concerned only with

the class of each object. In contrast, changes to an object’s isotope are visible within

the implementation of the  and within the policy definitions. Changing the

isotope of an existing object may complicate the  by invalidating the assumptions

on which some methods have been compiled. For example, suppose that an object

initially belongs to an isotope for which the run-time compilation policy performs

extensive inlining of method implementations. If the isotope of one of the target

objects is changed then these inlining decisions may be invalidated.

In this particular case the extra complexity is not great because an effective run-

time compiler for the  must already maintain various kinds of association

between compiled methods and the aspects of the application on which they

depend. Furthermore, if the desire is to only provide safety in the sense that

out-of-date implementations are never used, then compiled code can be discarded

conservatively, providing a trade-off between the work required to re-generate it

and the volume of dependency information that must be maintained. In the

current implementation some control over this trade-off is provided to the policy

implementor. This is achieved by recording and invalidating dependencies at the

level of individual compiled methods. Since each compiled method is associated
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with a (source method, isotope) pair the programmer may choose to introduce extra

functionally-equivalent isotopes for those objects which are likely to be transmuted.

Safety and security4.6

The safety of the system – when compared with an unmodified  implementation

– depends on controlling the kinds of invocations that may be made between the

entities involved and the data that may be exchanged on those invocations.

Figure . shows the five kinds of interaction that may occur. There are three

situations in which communication occurs across the boundary between trusted and

untrusted system components. In the first case, labelled (1) the bytecode interface

exposed by the  remains unchanged. Similarly, invocations across interfaces

labelled (4) and (5) are subject to the usual controls imposed by the  for access

to one class from another. The second and third cases are more problematic. In

the figure these are labelled (2) for invocations from the  to the  and (3) for

invocations made by the  on the .

By using the same language for expressing s as for the remainder of an application,

any operation performed within the policy implementation may equally have been

performed directly by the application: in the  the policy implementation is subject

to the same bytecode verification process that is trusted for the application classes.

The trust placed in s therefore comes from the safe design of their interfaces:

from the fact that they control how the application is executed rather than what the

application does. In general, the same techniques are used here as are used to ensure

the safety of the system-call interface exposed by an operating system: access to 

methods is restricted by ordinary access modifiers and the first stage in each method’s

invocation is to vet the parameters with which it has been called. The design of these

 interfaces will evidently vary between different policy domains and so examples

will be deferred until Chapters -.
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However, such a design does not address concerns over invocations made on interface

(2). This is because the proposed invocations of the  on the  reveal information

about the code being executed, if only through the timing of call-backs to a . For

example consider the extent to which a  implementing a run-time compilation

policy should be permitted to examine the parameters passed to methods. Such

information can be used legitimately to guide a policy that compiles specialized

versions of methods that are frequently called with the same parameters. Conversely,

the information can be used maliciously by an untrusted application to gain references

to protected objects within the .

Various approaches could be used to tackle this problem. One would be to enforce a

stronger isolation between the  and the application program. The intuition is that

there is no need to be concerned about the  obtaining some particular information

if there is no way that that information can be communicated externally – effectively

disabling communication from the  across interface (4). The use of multiple class

loaders within the  provides an attractively simple implementation mechanism for

such a scheme. The isolation this would provide is solely at the level of the  type

system: it would be deficient as a complete solution without a thorough analysis of

covert-channel communication within and around the .

The prototype implementation uses a hybrid approach:

� Firstly, the parameters passed to s are selected on a per-policy-domain

basis so that they remain useful to potential s while losing some of their

potential for malicious use. For example a storage-allocation  does not

receive a reference to the instance that has been allocated. Similarly, a run-time

compilation  can inspect values passed to methods under its control, but

it cannot change them. The system can also be configured (at load-time) so

sensitive reference values are passed to the  as a corresponding integer value

(from which the  type system prevents reconstruction of the underlying

reference). The intuition is that software protection, based on the secrecy





of data manipulated by the program, tends to rely on the use of protected

object references as simple capabilities. A more complex scheme could perhaps

employ one-way functions to all parameters with the intent that the  may

still determine where methods are frequently invoked with some particular

value, but they may not learn the particular value taken.

� Secondly, where this hiding is insufficient, sections of the package hierarchy can

be finally bound to particular policies 1. This may be desired if the information

leakage caused by merely calling the  is considered unacceptable. In

particular, the classes which implement  services may be bound to system-

provided default policies. The user executing the  is responsible for selecting

when this is appropriate.

The current design aims to provide a pragmatic balance between the information

available to s and the desire to maintain the secrecy of certain pieces of system

information. It also provides a model which is straightforward to describe to 

implementors and to  administrators. The ability to define final s for particular

parts of the package hierarchies allows the  administrator to provide a more

restrictive environment where desired.

It is worth emphasising one further point: the concern here is only to ensure that

application-supplied s operate safely – not that they necessarily obey any particular

form of semantic correctness. For example, Chapter  will describe the form of

s used to define application-supplied thread scheduling policies. The design there

logically involves the  making up-calls to the application-supplied scheduler which,

in turn, identifies which thread should be executed. It is considered quite safe for one

of those up-calls to enter an endless loop, with the effect that the entire application

will cease to make progress.

1 Borrowing the terminology of the Java programming language in which a final field or method

cannot be overridden in sub-classes.
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Implementation environment4.7

The work described here has been carried out as extensions to the implementation

of the Sun Java Development Kit version .., operating on x machines with

the Linux and Nemesis operating systems. The  is particularly interesting in

the context of Nemesis because it provides an execution environment which is in

tension with the principles underlying the operating system: the  traditionally

exposes high level interfaces through which the resources handled by applications are

removed from the physical resources of the machine. In the case of Java bytecode,

the  is effectively being virtualized in two ways: both in the division of processing

time between tasks and the language in which code is expressed. This environment

motivates some of the emphasis on using run-time policy definitions to control

resource consumption within applications.

Policy portability4.8

There is, inevitably, a tension between exposing low-level aspects of a system’s

implementation and the portability of code that exploits that access. This is currently

managed within the framework presented here by selecting the operations to expose on

s so that they are likely to remain both useful (to applications) and implementable

(within the ) as the environment develops.

In general this means that the entities manipulated by a policy should correspond to

concepts already ingrained in the design of the . For example Chapter  shows

how the run-time code generator can be controlled in terms of the times at which

methods are compiled (not how processor registers are used), Chapter  shows how

storage allocation policies operate at the level of objects (not machine words) and

Chapter  shows how scheduling decisions are made by selecting between runnable

threads (not by explicitly saving and restoring processor states). The one new concept

introduced -- that of a class isotope -- has a clear analogue as a virtual method table

within the .
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Section . identified a number of areas within which an application may be able to

benefit from lower-level interfaces exposed by a  and it is, of course, possible to

extend that argument to further reduce the level at which interfaces should be drawn.

However, the designs presented in Chapters -- present suitable facilities for many

of the application-specific customizations used in those areas in other languages.

These designs hopefully therefore present a pragmatic balance between portability

and expressiveness. In the future it may be that the interface between s and s

may usefully be replaced by a more easily extensible format.

Policy composition4.9

If an application contains separately developed code modules then it is necessary to

decide how to combine the different policy definitions that may be supplied with

the different parts of the system. The same problem emerges when code is re-used

between applications: a policy for the entire application must be developed based on

the separate policies that might be defined for its constituent parts.

How these problems are resolved is ultimately the responsibility of the programmers

concerned. However, the facilities provided within the  framework aim to

provide support in particular areas.

Firstly, the design principles [P1] and [P2] aim to separate policy decisions from

application code so that the decisions of code integration and policy integration may

be handled separately and so that the constituent policies can be discarded if they are

inappropriate in the new context.

Secondly, the decision initially to associate policies with the Java package namespace

means that, in simple cases, the association between a code module and a policy

definition remains in place when that module is used in another application: the

package namespace is global within the .
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Finally, as shown in the examples in Section ., policy definitions can be constructed

so that a decision made for one part of the code is propagated to others. In the

example a decision to place part of a data structure in one storage heap is propagated

using class isotopes to objects allocated elsewhere forming part of the same structure.

Such a design aims to simplify policies into a small number of ‘decision’ points

followed by a larger number of points at which existing decisions are followed.

Of course, policy composition does remain a difficult task and one requiring

programmer intervention -- but the same is already true, purely from a functional

point of view, when combining existing code modules. However, ideally the

separation presented here between functional aspects and policy aspects of a system

makes this composition simpler than if the two aspects are entangled.

Common infrastructure4.10

The s are implemented in Java using hashtables to map from sections of the package

namespace (expressed as strings) to the s which are associated with them. When

a look-up is performed for a particular class then it proceeds using a straightforward

longest-prefix-match between the fully-qualified class name and the  registrations.

The current implementation is simplistic because it is intended that these look-ups

are performed rarely since the results may be cached on a per-class basis. The validity

of cached results is currently maintained by associating a sequence number with each

 and with each result cached in a class structure. If the sequence numbers are equal

then the cached result is valid. The per- sequence number is incremented when

any registration is added or removed.

There are numerous more complex cache-invalidation schemes with various trade-offs

between the number of unnecessary look-ups and the amount of work performed

when updating the . The current implementation reflects the expectation that 

registrations will occur during the initialization of an application, that the s will be
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largely static beyond that point and that it is consequently acceptable for registration

changes to bear a modest run-time cost in favour of implementation simplicity.

Discussion4.11

The design exhibits some similarities to existing meta-class and aspect-oriented systems,

described respectively in Sections .. and ... All three approaches provide some

facilities for interposing additional processing during certain stages of the operation

of a . In a system providing meta-classes it would be conceivable, for example, to

use those as the basis for exposing control over run-time policies or object allocation

– the particular meta-classes would fulfill the rôle of the s of Section . and the

association between the ordinary and meta levels would take the place of the s of

Section .. In such a system the run-time environment could invoke a method on

a meta-class to implement policy decisions over how associated classes are handled.

A similar effect could be achieved using the AspectJ framework by ‘weaving’ the

implementation of policy decisions into the methods over which they preside.

However, there are disadvantages with the tight integration that such approaches

would introduce. In particular contrast to an aspect-oriented system, the intent

here is not to modify the actual bytecode executed by the  whenever a method is

invoked or an object allocated, but rather for the  to query some policy definition

in order to select an appropriate implementation for that operation. Such a decision

may be needed at quite separate times from the actual execution of the code.

However, aside from these practical concerns, there are two conceptual problems

with the use of meta-classes that motivated the formulation of the current design:

� Firstly, the association between a class and its meta-class is generally static once

a class has been created. This is to be expected if classes are viewed as instances
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of their meta-classes – it is uncommon in object-oriented languages to change

the class of an object once it has been created 2.

� Secondly, each class is associated with exactly one meta-class: the meta-class

must therefore combine the functionality required to control multiple run-time

policies. It also means that the same meta-class must be used for all instances

of the base class. Furthermore, in a language where meta-classes are already

available to the programmer, any existing use of them by the application must

also be incorporated. Previous work has investigated composing meta-classes

but this takes the form of programming tools and conventions with which

application programmers can design reusable meta-classes rather than schemes

for automated composition [Mulet95,Forman94].

These two problems can both be identified as consequences of the fairly coarse

granularity at which meta-class systems operate: that is, the fact that a class must be

associated with a meta-class at the time of its definition and the fact that a single

meta-class must be selected to provide all of the ‘meta’ information for its associated

classes.

The design presented here addresses these problems in three ways:

� The association between run-time policies and sections of the application is

dynamic: the programmer may elect whether to combine policy code within

the same class definitions that implement the application, whether to provide

separate policy code alongside the application classes, whether to select from

policies provided by the run-time environment, or whether to defer that

decision entirely to defaults. Similarly, the implementor of the s may choose

whether to accept the policies selected by the application or whether to override

them.

2 One exception is Moostrap in which the link from an object to its meta-object can be inspected or

modified dynamically [Mulet95]. In that system each method invocation is decomposed into separate

lookup and apply steps and a meta-object is simply one that accepts a lookup message
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� Separate mappings from sections of the application to run-time policies

are maintained for each different aspect of the implementation that may

be controlled. For example, a separate mapping would be maintained for

controlling the run-time compiler from that maintained for controlling object

allocation. This mapping can be controlled dynamically by modifying the

registrations held by the s.

� The introduction of class isotopes allows the association between policies and

sections of the application to be defined at a granularity finer than that of

individual classes.





Chapter 5

Run-time compilation

This chapter describes how the architecture of Chapter  has been applied to the

definition of application-specific policies for run-time compilation. The intention is

to provide a framework which is sufficiently flexible to move the implementation of

existing compilation policies from trusted code within the  into untrusted code

within a . Desirable policies may include simple  compilation, or the invocation

of an optimizing compiler once a method has been called a user-configurable number

of times.

There are numerous granularities at which such schemes could operate. At a coarse

level, a small amount of functionality could be moved into a parameterized 

by defining a policy in terms of two threshold counts used to trigger compilation

and subsequent optimization. However in keeping with the design principles of

Section ., and with the intent of promoting the flexibility to define more expressive

policies, the split between the  and  is made at a lower level.

In general a  operates by receiving up-calls from the , implementing some form

of policy decision on the basis of these inputs and then signalling that back to the 
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by invocations on an appropriate . The design process for constructing s and

s for a particular policy domain must therefore be based on the following factors:

� What kinds of information would be required in order to make policy decisions?

For example, would a run-time compilation  require traces of every method

invocation that has been made? Should the parameters being passed to the

method also be made available to the ? Are compilation decisions made

only on local data (pertaining to a single method invocation), or do the ‘inputs’

to the policy decision also include state retained within the ?

� When, and in what form, should the required data be presented to the ? For

example, should an invocation-based interface be used in which information is

passed to the  as parameters to a method call, or should a shared-memory

interface be used in which the  operates as a separate thread of control?

