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ABSTRACT

In a generational garbage collector, a pre-tenured object is
one that is allocated directly in the old generation. Pre-
tenuring long-lived objects reduces the number of times that
they are scanned or copied during garbage collection. Pre-
vious work has investigated pre-tenuring based on off-line
analysis of execution traces. This paper builds on that work
by presenting a dynamic technique in which the decision to
pre-tenure a particular kind of object is taken at run-time.
This allows decisions to depend on the inputs of a particular
application run and also allows decisions to be changed as
the application enters different phases. An implementation
is presented for the ResearchVM Java Virtual Machine.

1. INTRODUCTION

Generational collection is a popular technique which aims
to improve the performance of a garbage collected heap [3].
Objects within the heap are divided into two or more gener-
ations according to the elapsed time since their allocation®.
In the simplest case there are only two generations termed
young and old. The young generation is subject to more fre-
quent garbage collection than the old generation. Objects
are allocated into the young generation and subsequently
tenured into the old generation if they survive longer than
some threshold.

Such a scheme is effective because many objects are short-
lived and so it is worthwhile concentrating on the young
objects (which are likely to die) rather than on the older ob-
jects (which are likely to continue to survive). The fact that
many objects die young makes it common to use a copying
collector for the young generation: work is only performed
copying the few objects that survive. Each generation is
typically held in a separate part of the heap. This allows

'As is customary, all references to time, ages, older or
younger are in terms of an allocation clock (measuring the
total volume of objects allocated since the program started)
rather than a wall clock (measuring elapsed real time)

them to be managed by different garbage collectors and by
different allocation policies. The physical separation means
that an object must be copied when it is tenured. Con-
sequently, long-lived objects are often copied several times
before they come to rest in the old generation. Pre-tenured