� How should the  communicate its decision to the ? In particular, does

the  make explicit invocations on an associated , does it update a data

structure that is shared between the  and the , or does it return its

decision as a result on an invocation-based interface?

The decisions in each case need to be guided by aspects of the policy domain in

question and the existing kinds of policy that may be drawn from previous work. In

the case of run-time compilation the information provided to existing policies tends

to concern the execution paths through an application (for example, which methods

are executed frequently) and the prominence of particular data (perhaps the class of

the target object, or the parameters passed with an invocation).

The relationship between selecting appropriate run-time compilation and the basic

execution process of the application suggests that policy decisions will be required

before methods come to be invoked. For example an existing  policy cannot be

provided unless the decision to compile is taken at the point at which the method

is first executed. Equally, the definition of the background compilation policy in
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Section . relies on the ability to invoke the compiler on a method at an arbitrary

time after that method’s invocation (in that case when the method reaches the front

of a queue).

These observations suggest that controllable run-time compilation should be provided

using:

� An invocation-based interface from the  to the  in which the  is

invoked as each method is called for the first time. Simple policies, such as 

compilation, to be provided within that  invocation.

� The run-time compiler and optimizer should be exposed explicitly through a

 rather than accessed implicitly by returning particular values from the 

query. This enables the compiler to be invoked (or re-invoked) beyond the

point at which the  returns, or for a particular invocation of the  to

trigger the compilation of multiple methods.

� For efficiency, the  will not in general make further invocations on a 

for the same method. Additional facilities will be provided so that a  which

requires further information can elect to receive it (for example, to compile a

method when an invocation count reaches a threshold).

The overall structure closely follows the reference design of Figure . in that a 

receives up-calls from the  and implements the policy by making invocations

on a . The particular form taken by run-time compilation s is described in

Section . and the corresponding s in Section ..

In addition to these standard components, the infrastructure developed here pro-

vides an extended reflection interface through which a  may obtain additional

information about the execution of application code. This is described in Section ..
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Section . explains low-level details of how this system is implemented within the

 and Section . describes the compiler itself, outlining the process by which it

translates bytecode into native code.

Section . illustrates some of the possible s that may be defined within the

framework, showing how compilation can be performed with various levels of

optimization, how it can be governed by dynamic feedback over which methods

are ‘hot’ and how compilation work can be distributed among threads. Finally,

Section . summarises the main results of this chapter and discusses the applicability

of its techniques to systems other than the .

Run-time compilation UPI5.1

A run-time compilation  is implemented by defining a class that implements

the RTCompilationUPIIfc interface. This interface contains a single method

named implementPolicy that the  invokes whenever a policy decision is

required for a method.

implementPolicy takes a single parameter indicating the method for which

a policy decision is required. The method is represented by an instance of

RTPMIMethod, which is described in more detail in Section .. The policy

is implemented by making invocations on the RTPMIMethod which change the

manner in which the underlying method will be implemented on future invocations.

implementPolicy does not itself return a result.

Once a method has been passed to a run-time compilation  then invocations on

the associated RTPMIMethod may be made by the policy implementation beyond

the point at which it returns. For example, Section . will present a  in which
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implementPolicy returns quickly after appending the RTPMIMethod to a

queue of methods. A separate thread compiles these methods in otherwise idle

processing time.

The  may use the static methods of a further class, MethodInvocationCon-

text, to obtain information about the location from which the method was called

and about the parameters it was passed. Section . describes the rationale for this

organization and the operations available on MethodInvocationContext.

In general, it is intended that implementPolicy is called on the first invocation

of a method and that the implemented policy controls how that method is handled

on subsequent invocations. However, there are two situations in which this is not

possible. The first of these occurs when a method is invoked while it is already subject

to a policy look-up. This can occur in a multi-threaded application in which one

thread triggers the look-up and a second thread executes the same method before

the look-up is complete. It can also occur in a single-threaded application if the

implementation of the  invokes the method itself. In these cases the second

and subsequent invocations use the bytecode interpreter until the policy look-up is

complete. The second situtation occurs if, during initialization, a policy requires

that the compiler compile itself. This is a problem because much of the compiler is

implemented in bytecode over the  and, although the compiler is designed to be

re-entrant, the succession of nested compiler invocations would quickly exhaust the

run-time stack. In this case a limited number of compiler invocations are allowed,

beyond which further invocations use the bytecode interpreter until the compilation

is complete.

An important consequence of these situations is that compilation policies must not

be used to implement method-based access control decisions. Some users may be

tempted to define ‘compilation’ policies that implement schemes similar to part of

the security architecture proposed by Wallach et al [Wallach97]. This is based on

performing call-stack inspection on entry to sensitive methods in order to ensure





that they have been reached through some permissible chain of methods. If it is

impossible to guarantee that implementPolicy is invoked on the first invocation

of a method then it is inevitably impossible to guarantee that the stack inspection is

performed on all invocations.

There are a number of ways in which the current implementation could be extended

to provide that stronger guarantee. One would be to provide a separate Stric-

tRTCompilationUPIIfc interface that would be recognised by the  as a

policy that must be evaluated on the first invocation of any associated methods. The

programmer would be responsible for ensuring that the use of such policies would

not exhaust the stack. Another option would be to allow recursive invocations of

policy implementations and merely disallow recursive invocations of the compiler.

However, this would complicate the implementation of some of the reflective features

available within policy implementations – for example the StackFrameCursor

objects described in Section .. could not be allocated on a per-thread basis because

each thread could be associated with multiple cursors.

implementPolicy is invoked at most once for any particular method on a given

isotope – although, of course, it may be invoked multiple times for any bytecode

method that exists in more than one isotope. Once it has been invoked for a particular

method then the result of that policy decision is conceptually cached within the state

of the RTPMIMethod and reused on subsequent calls 1.

1 In practice the application-visible state in the RTPMIMethod is mirrored in part of the internal

state of a native methodblock structure within the  implementation. If the RTPMIMethod

is updated to wrap or to compile the method then pointers within the methodblock structure are

correspondingly updated to refer to different entry points for the method implementation.
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Run-time compilation PMI5.2

Each instance of RTPMIMethod represents a method being executed by the .

It fulfills a somewhat similar function to the standard library class java.lang.

reflect.Method that is part of the Reflection  [Gosling97b].

RTPMIMethod is maintained as a separate class for two reasons:

� Firstly, modifying classes within libraries risks introducing incompatibilities

between the extensions developed here and future changes to the standardized

s.

� Secondly, if an allocation policy defines multiple isotopes of some class then

each of these will have a separate virtual method table. Methods in different

isotopes may be subject to different compilation options and consequently

they are represented by separate instances of RTPMIMethod. There is

consequently a many-to-one relationship between these and the instances of

Method representing the bytecode methods from which they are initially

derived.

The operations available on an instance RTPMIMethod may be divided into four

categories, listed in Sections ..-...

Inspection operations5.2.1

Firstly, there are operations for inspecting the state of the RTPMIMethod:

� getIsotope returns the instance of AllocationIsotope. This iden-

tifies the isotope to which the method belongs.

� getSignature returns a String containing the signature of the method.





� getName returns a String containing the name of the method.

� getAccessFlags returns an integer whose constituent bits represent the

modifiers present on the method definition.

� getClass returns the java.lang.Class within which the method is

defined.

� getMethod returns thejava.lang.reflect.Method associated with

the RTPMIMethod.

These operations are implemented as methods, rather than as directly-accessible

fields, because the values in question are objects whose instantiation can be deferred

until the get... method is invoked. This anticipates the design of policies in

which a subset of these inspection methods will be used. Similarly, although much

of this information is also accessible from the Method object, obtaining that object

is a comparatively heavyweight operation.

One field is provided, hash, that provides an integer hash value representing the

method. In practice this is the memory address of the internal method structure and

is consequently likely to be unique within a single instance of the .

Compilation operations5.2.2

Secondly, there are operations for causing the current thread to compile the

RTPMIMethod. Compilation always occurs synchronously. There are two variants:

� compileMethod uses a system-default compiler configuration. It takes no

parameters and returns no result. The compiler updates the -internal data

structures so that the compiled result (if any) is used in place of the previous

implementation for this RTPMIMethod.
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� compileMethodWith takes an instance of Compiler and invokes it to

compile the RTPMIMethod. This may be used to compile methods with

particular combinations of optimization stages.

Assumption operations5.2.3

Thirdly, there are operations for signalling that particular assumptions should

usefully be made when invoking the method. In the current implementation these

assumptions only concern the parameters with which the method is likely to be

invoked. Any assumptions are incorporated into code generated by the run-time

compiler.

Assumptions must be checked on method invocation in order to ensure safety: the

policy may elect whether assumption failures are handled by throwing an instance of

AssumptionFailureError or by reverting, for that invocation, to a separate

implementation of the method generated without assumptions.

Four kinds of assumption may be made:

� assumeArgumentHasValue indicates that an argument (specified by its

integer position in the parameter list) takes a particular value. Separate methods

handle values of different types, allowing primitive values to be passed in an

unboxed representation. It is anticipated that this may be used to specialize

particular isotopes whose instances tend to be used in similar ways – for

example the methods of a class implementing the ‘singleton’ design pattern

will always be invoked with this referring to the unique instance [Gamma94].

This assumption may be employed to perform virtual-method look-up at

compile time or to generate native code that accesses fields directly by their

memory locations.





� assumeArgumentIsNonNull indicates that a particular reference-typed

argument will take a non-null value. The assumption is made implicitly for

the first argument of non-static methods because a null-reference check is

performed as part of the instance-method call sequence within the . The

assumption may typically be employed to remove null-reference checks from

inner loops within methods in cases where this cannot practicably be done

within the constraints of a run-time compiler.

� assumeArgumentIsOfIsotope and assumeArgumentIsOf

Class indicate that a particular reference-typed argument will refer to

an instance of a particular isotope or, more generally, to a particular class.

These assumptions are typically used as a looser version of assumeArgu-

mentHasValue where instances share a particular isotope or class.

� assumeArgumentIsOfType indicates that a particular reference-typed

argument will refer to an instance that is compatible with a particular type. The

assumption-check follows the definition of the checkcast bytecode in its

handling of different types and of null values [Lindholm97]. The assumption

may be valuable where different isotopes of generic classes have been created

to handle values of particular types.

Wrapping operations5.2.4

Fourthly, there are operations for ‘wrapping’ a particular method. A wrapped method

is one for which a further ‘enclosing’ user-supplied method is called before each

invocation.

� isWrapped returns true if the method has been wrapped.

� getUnwrapped returns an instance of RTPMIMethod representing the

enclosed method. It takes a flag to indicate whether to unwrap the method

once or whether to unwrap it until it is no longer enclosed.
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� wrapWith causes further invocations of the RTPMIMethod to be wrapped

by a supplied instance of MethodWrapper. This is an interface that defines

a single method wrapperPre to be invoked before the enclosed method. As

with implementPolicy on a run-time compilation , wrapperPre

takes a single paramater of type RTPMIMethod indicating the invoked

method.

The implementation of wrapping operations is therefore similar to that of run-time

compilation policies. The intent is that they are used where a policy cannot be

expressed directly within the single invocation of implementPolicy on the :

for example a policy that compiles methods after their first � invocations would wrap

the method with one that counts invocations. Of course, the wrapper may itself be

compiled. Section . will illustrate this as an example  definition.

Extended reflection interface5.3

The MethodInvocationContext class provides information about the 

state at method invocation sites. It may be accessed from within run-time compi-

lation s when a method is invoked for the first time and from wrapperPre

implementations on each subsequent invocation of a wrapped method.

The implementation of MethodInvocationContext is important because

wrappers could, potentially, be introduced on every method invocation. An

original design favoured using explicit MethodInvocationContext objects

and passing these to each implementPolicy or wrapperPre call. However,

in an extreme case where each method is wrapped it would be untenable to instantiate

MethodInvocationContext objects because the object constructor would

require at least one invocation, leading to infinite recursion. In more realistic cases

the allocation of individual context objects would still result in a high object allocation

rate. It is also anticipated that many policies may not differentiate their behaviour
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on the basis of the invocation context and so it is desirable to avoid the overhead of

passing a frequently unused parameter.

Consequently, the operations on MethodInvocationContext are imple-

mented as static methods: the class itself is never instantiated. They are defined

using native methods that obtain information directly from the  state. The

implementation of each of these native methods is preceded by a test to ensure that

the calling thread is within a implementPolicy or wrapperPre method and

that this method was invoked from the compilation-policy infrastructure.

There are two sets of operations defined on the invocation context. The first,

described in Section .. is concerned with inspecting the method call-stack at

the point of invocation. The second, described in Section .. is concerned with

inspecting the parameters with which the method has been invoked.

Note that stack inspection and parameter inspection are intentionally not combined:

only the parameters passed directly to the method are available. This follows from

two concerns. Firstly, the parameters from other stack frames may not be available

because the storage they occupied may have been updated as computation progresses

in that frame. Secondly, because the security regime described in Section . is

based on restricting the information available to  implementations associated with

particular classes, it is undesirable to allow s which are granted parameter access

for inspecting values passed within the application to access parameters from within

its callers. For example, a  associated with an application-supplied call-back within

the Abstract Window Toolkit () graphical user interface class may be able to

obtain the  event queue by tracing up the stack.
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Stack inspection5.3.1

The first operation onMethodInvocationContext isgetCallingStack-

Frame which returns an instance of StackFrameCursor that identifies the

calling stack frame. In turn, the StackFrameCursor provides native method

operations to step up the call stack – that is, from each method back to its caller

– and to obtain the name, signature, class, isotope and RTPMIMethod associated

with each activation record.

As with the MethodInvocationContext, separate instances of Stack-

FrameCursor are not created each time it is used. A per-thread instance is lazily

allocated and this contains, in private fields, the current position of the cursor. Special

values are stored in these fields to invalidate the cursor when the associated invocation

of implementPolicy or wrapperPre completes. This ensures that only valid

stack frames may be inspected.

Parameter inspection5.3.2

The second set of operations on MethodInvocationContext are used to

obtain information about the values passed to the method as parameters. These oper-

ations exist in a number of variants but in each case they take one argument indicating

the position of the required parameter in the parameter list. They return a value repre-

senting the value of that parameter as their result. There is one variant for each kind of

parameter type, such as getParameterAsInt or getParameterAsFloat.

All reference-typed parameters are handled by getParameterAsObject. These

operations throw an InvalidParameterType exception if the position does

not contain a parameter of the requested type.

A general getParameter method can return any kind of parameter by wrapping

values of primitive type using the standard wrapper classes from the java.lang

package.
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getParameterAsHash returns a hash value corresponding to the parameter.

The implementation ensures that the same hash value will be returned whenever the

same parameter is passed in the same position. Depending on the security settings it

may also guarantee that the same hash value will be used for different positions on the

same method, or for invocations on different methods. As described in Section .

transformations may be applied to the parameters during inspection in order to

control the relationship between hash values and actual parameter values.

If the inspection facility has been completely disabled for a particular  then the

methods will throw an instance of UPIError: it is expected that  implemen-

tations will not handle this exception and that the system, on receiving abnormal

termination from the  will use a default policy.

Low-level implementation5.4

This section describes how invocations are made on a compilation-policy  and

on wrapper methods. Within the existing  implementation, each method is

associated with an ‘invoker’ function. These functions are implemented in native

code and are responsible for updating  state on entry to the method.

For example, when one interpreted method is called from another, the invoke-

JavaMethod invoker associated with the called method creates a new stack frame,

records the interpreter program counter of the caller and updates that program

counter to refer to the callee. The invoker then returns and the interpreter continues

execution. This organization means that deep recursion within the Java application

does not cause a corresponding series of invocations of the interpreter on the native

stack. Other invokers exist for synchronized methods (in which case the invoker

aquires a lock on the appropriate object) and for native methods (in which case the

invoker executes the native code directly before returning to the interpreter).
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Invocations on a compilation  are implemented by introducing a new function,

termed the ‘trigger-invoker’, within the  which is used as the invoker for all

methods on which policy decisions have not yet been taken. When the  creates a

new isotope then, for each method, the  infrastructure sets it to use the trigger-

invoker, displacing the original into a separate field. The trigger-invoker performs

two functions:

� Firstly, it determines the  associated with the method. This is implemented

directly as a query on the  when the first method is invoked on any instance of

each class. The result is cached on a per-class basis along with a per- sequence

number representing the current state of the . Subsequent invocations on

methods of the same class reuse the cached  look-up while the sequence

number recorded in the class remains current. The  sequence number is

incremented whenever  registrations change.

� Secondly, it constructs an appropriate instance of RTPMIMethod to pass

to implementPolicy on the selected . The trigger-invoker ordinarily

restores the saved invoker after implementPolicy has been called once on

the implementation method.

The wrapping operations described in Section .. are implemented by replacing the

invoker on the affected method. The wrapper-invoker invokes the wrapperPre

method on the appropriate instance of MethodWrapper before calling the original

invoker that was associated with the method.

The native code generator5.5

This section describes the implementation of the native code generator itself 2. The

compiler used here is straightforward: the motivation is to provide a controllable

implementation rather than to establish new optimization techniques.

2 At the time of implementation it was not possible to secure the use of an existing code generator.





U
nt

ru
st

ed
 c

od
e

N
at

iv
e 

co
de

Load
.class blocks

Form

Install
code

Gen x86

Optimize

Compile

Extended
reflection
interface

Figure 5.1: The structure of the compiler.

In addition to controlling compilation through s, it is also possible to invoke the

compiler directly from within an application. For the reasons argued in Section .,

it is not intended that this facility should be widely used: using the non-standardized

 exported by the compilation  limits the portability of applications. However,

although requiring a tight integration between the invocations on the compiler and

the main portion of the application, it does enable tight control over which portions

of an application are compiled.

Overview5.5.1

The structure of the compiler is shown in Figure .. There are three phases involved

in the compilation of a Java method:

1. Firstly, the bytecode implementation from the class file is broken into

basic blocks and the contents of the constant pool are resolved as described

in [Lindholm97].

2. Secondly, native code is generated for each basic block. This is produced directly

from the stack based bytecode operations rather than via an intermediate -
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address-code form [Aho86]. Forward branches are handled by back-patching

the generated code when the target address becomes known.

The code generator consists of three modules – a common section, a simple

optimizer and a target-dependent section. The optimizer and target-dependent

code generator form a layered structure with an identical interface between

adjacent modules. This means that the optimizer can be removed to increase

the rate of code generation at the expense of code quality.

3. Finally, the generated code is installed so that it will be executed if the method

is invoked in the future.

Register allocation5.5.2

The Intel Pentium Processor [PPro2] has four -bit general-purpose registers (%eax,

%ebx, %ecx, %edx) and a further four -bit registers which may be used with

some restrictions (%esi, %edi, %ebp, %esp). The compiler reserves these within

generated code as follows: %edi refers to the current execution environment which

contains pointers to the current Java stack frame, the current thread and the current

exception (if any) that is being propagated, %ebp refers to the bottom of the Java

operand stack, %esp contains the native stack pointer maintained in the conventional

manner and %esi refers to the bottom of the current stack frame’s local variable

table.

The location of the Java operand stack and local variable table can be recovered

through the execution environment. However they are always held in registers since

their values are frequently needed.
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Optimization5.5.3

Without optimization each bytecode instruction is translated to a section of native

code which is produced from a fixed template parameterized by the current depth of

the Java stack. For example, the code generated for an iload_1 instruction, when

the Java stack already contains two elements, will load the value from the first local

variable and then store it into the third slot of the Java stack:

movl 4(%esi), %eax ; Local variable 1 -> %eax register

movl %eax, 8(%ebp) ; %eax register -> stack slot 3

This approach means that the general-purpose registers will only be used within

single bytecode instructions. Furthermore, the design of the  leads to series of

bytecode instructions that transfer values from local variables to the operand stack,

then manipulate the operand stack and then transfer the result back to a local variable.

These factors mean that the generated code would typically contain large numbers of

movl instructions performing potentially-unnecessary load and store operations.

Figure . shows how prevalent such instructions can be: the Java statement

r = r * m is implemented by four bytecodes iload_2, iload_1, imul,

istore_2. This structure means that simple expansion of bytecodes to series of

native instructions provides very little benefit compared to an efficient interpreter,

or to one using threaded code in which an operation is expressed in a semi-compiled

form as a series of ‘call’ statements to more-primitive operations [Bell73].

The optimization layer aims to improve native code by lazily generating movl

instructions, renaming operands and performing straightforward peephole optimiza-

tions. The optimizer maintains details of outstanding movl instructions which have

yet to be generated. In this example, the effect of the iload_2 and iload_1

instructions is to record that local variable  has been transferred to stack slot  and

that local variable  has been transferred to stack slot  – no native code is generated
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public class Fact Method int fact(int)

{ 0 iconst_1

public int fact (int m) 1 istore_2

{ 2 goto 12

int r = 1; 5 iload_2

6 iload_1

while (m > 0) 7 imul

{ 8 istore_2

r = r * m; 9 iinc 1 -1

m --; 12 iload_1

} 13 ifgt 5

16 iload_2

return r; 17 ireturn

}

}

Figure 5.2: A Java method (left) and its bytecode implementation (right).

at this stage. These mappings can be used when generating code for the subsequent

imul instruction – instead of accessing data in the Java operand stack it can use

values directly from the local variables. A similar technique is applied within the

hardware implementation of the PicoJava microprocessor [McGhan98].

The quality of the generated code is shown in Table . which compares micro-

benchmark scores achieved with and without optimization. Neither the optimizer

nor the interpreter will perform inter-block optimization. Measurements with larger

applications (such as the javac compiler) show that a two-fold speedup is typical.
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Without optimizer With optimizer

no-op 5.1 6.6

AddInt 2.9 10.0

AddLong 5.4 5.7

AddFloat 1.2 1.2

AddDouble 1.4 1.4

AddByte 2.4 5.8

AddChar 2.5 5.7

AddShort 2.4 5.8

CastToByte 6.5 10.5

CastToChar 6.1 12.0

CastToShort 5.9 11.9

CastToLong 6.0 7.5

CastToFloat 6.2 7.4

CastToDouble 4.9 5.6

CastFromFloat 1.5 1.6

CastFromDouble 1.4 1.5

MethodCall 2.5 2.8

MethodCall (2 arguments) 2.4 2.9

MethodCall (3 arguments) 2.8 2.8

MethodCall (4 arguments) 2.7 2.9

StaticMethodCall 1.1 1.2

InterfaceMethodCall 1.4 1.5

SuperclassMethodCall 1.0 1.1

SynchronizeOnThis 1.2 1.3

CatchSameMethod 1.1 1.1

CallInterpretedMethod 0.9 0.9

NewArray 5.7 6.6

ArrayAccesses 4.9 5.5

NewInstance 0.8 0.8

IterativeFactorial 3.4 8.1

Table 5.1: Microbenchmark results showing the speed-up of individual Java operations when compiled with and

without optimization. Results are expressed relative to the original JDK 1.1.4 interpreter which would score 1.0 in

each category.
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public final class NullCompilationUPI

implements RTCompilationUPIIfc

{

public final void implementPolicy (RTPMIMethod m)

{

/* Nothing */

}

}

Figure 5.3: A UPI that uses the VM-default implementation for its associated classes.

public final class JITCompilationUPI

implements RTCompilationUPIIfc

{

public final void implementPolicy (RTPMIMethod m)

{

m.compileMethod ();

}

}

Figure 5.4: A UPI that performs just-in-time compilation for its associated classes.

Example policy definitions5.6

This section illustrates some of the ways in which the  facilities described in

Section . may be deployed in the implementation of run-time compilation s.

Figure . is the simplest possible compilation . It causes the -default policy to

be used because the definition of implementPolicy returns without invoking

any compilation or wrapping options on the instance of RTPMIMethod that is

passed to it.

Figure . shows another trivial policy implementation. It invokes the run-



public final class CountedCompilationUPI

implements RTCompilationUPIIfc, MethodWrapper

{

public static final int HASH_SIZE = 512;

public int[] counts = new int[HASH_SIZE];

public final void wrapperPre (RTPMIMethod m)

{

int hash, count;

hash = (m.hash >> 5) % HASH_SIZE;

count = counts[hash] = (counts[hash] + 1) % 10;

if (count == 0)

{

m.getUnwrapped().compileMethod ();

}

}

public final void implementPolicy (RTPMIMethod m)

{

m.wrapWith (this);

}

}

Figure 5.5: A UPI that aims to compile methods when they have been invoked 10 times. The counts array

maintains a set of counters recording invocation counts for methods which hash to particular buckets.

time compiler, in its default configuration, for each method that is passed to

implementPolicy. Since methods are generally passed toimplementPolicy

on their first invocation, this policy expresses just-in-time compilation.
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Figure . illustrates the use of a wrapper in order to implement a policy that aims

to compile methods after they have been invoked a particular number of times.

The rationale for such a policy is that it allows the compiler to focus on frequently

executed methods. Doing so may reduce program start-up latency or improve

interactive responsiveness. No particular effort is made to avoid collisions within the

counts array on the assumption that occasional miscompilation of rarely-executed

methods is preferable to using a more computationally expensive tracking function.

As a more involved example, and with suitable support from the operating system, it

is possible to bound the impact that compilation can have on the progress made by

an application by arranging that compilation happens in designated compiler threads.

This approach relies on the controllable thread scheduler presented in Chapter  – it

cannot easily be achieved with the normal priority-based scheme. In summary, the

thread scheduler allows a thread’s  allocation to be specified using a
���������	�
����


tuple in which
�

is the period of the thread,
�

is its slice,
�

is the extra time flag and
�

is the priority. The scheduler aims to provide each thread with
�

 time during

each period
�

of elapsed time. If a thread has its
�

flag set then it is eligible for an

additional allocation of the slack time in the system. Slack time is shared equally

between the threads with the highest priority.

Therefore, if a thread does not receive any slack time, its  allocation can be used

as an upper limit on the resource that it may consume and so on the impact that

it may have on other concurrently executing tasks. For example, it is possible to

allocate some percentage of the  to compilation and a separate percentage to the

interpreter. This control, coupled with fine-grained thread switching, means that

a user will see their application executing slowly during compilation, rather than

stopping completely.

It is possible to have more than one compiler thread – for example one per application

– so that the resources used during compilation can be attributed to the application

that requested it. This raises a problem with classes which are shared between

applications because any methods on these classes would only need to be compiled by

one of the applications. However an application could be designed on the worst-case



assumption that it will always need to compile any shared methods that it uses.

Additionally, the most highly-shared methods in the standard Java libraries are good

candidates for off-line compilation and thorough optimization.

By varying the allocation of  time to the compiler thread it is possible to trade

interactivity against overall performance. For example running the compilation

thread entirely on extra time corresponds to compiling during idle time whereas a

100% allocation provides  compilation.

This trade-off is illustrated in Figures . and . which compare  compilation and

interpreted execution against background compilation with a %, %, %, %

or %  allocation to the compiler. The  as a whole had an % allocation of

the .

The � -axis shows the percentage of a simple benchmark that has been completed

while the � -axis shows the elapsed time in cycles. The interpreter’s trace shows a

low, straight line which means that the benchmark is being completed slowly but at

a steady rate. The  compiler’s trace shows a steeper line with some plateaux. This

shows that the benchmark is being completed more rapidly but that there are pauses

during which no progress is made at all. These pauses correspond to sections of the

benchmark in which new methods are executed, triggering compilation.

If a background compiler is given a small (%)  allocation then the trace remains

steady and is even shallower than that of the interpreter. This is explained by the fact

that the compiler is operating slowly and fails to finish compiling methods before

execution shifts to another part of the benchmark.

As the  time allocated to the background compiler is increased, performance

approaches that of the  compiler. Note that unlike the  compiler, which pauses

whenever a new method is encountered, the systems using background compilation

merely slow down.
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Figure 5.6: JIT compilation and interpreted execution (top), background compilation with 5% and 20% CPU

allocation (bottom).
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Figure 5.7: Background compilation with 30% and 50% allocation (top), and 75% allocation (bottom). The JVM

as a whole was allocated 80% CPU time.
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Discussion5.7

This chapter has introduced the use of the framework of Chapter  for the policy

domain of run-time compilation. The system presented here, in which policy

decisions are made within s and then effected by invocations on s, has been

shown to be flexible enough to allow existing policies to be expressed (such as

 and threshold-based compilation) in addition to the new policy of background

compilation.

Although the implementation is based substantially on features of the  – such as

using method invocation to trigger  queries – it appears suitable for deployment

in other environments, at least without architectural modifications. One notable area

in which the precise details of the interfaces would need to be modified is the way

in which optimization parameters are passed to the compiler through invocations

on the , as described in Section ... In particular, the operations that define

checked assumptions for the optimizer all use terminology specific to the  and

the Java programming language.

Consequently, a potential area for future work is the extent to which policies wishing

to make such assumptions may be defined in a way that is more language-neutral.

For example, if an application was originally implemented in Scheme and compiled

to Java bytecode using the Kawa compiler (described in Section ..), could its

associated policies also be defined in Scheme?

The implementation presented here has adhered closely to the design requirements

of Section : default policies can be used for applications without particular

requirements, naïve or premature optimization can be removed by interposing tests

on the application’s invocations on the  and the example policy definitions of

Section . are all reusable between applications. Although the exposed interface

to the native code generator is safe, the potential for covert channels based on the

up-calls to the s means that security concerns must be managed explicitly when

the  is configured.
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Chapter 6

Memory allocation

This chapter describes the application of the extensible virtual machine architecture

to the problem of defining policies for application-specific storage allocation. As with

the run-time compilation policies described in Chapter , the primary motivation for

allowing an application to control its heap management is that different applications

are suited to different management schemes. Section . illustrated this with reference

to existing surveys of benchmark applications and their performance under the control

of different storage allocation or object placement strategies.

However, when compared with run-time compilation, differences between the two

problem domains necessitate changes to the interface between application-supplied

policies in the form of s and the facilities exposed by the  as s.

Firstly, the allocation of objects within the heap is a dynamic process: an object may

be allocated at any time during the execution of an application, whereas run-time

compilation may be expected to reach a fixed state once all of the application has

been converted to appropriate native code. If the  were to be queried on each

allocation then the frequency of policy invocations would be very high indeed.
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Secondly, the manner in which object allocations are made is crucial to the type

safety of the programming language and to maintaining the expected semantics of

the bytecode operations.

The remainder of this chapter considers the impact of these issues and presents the

design of the corresponding  (Section .) and  (Section .). As with run-time

compilation, additional contextual information is made available to aid s. This

is described in Section ., along with how the  implementor may use this to

group related objects into isotopes. Section . illustrates how this framework may

be used to express practical policies. Finally, Section . discusses the possibilities

for introducing untrusted allocation mechanisms in addition to untrusted allocation

policies.

Storage allocation UPI6.1

The high frequency of allocation requests suggests that it is inappropriate for the 

to be queried each time an object is instantiated.

One possible approach, albeit at a coarse granularity, would be to provide 

configuration parameters to set the size of the heap and to select – at the level

of the entire system – between candidate allocation policies. This would provide

the same level of control that was examined in Wilson et al ’s survey of allocation

in benchmark applications [Wilson95]. However the same arguments made there,

in relation to whole-program behaviour, apply to behaviour that changes within

individual application runs – either temporally between different phases of execution,

or spatially within the program code. A straightforward example of the latter is when

multiple applications operate within the same .

The selected approach strikes a balance between the two extremes in that the storage

management  is invoked whenever a policy decision is first required for each

allocation site within the application; the resulting decision is thereafter integrated

into the implementation of that operation. This can be performed either by inlining
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Figure 6.1: Overview of memory allocation within the unmodified JVM implementation.

an appropriate code fragment when the allocation site is compiled to native code, or

by replacing the allocating bytecode with an ordinarily-reserved value that summarises

the mechanism selected by the  1.

Figure . illustrates the entities involved in a memory allocation within the unmodi-

fied  implementation. The untrusted application code expresses allocation requests,

typically generated from new expressions in the Java programming language. These

requests are handled by the system allocation policy implemented in native code within

the . In simple  implementations this policy may cause all allocations to be

made within a single area of memory – illustrated in the figure by performing all allo-

cations with a single default mechanism. As described in Section .. contemporary

systems may use feedback-directed techniques to segregate different kinds of object.

1 Inevitably the use of such bytecodes requires careful co-operation between any possible extensions to

the internal instruction set used by the . However, the precise value chosen becomes less important

where execution time is dominated by compiled code rather than the use of an interpreter. A possible

extension to this work – if multiple policy domains contend for ‘spare’ bytecodes – would be for their

allocation to be controllable from the application.
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Figure 6.2: Overview of the implementation of an application-specific storage policy. The red arrows indicate the

path conceptually taken when an application attempts to perform an allocation.

Such a system would contain multiple allocation mechanisms between which the

system allocation policy would select. De-allocation operations are invoked directly

by the garbage collector. Furthermore, in addition to the interactions shown here,

the allocation mechanism may provide status information to the allocation policy –

for example to indicate whether some portion of the heap it manages is nearly full.

Figure . shows how this structure can be extended to support memory allocation

s. As in Chapter  the  maps from portions of the application bytecode

to instances of policy implementations. For example, a particular policy instance

may be associated with the classes java.lang.* and a different policy with

the more specific classes java.lang.reference.* or the individual class

java.lang.String.
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It is important to realise that these mappings are based on the class within which the

allocation is being made rather than on the class of the allocated object. The rationale

for this decision is as follows:

� Firstly, it reflects the intuition that allocation policies will be designed based

on the manner in which objects are used and therefore perhaps on the

context in which they are allocated rather than according to the class being

instantiated. Earlier work on feedback-driven storage management supports

this view by showing that the allocation site of an object provides more

worthwhile optimizations than merely considering the class involved [Barrett93,

Zorn98,Harris01].

� Secondly, it simplifies the modular composition of policies. For example,

consider the Java utility class java.util.Hashtable and suppose that

there may be some hashtables that are accessed frequently and other hashtables

that are accessed infrequently. Organizing the  according to the allocating

class may enable this distinction to be made during that initial look-up. In

contrast, if the  was organized according to the allocated class then the

distinction must be made later within the policy implementation. Furthermore

the policy implementation used for Hashtable would need to be updated

whenever new uses of that class are introduced.

Storage allocation PMIs6.2

The abstract class AllocationPMI is used to represent the various s available

to storage-management s. The allocation mechanisms themselves are not actually

implemented as bytecode within these classes. Instead each of the pre-supplied s

contains an identifier which selects between the implementations available within the

. Section . will discuss the extent to which these existing allocation mechanisms

may be augmented with untrusted low-level allocators supplied by the programmer.

It is important to distinguish clearly between the entities represented by each sub-class

of AllocationPMI and by each instance of such a sub-class:
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� Each class descended from AllocationPMI represents a particular kind

of allocation regime. For example a class VMDefaultAllocationPMI

represents the kind of heap that was implemented in the unmodified 

implementation. Separate classes are provided to expose first-fit placement,

best-fit placement, irrecoverable allocation and the use of fixed-size memory

blocks.

� In contrast, each instance of one of these classes represents a heap that is available

to service allocations. It may be parameterized, at the time of instantiation, with

class-specific configuration settings such as its size. Therefore, by returning an

instance of AllocationPMI, the  is identifying both the heap in which

the allocation is to be placed and the manner in which an appropriate block is

to be selected within that heap.

Expressing allocation policies6.3

To illustrate this scheme, consider how it may be used to express a policy which

segregates long-lived and short-lived objects. Such a scheme has been found to be

effective for benchmark Java applications [Harris01].

One possible way of organizing this would be to use the  to map all allocations

to a single instance of an allocation policy. That policy implementation would

select between two allocation mechanisms corresponding intuitively to ‘allocate long-

lived’ and ‘allocate short-lived’. This organization, using a single policy instance, is

illustrated in Figure .. In practice the two mechanisms shown there may simply

correspond to two distinct heaps with the goal of reducing fragmentation caused

by the space occupied by dead short-lived objects between long-lived neighbours

– perhaps segregating objects based on the results of run-time sampling using the

mechanisms proposed by Agesen and Garthwaite [Agesen01].

However, suppose that certain portions of the application are known to allocate

long-lived data structures – based on either the programmer’s knowledge or on static
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Figure 6.4: Using multiple allocation policies so that sections of the application with well-known behaviour can

be handled with simpler policy look-ups.

feedback received from previous application runs. Such structures could reasonably be

handled directly as long-lived without the overhead of performing run-time feedback.

There are several ways in which such a modification may be made to an existing

policy:

� The feedback-based policy could be updated to detect the allocations in

question. This approach lacks flexibility because it requires that the existing

policy definition is available in a form that permits modification. Even where

the existing implementation may be modified, introducing special cases into

an existing policy may limit the extent to which the same policy may be reused

with different applications.
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� A layered implementation could be developed by implementing a new policy

to handle special cases before forwarding any other allocations to an instance of

the unmodified feedback-based policy. However, the additional tests necessary

to detect special cases may harm overall performance. This is particularly

likely if there are numerous special cases which develop a long chain of policy

implementations.

� The mapping function of the  can be used to associate different policies

with different parts of the application. This organization is illustrated in

Figure ., which shows how two allocation policies can be used: one to handle

the long-lived objects directly and one to use run-time feedback for all other

objects.

Look-ups of policies within the  are performed on a per-class basis, allowing look-up

results to be cached with other per-class information. Of course, it is possible that

the desired separation of policies may not correspond cleanly with the organization

of code into classes. Such a situation can be resolved using layered policies for just

the overlapping sections of the application.

Invocations on memory allocation UPIs6.3.1

An allocation  is implemented by defining a class that implements the Java

interface AllocationUPIIfc. This interface contains a single method named

getAllocationPMI that is invoked by the  whenever a policy decision is

required for a particular allocation site. In this case the s that are available

correspond to a variety of popular schemes such as first-fit placement (that is,

selecting the first block of free space that is big enough), best-fit placement (selecting

the smallest block of free space that is big enough), irrecoverable allocation (where

blocks cannot be reclaimed once allocated, reducing housekeeping overheads) and

allocation within a pool of fixed-size memory blocks (where all blocks within a heap

are the same size, again reducing housekeeping overheads).
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The behaviour of a  is implemented by selecting between these candidate allocators,

rather than by making direct invocations on them. Each object allocation must be

made at most once and this constraint is easily enforced by representing each  as

a separate object and requiring that getAllocationPMI returns a reference to

the selected object. If a null reference is returned then allocations made at that site

are considered to always fail and an instance of OutOfMemoryError is thrown if

the site is reached during execution.

Timing of policy decisions6.3.2

As with compilation policies, it is intended that getAllocationPMI will be

invoked upon the first time an allocation is made at a particular site.

In the current implementation, when the interpreter is used, the first allocation made

from a particular bytecode attempts to make the policy decision. The bytecode is

subsequently re-written to identify the  that was selected. In many cases this

is achieved by replacing the new bytecode with extra variants, new_0, new_1,

..., new_4 which refer to the first five distinct  instances encountered within

the application. If further heaps are encountered then a general-purpose new_x

bytecode is used and the selected mechanism is indicated out-of-line by replacing

the constant pool index that followed the new bytecode. This index refers to a new

constant pool entry that identifies both the selected mechanism and the same class as

the original bytecode.

In the current implementation, for reasons of application portability, these replace-

ment bytecodes are used only within the implementation of the  interpreter: the

bytecode verifier will reject them if they occur directly in the application classes. It is,

however, conceivable that simple allocation policies could be supported by allowing

the application programmer (or bytecode-generating compiler) to use a range of new

bytecode operations in order to identify different heaps. Bytecode-compatibility with

unmodified s could be maintained by selecting between different new operations
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in auxiliary tables. These would be distributed with class definitions and identify

allocation sites by their position within the bytecode.

If a method is subject to run-time compilation then policy decisions are made for

allocation sites encountered at that point. If the method has already been executed

by the interpreter then the decision made then is carried over into the native code

generated by the compiler. The decision cannot be deferred practicably until the

method is executed so that the code that implements the selected  may be inlined

within the generated native code.

As with compilation policies, the situation is relaxed somewhat during the execution of

multi-threaded applications. When performing a look-up operation on a compilation

 any concurrent invocations of that method default to using the interpreter. In

contrast, in this case, each thread performs a separate policy look-up for the allocation

site and attempts an atomic compare and swap processor instruction to update the

bytecode with the selected mechanism. This reflects the fact that allocation 

look-ups are expected to be simple idempotent operations, depending only on the

allocation site and allocated class. In contrast a compilation  is expected to be

non-idempotent and, if the compiler is invoked, longer running.

Grouping objects into isotopes6.4

As described in Section .., a storage management  is provided with access to

information about each allocation site for which a policy decision is required. Such

an allocation context performs two functions:

� Firstly, it provides information about the position within the application for

which an allocation-policy decision is required. It is the analogue, for storage

allocation s, of the MethodInvocationContext class described in

Section ..
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� Secondly, it provides control over the isotope of the class being allocated.

Isotopes were introduced in Section . as an organization structure between

individual objects and classes to allow the programmer to identify groups of

objects, instantiated from the same class at the same allocation site, but which

should be handled according to different policies at run-time.

As with run-time compilation s, the first of the facilities is provided using a

per-thread instance of StackFrameCursor to inspect the path through the code

that led to the allocation site 2. When a policy look-up is made during compilation

(and therefore no example call stack is known) the contextual information available is

inevitably limited to a single frame describing the method containing the allocation

site.

The second facility is provided by a further method on an allocation context which

sets the isotope tag associated with a particular allocation site. It is intended that

policies may create isotope tags representing properties such as ‘long lived object ’

or ‘frequently accessed object ’. In the  each allocation site generates instances of

exactly one class and so the combination of this class and the isotope tag identifies the

specific class isotope to instantiate. Class isotopes are lazily created within the  and

are implemented using per-isotope virtual method tables. Internally, isotope tags are

identified using object equality between instances of AllocationIsotopeTag.

Example policy definitions6.5

This section illustrates some of the ways in which the  facilities described in the

previous sections may be deployed in the implementation of storage management

s.

2 Separate per-thread instances of StackFrameCursor are used for each kind of  in case a

storage-allocation look-up is performed within a compilation policy or vice versa.
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public final class NullAllocationUPI

implements AllocationUPIIfc

{

AllocationPMI def =

VMDefaultAllocationPMI.theVMDefaultAllocationPMI;

public final AllocationPMI

getAllocationPMI (Class c)

{

return def;

}

}

Figure 6.5: A simple storage management policy that selects the default allocation mechanism for all requests.

Figure . shows the simplest useful allocation policy in which the -default

allocation mechanism services all requests. The heap takes a default size according to

parameters specified at the time the  was started.

Figure . shows another trivial policy implementation. It creates a separate heap

of 10MByte in size. As before, this heap is managed by the -default allocation

mechanism. Such a policy may be defined in an attempt to limit the amount of

storage space allocated by a particular portion of code within the  – for example

separate instances of SepHeapAllocationUPI could be used for each applet

running within a shared . However, the policy is ineffective because, if registered

through the  with the classes implementing an applet, it will only handle objects

allocated directly within those classes. Objects allocated on behalf of the applet in

the standard libraries will be handled through the separate policy associated with that

library code.
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public final class SepHeapAllocationUPI

implements AllocationUPIIfc

{

AllocationPMI heap =

new VMDefaultAllocationPMI (10 * 1024 * 1024);

public final AllocationPMI

getAllocationPMI (Class c)

{

return heap;

}

}

Figure 6.6: A storage management policy that places allocations made in classes associated with it into a separate

heap.

Figure . illustrates one way of addressing this problem. It is a policy that might be

applied to the standard libraries shared between applets. It assumes that a separate

policy, similar to SepHeapAllocationUPI, is applied to the implementations

of the applets themselves and that this sets the isotope tag applet objects on all of

the allocations made within the applet. It might, alternatively, apply isotope tags

on the basis of the thread making the allocation. TransHeapAllocationUPI

propagates this applet tag from objects allocated directly in the applet to any further

objects allocated within the libraries.

For example, it propagates the isotope tag from an instance ofHashtable (allocated

directly by the applet) to the instances of HashtableEntry (allocated within the

implementation of that table). These objects are allocated within one heap while

other objects allocated within the standard libraries are placed in the ordinary heap.
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public final class TransHeapAllocationUPI

implements AllocationUPIIfc {

AllocationPMI heap =

new VMDefaultAllocationPMI (10 * 1024 * 1024);

AllocationPMI default =

VMDefaultAllocationPMI.theVMDefaultAllocationPMI;

AllocationIsotopeTag ait =

new AllocationIsotopeTag ("applet objects");

public final AllocationPMI

getAllocationPMI (Class c) {

StackFrameCursor sfc;

AllocationIsotopeTag sfait;

sfc = AllocationContext.getAllocatingStackFrame ();

sfait = sfc.getAllocationIsotopeTag ();

if (sfait == ait) {

AllocationContext.setAllocationIsotopeTag (ait);

return heap;

} else {

return default;

}

}

}

Figure 6.7: A storage management policy that propagates the isotope tag applet objects for one object to all of

the objects allocated by its methods. For example, if a Hashtable allocated directly in the applet code is

created with that tag then it will be passed on to all of the hashtable buckets allocated within the Hashtable

implementation.
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The combination of the SepHeapAllocationUPI policy along with the

TransHeapAllocationUPI definition does not provide a complete solution to

the problem of controlling resource usage within a . For example, suppose that an

array is allocated within a library implementation, filled with data received from the

network and then passed to the applet. This buffer would be placed in the ordinary

heap because, at the time of the allocation, it is not clear to which applet its resource

usage should be accounted. Further, the examples presented here do not allow storage

allocations to be ‘handed off’ when their conceptual ownership changes. These

remaining problems relfect those faced in other contexts where resource management

is attempted in the presence of sharing. The dilemma of accounting usage within

tasks operating on behalf of other resource principals motivated the architects of the

Nemesis operating system to develop a structure within which shared tasks could be

avoided.

Discussion6.6

The facilities presented in this chapter allow untrusted policy implementations to

select – on a per-allocation-site basis – between different heap storage mechanisms.

The resulting framework has been illustrated by implementing a policy to segregate

objects with different access characteristics and a policy to ensure particular allocation

mechanisms are used for different parts of an application. Furthermore, the use of

isotopes as an intermediate organizational structure between individual objects and

classes allows the  implementor to provide separate policy decisions for different

objects produced from the same static program point.

As with the work of Chapter , the framework presented here fits well with the

design requirements identified in Section  in that it allows both general-purpose

and application-specific policies to be defined and reused and permits the retroactive

correction of policy decisions that become unsuitable.





However, the systems presented here still rely on the -supplied s in order to

implement heap management policies. This is clearly visible in the design of the

interface between the  and each policy implementation: the  returns an object

identifying one of the available s, rather than making the actual allocation under

its own control. An interesting extension of this work is therefore the extent to which

it may be possible to support untrusted allocation mechanisms in addition to these

existing ones.

The difficulty in providing support for untrusted allocation mechanisms comes from

the fact that it is hard to distinguish usefully between safety criteria that are sufficient

to support the security model of the  and correctness criteria that require allocation

and de-allocation operations to have their usual semantics.

Informally, a correct implementation of an allocator must be guaranteed to operate

safely and to return the address of a block of memory that may contain an object of

a requested size. However, the definitions of contain and operate safely depend on

the kinds of ill effects which are to be prevented. A programmer using a lower-level

programming language such as C may expect that a malloc implementation returns

a currently-unused and appropriately sized block of memory that has been allocated

to them by the operating system. If the programmer implements a new version

of malloc which erroneously corrupts some other part of the process’ state then,

in the context of C, the isolation between user-level processes will be provided by

the hardware protection mechanisms under the control of the operating system.

Although the programmer may be concerned that their malloc invocations have

unforeseen side-effects, the system administrator need not be.
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class Original class Spoof

{ {

int ival; Object oref;

} }

Figure 6.8: If an instance of Original can be converted into an instance of Spoof then arbitrary integer values

could be cast unsafely into object references.

The constraints on the implementation of an object allocator within a type safe 

are more stringent. This is because the software-based protection mechanisms used

within the virtual machine depend on the allocator for their own validity. Consider,

for example, the class definitions listed in Figure .. If the allocation function

allowed the same area of memory to concurrently hold instances of Original and

Spoof then changes to the ival field in the instance of Original would in all

likelihood update the oref field in the instance of Spoof. This would provide

a mechanism for constructing arbitrary object references from integers. Similar

problems would occur if the Spoof class presented fields with more permissive

access modifiers than those of Original – for example substituting a public

field for one originally defined private.

It might be tempting to suggest that such ‘spoofing’ is not a problem for certain data

structures – for example between classes forming part of the same application and

containing only scalar fields or arrays of scalar types. There are at least two reasons

why this is not true. Firstly, the typical representation of an instance of a class such

as Original will still contain pointer values even if all of the language-level fields

are of scalar types – at the very least it will probably contain information about the

object’s class through which its method table is accessed. Arrays will contain their

length for bounds tests. Secondly, the integrity of some checks made within library

code may rely on the immutability of (among other examples) strings. In the  this

immutability is ensured by the implementation of java.lang.String which

copies the contents of a proposed string into an object-local array of characters.
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Effectively the allocator must be guaranteed to return a block of memory that is

sufficiently large to hold the proposed object, the block must lie in some portion of

an area previously supplied to the allocator’s control, and no portion of the returned

block of memory may already be used by another allocated object.

There are other properties which may be desired of an allocator but that are not

important from the point of view of run-time safety – for example the allocator should

not squander memory by returning large blocks for small requests, its implementation

should terminate and perhaps it should do so in a predictable amount of time. As

argued in Section . the selection between such goals is the kind of tradeoff which

motivates support for application-specific storage management. The choice of when

to reuse free storage and when to request new space from a downstream allocator is

again the kind of policy decision that is being exposed to the untrusted programmer.

Untrusted deterministic functions6.6.1

The problem of allocating blocks of memory to objects is superficially similar to that

of allocating disk blocks to files. As described in Section .. the Xok/ExOS exokernel

implementation handles that latter problem by associating an untrusted deterministic

function () with each different meta-data format [Kaashoek97]. Meta-data values

represent, for example, the blocks allocated to a particular file. The  maps these

values onto a common ‘set of blocks’ format. Updates to the meta-data value can be

checked by comparing the results of the  before and after the proposed change to

the values passed to the : the determinism of the function ensures that the set of

allocated blocks cannot depend on other contextual information.

It is not clear whether s provide an effective solution to the problem of managing

filesystem meta-data within untrusted code. However, significant differences between

that environment and the management of an in-memory heap mean that s do

not provide an effective solution here. An attempt to use s to support untrusted

memory allocators would require functions which enumerate the free and allocated
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areas of the heap: the trusted infrastructure would ensure that the allocation

mechanism returns storage space which it previously claimed was free and that it

subsequently claims that this space is allocated (without claiming that any other

allocated space has become free). This suggests that the data passed between the

 and the trusted infrastructure would either be O (number of allocated objects)

or O (size of heap), irrespective of the size of the particular allocation being made.

In contrast, the s previously used within filesystems must merely ensure that

the meta-data associated with a particular file is updated to include (or exclude) a

specified block.

Linear objects6.6.2

Baker proposes using linear objects as an alternative approach to implementing safe

untrusted resource managers [Baker95]. Linear objects must be manipulated in such

a way that exactly one reference to them exists at any time. For example, if two

variables refer to linear objects then it would be valid to swap the contents of the

two variables (preserving one reference to each object) but not to assign the value

of one variable to the other (constructing two references to one object and leaving

the other unreferenced). Linear objects are inspired by linear logic, introduced by

Girard [Girard87], in which a proof must use each assumption exactly once. Scedrov

presents a survey of that topic [Scedrov95].

Linear objects can be used to naturally model some forms of resource: maintaining

exactly one reference to the object reflects the fact that ownership of the resource

can be passed between data structures during processing but it cannot, in general, be

used twice or discarded at will. Linear objects can also aid optimization because they

cannot be aliased and they cannot be accessed concurrently by multiple threads.

In the context of the current example, if linear objects are used to represent blocks

of free memory, then the allocation policy which manipulates those blocks would be

unable to retain a reference to a block after it has been returned by malloc and it
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Figure 6.9: Simulating linear objects using another level of indirection. The allocation mechanism in the UPI can

access blocks A and C, whereas access to B and D has been revoked.

would also be unable to generate references to blocks other than those supplied by

the downstream allocator.

Such a primitive scheme does prohibit the expression of many useful allocation

policies – such as those which may fragment large blocks in order to satisfy smaller

requests, or those that coalesce adjacent blocks in order to satisfy larger requests.

These common operations, observed in many existing memory allocation policies,

must be provided as trusted operations on blocks.

One possible approach to implementing untrusted allocation mechanisms is therefore

to provide a  exposing operations to manipulate blocks of memory and to

introduce an additional level of indirection to ensure that the  can only make

a single allocation in each block. This effectively provides a similar scheme to

Hawblitzel et al’s definition of capability objects in which the indirection is used to

support revocation in the J-Kernel [Hawblitzel98].
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Figure . shows how this may conceptually be organized. The trusted 

implementation is able to revoke access to blocks of memory (in the figure, B and D)

once they have been allocated or divided into fragments. However, a straightforward

implementation of such a scheme appears unsatisfactory for a very frequent operation

such as object allocation: each intervening capability object would itself require

storage space and each indirection through the object would introduce a run-time

penalty over direct access.

Future work hopes to investigate two possible techniques for a more effective

implementation:

� Whether extensions to a run-time compiler could be used to inline the 

implementation within the  and, while doing so, identify where memory

blocks may be manipulated directly rather than through indirection. Wu et

al describe a similar technique of semantically inlining optimized definitions

of library functions (such as arithmetic on complex numbers) within user-

supplied methods [Wu98]. Welsh and Culler similarly inline accesses to 

network interface hardware [Welsh00]. The important difference between these

techniques and ordinary method inlining is that the inlined code is supplied

from a trusted optimized implementation handled as a special case by the

compiler, rather than derived directly from the bytecode implementation.

� Whether a separate low-level bytecode language would be more suitable for

expressing this kind of policy. The initial proposal for this language advocates

an extensible approach in which different problem domains can use different

sets of bytecode operations [Harris99]. Operations would describe both their

run-time implementation and their effect on the abstract state at verification

time. In the case of memory allocation they could use verification-time

reference-counting to ensure that memory blocks remain uniquely referenced.
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Chapter 7

Scheduling

Chapters  and  described the specialization of the  architecture to the problem

domains of controlling run-time compilation and storage allocation. This chapter

introduces a third kind of policy definition by showing how application-specific

thread scheduling can be supported. As Section . identified, it is easy to

see how the decisions made by the thread scheduler affect the performance that

a user experiences from an application – multi-threaded interactive applications

favour a high rescheduling rate to give responsive performance whereas batch-mode

applications favour a low rescheduling rate to improve overall throughput through a

reduction in the number of thread switches performed.

The efficiency of the designs presented in previous chapters both rely on reducing

the number of up-calls made by the  to an Untrusted Policy Implementation

(). This was necessary because the underlying rates of method invocation or object

allocation can be high, making it unreasonable for policy queries to be made so

frequently. In the case of run-time compilation, the rate of  invocations is reduced

by invoking the  on the first occasion that a method is called and allowing the ,

at that stage, to elect whether to receive information about subsequent invocations.

In the case of storage allocation, the  was invoked only on the first execution,

or compilation, of each allocation site. The writer of a policy could differentiate
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between kinds of allocation made at the same static allocation site by causing different

instances of the class containing the site to be placed into different isotopes.

In each of those problem domains a  may be queried once and its decision

subsequently cached within the  for reuse on subsequent executions of the code

concerned. However, schemes used for providing controllable scheduling tend to

require a policy decision on every occasion where rescheduling may occur. This is

true both with the approach based on scheduler activations that the Nemesis operating

system takes (described in Section ..) and with the recursive -donation

approach taken in Fluke (described in Section ..).

The  operating system allows application-provided scheduling policies to be

implemented by downloading code from user-space into the kernel [Bershad95,Sirer97].

The rationale is to avoid the perceived overhead of the up-calls made with scheduler

activations while retaining the flexibility that they provide. The application-specific

thread management code is termed a strand package, and is written in a type safe

language and compiled with a trusted compiler. In their implementation, Sirer et al

used Modula-3. The strand package receives up-calls from the kernel when a policy

decision is required.

In many functional languages, continuations have been used to share processing time

between different tasks – Wand’s system based on Scheme, and Reppy’s for an

ML-derived language, are typical [Wand80, Reppy91]. A continuation appears to the

programmer as a function of one argument which, when evaluated, returns control

to the point of its creation.

Wand shows how a simple thread scheduler can be implemented using a set of

continuations, each of which represents one of the threads that is currently runnable.

A processor resumes a thread by evaluating its continuation and a thread yields

by creating a continuation at the point of its suspension and placing that on the

set eligible for scheduling. The same abstraction can be used to implement a
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preemptive scheduling policy if a timer interrupt creates a continuation on behalf of

the interrupted thread. Queues of continuations can be used to arbitrate the order of

resumption for threads blocked on semaphores. Reppy uses similar implementation

methods in  [Reppy91], based on first-class continuations in an extended version

of / [Duba91].

Design overview7.1

In order to support application-supplied thread schedulers as part of an extensible

virtual machine, the approach taken here combines aspects of scheduler activations,

 strand packages and continuation-based systems. Conceptually, the  makes

up-calls to a user-supplied scheduler in much the same way as with scheduler

activations. The safety of the resulting system is ensured through a combination of

language type safety and checks in the  on each scheduling decision. However,

as with , an efficient implementation is realized by compiling the application-

supplied scheduler to native code into which those checks may be inlined.

The system described here operates over Nemesis and in fact application-supplied

thread schedulers operate in a similar manner to a User-Level Scheduler () in the

underlying : saved thread states are held in context slots and the scheduling policy is

responsible for choosing between these. Similarly, the operations exposed by the 

through the thread-scheduling  are analagous to the operations that the Nemesis

kernel () provides to a : for example to resume execution of a thread from a

particular saved context.

Consequently, when implemented over Nemesis, there are three entities involved in

supporting a particular :

� Firstly, the low-level facilities exported by the  system call interface which

are used without modification.

� Secondly, a new  which acts as an intermediary between the  system





1

2

Application code

4

Saved contexts

Ja
va

 b
yt

ec
od

ewhile (true) {
}
...

...

Scheduler UPI

Scheduler PMI

Virtual machine

N
at

iv
e 

co
de

N
T

S
C

3

Inlined safety checks

Compiled policy definition

Figure 7.1: Overview of application-supplied thread schedulers. Once the process scheduler has selected which

application to resume it passes control by entering the activation handler in its ULS. This executes the scheduling

policy supplied by the application, polices the result, and resumes the selected context. The policy is compiled to

native code in order to allow it to execute in a simpler environment, as well as to avoid the overhead of using the

interpreter.

calls and an application-supplied . Section . describes the way in which

the  ensures that the safety of the  is not compromised. This exports the

thread-scheduling  to the application-supplied scheduler.

� Finally, the application-supplied  that implements the desired scheduling

policy.

Figure . illustrates the overall integration of these components into the . The

grey arrows indicate how the conceptual separation of the system into the  and

 is not reflected at run-time because the  is compiled to native code into which

the checks performed by the  are inlined. The red arrows illustrate the four steps

which are typically involved in making a scheduling decision:
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1. The  process scheduler uses its own system-wide policy to select which

process to resume. It passes control to that process’  by branching to the

associated activation handler.

2. The  ensures that it is safe to make a scheduling decision using an

application-supplied  and, if so, branches to the supplied policy implemen-

tation. Section . describes the situations in which the  must make a

scheduling decision directly.

3. The  selects which thread to resume and passes this selection to the 

which checks that the decision is valid and invokes an  system call to pass

control to the selected thread.

4. The  resumes the selected thread from its saved context.

Subsequent sections illustrate this design and its implementation in more detail.

Section . describes how an application-specific policy is expressed as a .

Section . describes the corresponding interfaces exposed by the thread-scheduling

. Section . shows how the  ensures that application-supplied scheduling

policies operate safely, and also clarifies what it means for a scheduling policy to

be safe. Section . describes how the  is actually executed so that it operates

efficiently when invoked for every scheduling decision. Section . illustrates how

this framework may be used to implement various scheduling policies. Finally,

Section . discusses how the current uni-processor system may be extended for

multi-processor environments.

Thread scheduling UPI7.2

A  is implemented by subclassing and specializing ThreadScheduler. The

 interacts with the system in two different ways. The first is by receiving up-calls

from the  when scheduling decisions are required; for example when threads are

created, change state or are destroyed. The second mode of interaction occurs when
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the  receives down-calls from parts of the standard libraries; for example when a

thread’s name is changed or its priority updated.

Up-calls from the  are conceptually delivered by normal method invocations on

an instance of ThreadScheduler. These methods must be overridden in order

to implement an application-supplied particular policy.

� reschedule is invoked from the  whenever a policy decision is required.

It is expected to select a thread, ensure that the thread is associated with a

context slot and then resume execution of that saved context by making an

invocation on the scheduling .

� blockThread and unblockThread are invoked from the  whenever

a thread changes state.

� createThread and destroyThread are invoked from the  to notify

the  when threads are created or destroyed.

In each of these cases the superclass ThreadScheduler defines a number of

variants of each method, each defining successively more parameters. The intent

is that programmers will override the simplest-possible definition and that this will

reduce the cost of making an up-call by limiting the number of parameters that must

be passed and computed.

Two versions of reschedule are provided. The first takes two parameters,

elapsed and now, indicating the  time expended by the most recently

scheduled thread and the current system time. The second is a simplified form which

takes no parameters: it can consequently be invoked more quickly.

The blockThread and unblockThread methods have up to four possible

parameters. The first of these, thread, identifies the Thread object which the

invocation concerns. The second, context, identifies the context slot number (if
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any) occupied by the thread. The third, reason, takes an integer value indicating

why the invocation has been made. The fourth, object, identifies the Java-level

object that caused the change of state: for example, if a thread blocks while attempting

to acquire a lock, it indicates the object concerned.

It is important to realize that all of these operations are only invoked as up-calls

from the . This means that the  retains knowledge of the intended state of

the threads and is consequently able to check that the  only resumes from valid

saved contexts. In particular, when the implementation of the  wishes to block a

thread, for example because that thread must wait for a mutual exclusion lock, the

 implementation initially invokes a separate block operation on the  which

in turn invokes the blockThread operation on the . Similarly, the  creates

a thread by invoking a  fork operation which is responsible for allocating system

resources to the thread, such as space for a native stack, before notifying the  with

a createThread up-call.

In addition to these up-call notifications, there are other aspects of the  operation

that the implementor of a  may wish to consider. As before, these notifications are

delivered by method invocations on the  when the  implementation changes

some part of its thread-related state.

However, it is not anticipated that all application-level schedulers will require this

information. Therefore, for each kind of event, there is a separate ‘Listener’

interface and a static registration method on the superclass. Requiring an explicit

registration step and factoring operations between multiple interfaces avoids the

overhead of making unnecessary invocations on the  for each different kind of

notification. This follows the  event delivery model within the existing Java s.
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Two interfaces are currently defined:

� ThreadNameChangeListener which contains just a single method

ThreadNameChanged(Thread t, String old_name, String

new_name) used to notify the  that the name of a particular thread has

been changed.

� ThreadPriorityChangeListener which contains a single method

ThreadPriorityChanged(Thread t, int old_priority,

int new_priority) used to inform the  when a thread’s priority is

updated.

Thread scheduling PMI7.3

The interface exposed to the application-level scheduler is provided by the class

NativeScheduler. This provides three sets of operations, implemented as static

methods.

The first set of operations is used to manage context slots. It comprises two

methods, cacheThreadContextInSlot and decacheThreadContext

FromSlot, which respectively create and destroy associations between Java

Thread objects and the context slots available to the scheduler. These opera-

tions are only needed when there are more threads than available context slots.

The second set of operations is invoked by the application-level scheduler to

pass its decisions to the runtime system. There are two pairs of operations:

resumeFromSlot, resumeFromSlotUntil, blockProcess and

blockProcessUntil. The first pair resume the execution of the thread

whose state is cached in an indicated slot. The second pair are used to indicate that

no thread has been selected to run and so the entire application should block. None
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of these operations returns and so it is expected that any reasonable  will invoke

one such operation each time a scheduling decision is required.

These first and second sets may only be invoked from within the implementation

of the application-level scheduler and even then only when the application-level

scheduler has itself been invoked by the . Invocation at other times causes the

operation to fail by throwing an instance of NotInSchedulerError.

The final set of operations provides miscellaneous facilities that are available to the

 at any time. They include queries to obtain information about the system on

which the  is operating – for example the current time (using a high-resolution

clock) and the number of context slots that are available.

The operations on the  are always invoked from the  with activations

disabled. This serializes their execution because, as explained in Section ..,

disabling activations causes the  process scheduler to maintain the process

state in a designated context rather than invoking its . In particular, it allows

the notifications made by blockThread, unblockThread, createThread

and destroyThread to be delivered without concurrent access to the  data

structures by reschedule operations.

The implementor of the  must ensure any state shared with the application is

correctly managed. An example of such state might be information concerning thread

priorities or resource allocations. This can be achieved, to some extent, through

judicious use of volatile variables and the -provided guarantee that updates

are performed atomically to values of all types other than long and double.

Where this is not feasible the programmer may define critical regions during which

the  will resume a particular application thread directly without consulting the

application-level scheduler. The programmer delimits critical regions by acquiring

and releasing a mutual-exclusion lock on the object implementing the application-
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level scheduler, using the ordinary synchronization operations supported by the .

As a consequence, the same mechanism can be used to arbitrate between different

application threads accessing state within the .

Although this approach to protecting shared data provides conceptual simplicity to

the application-level programmer, its implementation is problematic – for example,

how should the system behave if one thread blocks while it is within a critical

region? However, similar problems will exist in any case because the implementations

of the methods within the application-level scheduler itself may themselves block.

Section .. will discuss the approach taken.

As an example of how this  may be used, Figure . shows the implementation

of reschedule, blockThread and unblockThread for a simple round-

robin scheduling policy. In this case the scheduler iterates over an array of per-thread

information and resumes the first runnable thread that is found. If none of the threads

is runnable then the  causes the process to block. Neither the resumeFromSlot

nor blockProcess invocations are expected to return.

Safe application-level scheduling7.4

The  system call interface does not place any restrictions on the context slot

that the native  selects to resume – uninitialized slots and those corresponding to

blocked threads could be resumed.

That approach is appropriate within a  because the scheduler and the threads

operate within the same protection domain: the threads could, in any case, cause

the process to fail by corrupting the scheduler’s data structures, or more directly by

requesting that the kernel terminate the process.

In contrast, if we wish to retain run-time safety, it is necessary to ensure that the
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public void reschedule ()

{

int j = (last_scheduled_thread + 1) % NUM_CONTEXTS;

for (int i = 0; i < NUM_CONTEXTS; i ++)

{

if (state[j] == STATE_RUNNABLE)

{

last_scheduled_thread = j;

NativeScheduler.resumeFromSlot (j);

}

j = (j + 1) % NUM_CONTEXTS;

}

NativeScheduler.blockProcess ();

}

public void blockThread (int ctx)

{

state[ctx] = STATE_BLOCKED;

}

public void unblockThread (int ctx)

{

state[ctx] = STATE_RUNNABLE;

}

Figure 7.2: The implementation of a simple application-level scheduler implementing a round-robin scheduler.

Other code (not shown here) initializes the state array, determines the maximum number of contexts available

and updates the state array whenever threads are created or destroyed.
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thread scheduler resumes only from eligible context slots. For example if the garbage

collector operates in a separate thread then concurrent collection techniques generally

require that other threads be suspended for some portions of the collection process: if

this does not happen then the heap may be corrupted. Similar problems could occur

if a thread were scheduled when it was intended to be blocked waiting to acquire a

lock.

The  must be able to police the decisions made by the  in order to ensure that

it only schedules runnable threads. This function is performed by interposing a check

between the  invocation on the NativeScheduler class and the subsequent

system call.

These checks are implemented by maintaining summary information in the 

which identifies which context slots contain runnable thread states. The summary

state is updated when block, unblock, suspend and resume operations are

invoked on the . This state is checked in the implementations of the methods

of NativeScheduler and, since these are static methods, they may readily

be inlined into the implementation of the . Although it is intended that the

application-level scheduler should not attempt to resume non-runnable threads, if

such a failure occurs then the methods of NativeScheduler signal this by

throwing an exception to the , causing the usual exception-handling mechanism

to be invoked.

Efficient application-level scheduling7.5

Implementing the scheduling policy in Java bytecode above the  raises obvious

concerns over the efficiency of the implementation. There are two aspects of the

system that might lead to unacceptably poor performance:

1. If a bytecode interpreter is used to execute the scheduling policy, then it may
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simply take a long time for the reschedule method to be executed. On

Nemesis a scheduling quantum of around ms is typical on Intel x systems,

so if a separate scheduling decision is to be taken each time it is important that

this decisions is fast.

2. Before the reschedule method is actually executed, the correct environ-

ment must be created within which it may operate. For example, the normal

execution environment within the  implementation provides two stacks

(one for use by the bytecode operations within the method and the other

for use by any native code it invokes), a region for holding local variable

values and some  pointers to various structures related to the method being

executed. This information is used when implementing some of the more

complex bytecodes of the , such as acquiring and releasing locks, performing

virtual-method look-up or loading classes.

These concerns are addressed in two ways:

� The reschedule, blockThread and unblockThread methods are

always compiled to native code when an application-level scheduler is registered

with the . A separate isotope is created within the class implementing the

scheduler so that its methods may be compiled under the assumption that

thiswill refer to the unique instance acting as the scheduler. The assumption

is always valid when the methods are invoked from the . This allows

accesses to fields within the scheduler definition to be bound to particular

memory locations at compile time, avoiding checks for null references and

indirection through an object pointer.

� When these methods are invoked by the , they are executed within a

special deflated execution environment that reduces the cost of entering the

methods. The deflated environment uses static pre-allocated blocks of memory

to contain the stacks and local variable table – bytecode verification ensures that

the size of the stack frame remains within a per-method bound. Furthermore,
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the various references usually maintained from the execution environment to

method-related structures are not initialized in the deflated environment. Only

6 assembly language instructions are required to interface the C portions of

the  to the compiled implementation of the reschedule method. In

contrast 34 instructions are required to enter an ordinary compiled method.

Supporting arbitrary code within the scheduler7.5.1

The use of a deflated execution environment places restrictions on the kinds of

operation that may be performed directly within the compiled method. It is

impossible to acquire or release locks, to throw or catch exceptions, to allocate objects

or to invoke other methods (apart from any that may have been inlined by the native

code generator).

These restrictions imposed by the spartan environment correspond closely with the

separate restrictions that are imposed by execution of an ordinary method from

within the scheduler. In particular, any operation that could cause reschedule

to block must be implemented carefully in order to avoid unintended deadlocks

between the application-level scheduler and the threads that it is managing.

It is unrealistic simply to forbid the application-supplied scheduler from attempting

to acquire locks. This is because much of the standard library code available

from the  is written in the expectation that it will be deployed in a multi-

threaded environment. Consequently, the existing implementations of simple data

structures such as hashtables and extendible arrays are defined to use mutual exclusion

locks. In some situations it is possible to perform static analysis to identify locks

which are never contended. Unfortunately such analysis is not trivial [Bogda99,

Blanchet99,Choi99,Ruf00]. For example, the use of finalizemethods within a Java

program may introduce concurrency into an apparently single-threaded application

because the finalization operation may be invoked asynchronously from within a
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concurrent garbage collector. The solution currently favoured within commercial

implementations of the  is to simplify the implementation of uncontended lock

operations [Bacon98,Agesen99].

It is insufficient, however, to rely on careful lock-free programming within the

scheduler and the use of static analysis to avoid lock manipulation in library code.

This is because other facilities within the  may acquire internal locks and the

application-level scheduler may need to acquire these locks even though it does not

manipulate any that are defined at the language level. For example, in the current

implementation, some stages of memory allocation require that the allocating thread

holds a global lock that arbitrates access to the heap. The  may be invoked at a

time when this lock is already held by another thread and therefore risks blocking

upon memory allocations.

There are two different problem scenarios. The first is that the application-

level scheduler performs an operation that cannot be implemented within its

limited deflated execution environment. This is handled by inflating the execution

environment, as described below in Section ... The second problem occurs when

the application-level scheduler becomes unable to complete an operation because it

has blocked. This is handled directly by the underlying , as described subsequently

in Section ...

Recovering a full execution environment7.5.2

The execution environment of the application-level scheduler is temporarily inflated

when it performs an operation that cannot be directly implemented in its usual

deflated environment. When inflated the application-level scheduler operates as an

ordinary thread within the  – that is, it has a native stack, a separate Java stack and

a fully-initialized execution environment structure.
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The application-level scheduler is not used for scheduling decisions while it is inflated

– these are handled directly by the underlying . This is consistent with the view

that invocations of the reschedule, blockThread and unblockThread

operations are serialized: a further up-call to the  cannot be made until the existing

inflated call has completed. Any blockThread and unblockThread up-calls

that would occur while the  is inflated are buffered within the  and delivered

before the next reschedule operation after deflation.

The  is deflated whenever an up-call completes, either by making an invocation

on NativeScheduler, by returning directly or by completing abnormally via an

unhandled exception. A slight infelicity is that if the up-call completes by invoking

NativeScheduler then the resulting decision may be inconsistent because of

buffered blockThread and unblockThread notifications. In that case the

invocation is silently discarded and the  re-activated after delivering the buffered

notifications.

The inflation procedure is implemented by caching an inflated execution environment

when the  registers with the  and swapping into this from the deflated

environment. A context slot is reserved in the  for use by the inflated environment.

Backup user-level scheduler7.5.3

Three situations have been described in which an application-level scheduler

may not be able to make thread-scheduling decisions: firstly, when the imple-

mentation of reschedule returns to the  without invoking a method on

NativeScheduler, secondly when the implementation of the  blocks, and

finally when the  has been inflated and the process subsequently pre-empted

before deflation. In each case the  reverts to making thread-scheduling decisions.

The intent is that this is a rare occurrence and so a simple policy suffices to enable
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progress by the application: to either un-block the  or to complete its current

invocation and allow it to be deflated.

This policy identifies a primary thread which was the direct cause of reversion to the

. If the  blocked then the primary thread is the one that holds the lock on

which it is waiting. If the  was inflated then the primary thread is the one that is

associated with the inflated environment.

The  proceeds by scheduling the primary thread until either it unblocks the ,

the  may be deflated or the primary thread itself blocks. In the first two cases the

scheduling policy may revert to that defined by the . In the third case a new thread

is selected as the primary. If the primary thread blocked acquiring a lock then the

current holder of that lock is selected as the new primary. Otherwise, the runnable

threads are scheduled in a round-robin manner. The rationale for this policy is

that a primary thread is selected, where possible, as the one that is directly delaying

returning to using the  and that, where such a thread cannot be identified, a

round-robin schedule will avoid starvation.

Example policy definitions7.6

This section describes thread scheduling policies that can be implemented using the

application-level scheduling infrastructure described in the previous sections.

Priority-based scheduling7.6.1

The original example, shown in Figure ., illustrated how a simple round-robin

scheduler could be implemented with a reschedule method that cyclically

selects one of a number of threads. It is straightforward to extend this with
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separate per-priority queues to implement the scheme required by the Java Language

Specification () in which ‘when there is competition for processing resources then

threads with high priority are generally executed in preference to threads with low

priority’ [Gosling97a].

These kinds of simple policy provide few opportunities for application-specific

customization. Aside from the obvious consideration of which threads are assigned

to which priorities, the only other variable is the choice of how many times the 

selects a particular thread before it is pre-empted. The provision of the  under the

control of the application programmer permits variation in rescheduling frequency if

a program exhibits different phases of behaviour.

However, the loose specification made in the  and provided by a priority-based

scheduler is not suitable for all application programs. There are two particularly

noteworthy cases: firstly, when the application programmer wishes to use strict

priority scheduling 1 and, secondly, where the application programmer wishes to use

some different description of threads’  requirements.

The first of these cases is typified by the use of priority settings in order to achieve

mutual exclusion without explicitly manipulating locks: if a thread has the highest

priority then the scheduling policy guarantees that it will be the thread that is

executed. It has particular practical appeal in highly multi-threaded systems in

which one thread wishes to update shared data structures that are generally accessed

without locks. However, such an approach lacks merit in many situations. Firstly

it assumes a uni-processor environment because the execution of a single high-

priority thread by one processor will not exclude other threads from being executed

elsewhere. Secondly, using strict priority scheduling to control concurrent access

to data structures relies on the high priority thread operating without blocking –

1 That is, where the scheduler guarantees to schedule the runnable thread with the highest priority,

unlike the  specification in which the only requirement is that high priority threads tend to be

favoured.
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either directly on programmer-defined locks, or indirectly on internal locks within

the . Finally, if the  may execute pieces of code within the context of other

threads, then those implementations must also be considered – for example this

may occur within the  if finalize methods or class initialization methods

are executed in the context of the thread that triggers a garbage collection or class

loading. However, despite these concerns with the use of priority scheduling to

control access to shared data structures, it would be straightforward to implement

as a : all that would be required, over the non-strict version, would be for a

ThreadPriorityChangeListener to yield if the change raises some other

thread priority above that of the thread currently scheduled.

The second situation in which a programmer may wish to use a different policy is

where simple priorities are unable to express the desired allocation of resources to the

application threads. For example, suppose that a single  contains two threads,

each running on behalf of a separate Java applet – it is impossible to control the

allocation of  time at a fine granularity because all that can be adjusted are the

relative priorities.

Period-proportion based allocation7.6.2

A further policy that has been implemented is a period-proportion system. Such

schedulers have become popular in soft real-time environments for their ability to

provide  allocations of the form ‘ms  time every ms elapsed time’ [Leslie96,

Jones97, Steere99].

The implementation in a  is again straightforward and follows that of similar

process schedulers using the same policy [Leslie96, Roscoe95]. A queue of threads is

maintained, ordered according to the end of their current period. These are then

treated as deadlines by which each thread must receive �����������	��
���
��������	
���� 

time.
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Figure 7.3: The rate of progress achieved by threads running with different CPU allocations. Each plot shows the

results from a separate experiment in which two CPU-bound threads executed a loop a number of times, showing

the time taken for each iteration of the loop and the number of occasions on which a particular iteration time is

achieved. In each case one of the traces, shown in green, is negated to aid comparison with the other.

Figure . illustrates the behaviour of this scheduler using a simple -bound

benchmark. Each iteration of the benchmark is timed and the distribution of

these times is plotted for various  allocations (all made over a ��������� period).

Two threads were used in each experiment and a total  allocation of % was

distributed between them, varying from a skew of %-% to an even allocation of

.% to each thread. Each plot shows the distribution of iteration times achieved by

the two threads, with the result for the green trace negated to aid comparison with

the red trace.
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Allocation inheritance7.6.3

When used in the Nemesis process scheduler, the effectiveness of using a period-

proportion specification benefits from the structure of the Nemesis operating system:

processes are responsible for their own / so the performance of one should depend

only on its allocation. Locks are only expected to be used between cooperative threads

within processes.

However, one of the motivations that has frequently been advanced for per-thread

resource allocation within a  is that it allows separate applications to be executed

as ‘servlets’ within a single process [Back98,Hawblitzel98,Czajkowski98, Spoonhower98].

This may allow easy communication between co-operating tasks which, at least for

Java applications, would not be possible if they executed in separate instances of the

. A more complex system configuration may provide other facilities, implemented

as trusted native code, that may be invoked by the servlets [Menage99]. That previous

work has confirmed that the use of a period-slice based resource specification is

problematic: a thread with a low resource allocation may delay well-provisioned

threads by executing slowly when holding critical locks. An additional concern,

in some environments, is that a malicious programmer could deliberately revoke

all resources from a thread in such a situation. The problem is similar to that of

destroying arbitrary un-cooperative threads: initial versions of the Java Thread class

provided a destroymethod for this purpose, but this was subsequently deprecated

because a thread could be destroyed while holding system-critical locks, or even be

destroyed while internal  data structures were in an inconsistent state.

The approach taken in most previous work has been to avoid acquiring system-wide

locks while executing code whose resource allocation may be controlled by untrusted

code. For example, the J-Kernel (a Java-based system supporting multiple protection

domains and resource management) only permits cross-domain calls to designated

capability objects [Hawblitzel98]. As with Sun’s Remote Method Invocation (),

parameters and results are generally copied when performing the call – by avoiding
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sharing between domains the scheme mitigates the problems of domain termination

and of accounting shared resources. Conceptually, a separate thread is used when

the cross-domain call executes in the server. This prevents a malicious client from

denying resources to its own threads while they hold locks within a server and

similarly prevents a malicious server from retaining references to client threads once

the cross-domain call has completed. However, threads may still contend for system-

provided locks, or for locks on the capability objects themselves because those are

directly accessible to multiple protection domains.

Since the J-Kernel is implemented over an unmodified  the manner in which a

thread’s resource requirements are expressed to the system uses the usual priority-based

interfaces. It is therefore susceptible to the problems discussed in the introduction:

the controls it introduces provide additional forms of isolation between the resources

accessible within a protection domain, but do not necessarily provide control over

the amount of those resources available to each domain.

JRes is an alternative resource management infrastructure for use with the  [Cza-

jkowski98]. It aims to provide mechanisms for measuring and limiting resource usage,

including  time, heap memory and network resources. An example application

for JRes is a Java-based web server executing client-supplied code – a more extreme

motivating example may be a XenoServer executing code on behalf of untrusted clients

and billing those customers for the associated resource usage [Reed99].

In the case of thread scheduling, JRes allows a ResourceManager to receive

notifications when threads are created. This manager can limit the thread’s con-

sumption of various resources and receive call-backs when those limits are reached. A

 resource allocation is expressed in terms of milliseconds per second of wall-time.

Consumption is measured from native code by periodically sampling structures

maintained by the thread scheduler.
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Therefore, although JRes provides mechanisms for controlling resource allocations

to threads, it does not expose control over the scheduling policy itself. A separate

problem with JRes as proposed by Czajkowski et al is that heap memory usage is

monitored by using load-time code rewriting to introduce usage-tracking code into

constructors and finalizers [Czajkowski98]. An unfortunate consequence of this is

that a malicious thread can presumably access these counters directly, or resurrect

reachable finalized objects, to acquire unaccounted storage space.

Bernadat et al propose another resource management framework based on 

extensions and s for partitioning memory and  resources between mutually

untrusting applications. For thread scheduling it uses a  round-robin scheduling

scheme extended with an interface to measure per-thread  time consumption.

The scheduling parameters appear to be based on a feedback scheme in which the

time received by some threads is shown to take around one minute to stablise on the

value intended [Bernadat98].

In a -based platform for resource-managed active networks, Menage identifies two

schemes for scheduling threads contending for shared resources [Menage00]. The first

allows a server to ‘underwrite’ client threads with its own resource allocations: if a

client thread cannot continue while in the server then the resources allocated to the

underwriter are used to allow it to continue until it (hopefully) leaves the server. The

second scheme allows the server to measure client resource allocations before they

make invocations on it: it essentially requires that the client pay ‘up front’ to prevent

it running out of resources part way through executing the server code.

The availability of application-level scheduling, however, permits more flexibility in

defining how a particular system should manage the interaction between locking

and resource allocation. The particular scheme presented here is a straightforward

technique inspired by the standard priority inheritance algorithm for avoiding priority

inversion.
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The basic idea is that if a thread attempts to acquire a contended lock then, instead

of blocking, it donates its allocated  time to the thread currently holding that

lock. The intent is that, as with priority inheritence, the thread favoured by the

scheduler elects that the system as a whole should perform work that is useful to

that thread, even if the work is not the direct execution of its own code. The initial

 implementation is straightforward – comprising an extension of the scheduler

described in Section .. in which threads blocked on locks are maintained in the

run-queue and, if selected for execution, the current holder of the contended lock is

selected instead of the blocked thread. There are, however, subtle problems which

must be addressed:

Accounting donated time

Care is required over how the donated time is accounted to the threads involved. Ford

and Susarla describe the implementation of a similar donation mechanism over their

user-space  inheritance scheduling infrastructure [Ford96b]. They propose that the

entire  usage is accounted to the thread making the donation since the donation

apparently occurs without the acquiescence of the recipient and, more pragmatically,

without the knowledge of the accounting mechanism. Intuitively, such an approach

appears necessary in the current environment in order to retain the guarantee of

schedulability from the underlying Earliest Deadline First () algorithm because,

unless the donor is charged, it will retain its  allocation in the current period and

ultimately there will be insufficient real time before the end of the period for the

allocation to be honoured.

However, without penalising the recipient of a donation it is possible that some

threads will be net donors and some will be net recipients – if contended locks are

available directly to application threads then some may elect to strategically hold

unnecessary locks in order to benefit from donations. In order to promote longer
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term fairness, the  maintains separate per-thread balances of the net debt held

against other threads as a whole. If the  selects a debtor thread to be scheduled

then the balance of the debt (or the current allocation, if less) is transferred to a thread

in credit, and that thread is executed in preference at the debtor’s expense. Threads

in credit are held on a simple circular list and receive credit in a round-robin manner.

Recursive donation

It is possible that the thread currently holding a contended lock will itself have

blocked because it is in turn waiting to acquire a lock. In that case the  donation

is simply made to the thread that is ultimately delaying the chain of threads. A

complication arises from the desire to avoid transforming deadlock into livelock

by attempting to find the end of a cycle while analyzing dependencies between

threads. In anticipation that blockThread and unblockThread operations

are frequent, whereas allocation donation is rare, it is desirable to avoid introducing

deadlock detection on every lock manipulation. Instead, when selecting the recipient

of a donation, the traversal algorithm maintains a count of the number of threads

that it traverses: a deadlock must exist if the count exceeds the total number of

threads in the system, since any sequence of such a length necessarily contains a

repeated suffix. The  then repeats the traversal, marking the repetitions as being

in a THREAD_DEADLOCKED state rather than THREAD_BLOCKED. Threads in

that state are never considered for scheduling or as potential donors of their allocated

time.

Blocking for other reasons

The thread currently holding a lock may have blocked for some reason other than

lock contention; for example it may be waiting for an / operation to complete.

There is no clear general strategy for avoiding such problems: if the thread is waiting

for keyboard input then there is evidently no way that the  can encourage the
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operation to complete. Indeed, if the lock protects a shared data structure that will

contain the input data then the first thread is effectively also awaiting the user’s data

entry and therefore blocking both threads is consistent with the view that the 

is doing whatever it can to ensure that the system works towards the goals of the

scheduled thread.

Conversely, the second thread may be operating maliciously and have acquired a set

of important locks before blocking on a futile / operation. It is possible that an

extended  could address that situation by providing a mechanism for registering

objects as providing -bound locks and to forbid blocking / invocations while

holding these – an operation that would block will instead abort with an exception.

However, this policy cannot be implemented over the existing  infrastructure

because the blockThread and unblockThread operations act as up-calls after

the underlying  summary information has been updated: the  itself cannot

introduce operations, such as throwing an exception, into the threads that it controls.

Furthermore, adding such support would not solve this problem in the more general

case: the second thread could simply enter an endless -bound loop instead of

performing a blocking / operation.

The general recommendation is therefore that the server infrastructure that supports

untrusted servlets must take care over the locks to which it allows access. The standard

access control mechanisms of the  prevent internal system locks, such as those

controlling access to the garbage-collected heap, from being acquired and released

explicitly by the servlets. Therefore the intent is that allocation inheritance limits the

effects of contention on those locks rather than providing a ‘silver-bullet’ solution for

sharing data structures between un-cooperative threads.
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Discussion

In each of these cases it is important to remember that the policy is implemented

within the . Therefore the choices made in the current implementation merely

reflect behaviour that is anticipated to be reasonable for a range of situations – the

particular  that has been developed could equally be replaced by one that makes

different trade-offs. A particular example is that the choice of how and whether to

charge the recipient of donated  time and whether any allocations made should

provide an upper bound on the resources expended on a thread, or whether they are

viewed as guarantees on the minimum that a thread should receive. In the former

case, as implemented here, one expects a thread to be penalised when it receives a

donation. In the alternative one may expect a thread to continue to receive its entire

allocated time.

Multi-processor scheduling7.7

The application-level scheduling infrastructure, as currently implemented, operates

only on uniprocessor machines because the Nemesis operating system is restricted

to such an environment. Moving the current implementation directly to a multi-

processor system will introduce additional complexity because there are extra sit-

uations that must be considered: in particular the implementation of concurrent

reschedule operations across more than one .

The current design for multi-processor application-level scheduling is to offer two

options to the  implementor. The first of these is similar to the uni-processor

design in that a single  is supplied and that the  enforces mutual-exclusion

between the invocation of the up-call methods upon different processors. If a second

processor requires an up-call while a separate call is already in progress on the first

processor then that second processor will wait until the first completes. If, as expected,

up-calls form a small proportion of total process execution time then it might be

appropriate for the waiting processor to simply spin on a shared lock.
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The second option is that multiple  instances – that is, multiple instances of the

ThreadScheduler type – may be used across the processors. Concurrent up-calls

would be permitted to different  instances, consistent with the view that each

up-call conceptually acquires a lock on the target  instance. These instances would

have to co-operate through the usual facilities provided by the  in order to share

scheduling information. Each  would operate on a separate set of context slots and

blockThread and unblockThread notifications would be dispatched to the

 that currently has the indicated thread. The NativeScheduler class would

need to be extended to support the migration of context slot values from one  to

another. However it is anticipated that this migration would occur over relatively

long timescales in order to favour process-processor affinity.

In each case the summary information maintained by the  would need to be

extended to distinguish between Runnable processes (those that are eligible for

scheduling) from Running ones (those that are currently being executed on some

other processor).

Discussion7.8

This chapter has shown how application-controlled thread scheduling can be imple-

mented within the  architecture. The system here is able to achieve some of the

requirements identified in Section  in that it separates the implementation of the

scheduling policy from the application itself, thereby promoting policy reuse and

allowing policies to be changed independently from applications.

However, the design of Chapter  fits less well here than it did in Chapters 

and . This follows from the essentially centralized nature of thread scheduling: one

scheduler must be selected for the entire application, whereas decisions for run-time

compilation or storage management can be made on a much finer granularity.
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Chapter 8

Conclusion

This dissertation has presented an architecture for providing application-accessible

extensibility in a virtual machine and shown how this design may be realized in

implementation for three different problem domains. This final chapter summarises

the work undertaken and presents suggestions for future work that builds on it.

Summary8.1

Chapter  argued that existing s, by presenting high levels of abstraction from the

underlying hardware, favour program portability over application-specific optimiza-

tions. It presented the thesis that applications can benefit through lower-level control

of the resources and services that they use.

Chapter  described background work relating the development of s and the more

recent development of extensible operating systems. The former set out to clarify the

kind of environment within which the work described here was based. The relevance

of the latter came from the analogy with moving processing from an operating system

kernel into untrusted user-space code.





Chapter  surveyed related work and expanded on the rationale for the new work

in this dissertation. It described existing projects which exploit the flexibility that

conventional s offer and identified areas in which the limited extent of that

flexibility presents a barrier to the use of a  as a ubiquitous execution environment.

Chapter  introduced the proposed architecture for an extensible virtual machine.

A common framework was developed within which run-time compilation, memory

allocation and thread scheduling policies were taken as particular examples. In

outline, policies are defined in a general purpose programming language and are

implemented by making invocations on protected mechanism implementations that are

provided by the . A policy registry records the association between policies and

sections of the application.

Chapter  described the implementation of this infrastructure over the  as a

mechanism for defining application-specific policies to control run-time compilation.

The primary purpose of such a policy is to define which parts of the application

are compiled, when that compilation occurs and what kinds of optimization are

attempted.

Chapter  described the corresponding implementation of policies to support

application-specific memory allocation. In this case the policies may control where

objects are placed within the heap -- for example to cluster objects that are expected

to be used together.

Chapter  described the final area in which this dissertation investigated the use

of application-supplied policies. It showed the development of an application-level

thread scheduler with which an untrusted program may define the way in which its

threads are multiplexed over the s available to the .
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Future research8.2

The work presented in this dissertation highlights three problem domains over which

an application programmer may wish to exercise control. In each case the architecture

presented in Chapter  was specialized and implemented according to the particular

requirements of that domain -- for example according to the rate at which policy

decisions may be required, the inputs that a policy may be expected to use and the

safety considerations of the interfaces that have been exposed.

Work such as this presents numerous and obvious scope for extension to additional

policy domains.

Garbage collection8.2.1

Section . identified the selection of an appropriate garbage collection algorithm as

one of the ways in which system performance depended on application behaviour.

As with the discussion at the end of Chapter  regarding untrusted storage allocation

mechanisms, it is difficult to envisage how to provide application control on a

remotely fine-grained basis.

The examples shown there illustrated how type safety depended on preventing living

objects from premature reuse. In the case of storage allocation it was possible to use

linear object references to ensure that the untrusted algorithm did not allocate the

same memory on more than one occasion. Similarly, in the case of explicit storage

deallocation, the system must ensure that the object proposed for reuse is actually free.

Effectively, in order to deploy an untrusted implementation of a conventional garbage

collector, the system would require a separate trusted collector to operate in order

to confirm any deallocations made. There is, of course, also scope for investigating

other memory management schemes, such as the capability- and region-based system

proposed by Crary, Walker and Morrisett [Crary99].
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Current implementations of the  do provide a range of garbage collection

algorithms and mechanisms for selecting between them at the time the  is

started [Printezis01]. One possible extension to the storage allocation  from

Chapter  would be to investigate the use of different garbage collection algorithms

for different areas of the heap -- in much the same way as multi-generational collectors

may use one algorithm for managing newly-allocated objects and another for those

that have been tenured.

Pre-fetching data access8.2.2

Traditional s provided for / in programming languages provide operations either

to access buffers of data from within files or to treat the file as a sequential data stream

in which successive pieces of data may be accessed. The devices accessed through

these interfaces provide substantially different kinds of performance, depending both

on the underlying physical storage medium and on the success of caching.

It is sometimes possible to improve / performance by issuing appropriate pre-

fetching requests so that a data transfer is initiated before the resulting data is required.

However, this is hard to automate because good performance depends both on future

application behaviour and on device characteristics. Furthermore, for some devices

it is unsafe to use pre-fetching in case incorrect predictions have user-visible effects

such as failure indications for speculative access beyond the end of a file.

A  to control data pre-fetching could be based on receiving notification when the

application makes a file access. A possible implementation scheme would be to use a

bounded-size shared memory buffer for communication between the  and a thread

implementing the  -- this may be preferable to an up-call based interface because

it reduces policy-decision overhead on each application-made file access: pre-fetching

is only useful when  utilization is low.
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static Object o = new Object ();

public void run () {

while (true) {

synchronized (o) {

...

}

}

}

Figure 8.1: If multiple threads are instantiated from this code fragment then current s do not provide any

control over which threads will be able to acquire the mutual-exclusion lock on the single object referenced by o.

Lock acquisition order8.2.3

The mutual-exclusion locks provided by the  do not provide any form of

guarantee over which threads will be favoured for access. For example, Figure .

shows a code fragment which repeatedly acquires and releases a lock on an object.

If multiple threads execute this fragment then there is no way to ensure fair access

to the lock. Similarly there is no way to deliberately skew access in favour of some

thread. Although a programmer could manually implement a particular locking

scheme using condition variables and wait/notify operations, such an approach

is undesirable for a number of reasons. It is likely to incur a substantial penalty in

terms of execution time because the programmer must replicate data structures (such

as queues of waiting threads) within the application. It also entails modifying the

shared code and consequently requires that its source code be available.

The description of policies for lock acquisition order is therefore another candidate for

deploying the architecture presented in this dissertation. A reasonable approach may

be to follow the thread scheduling  of Chapter  in using run-time compilation

to inline the desired policy within particular implementations of lock/unlock

operations.
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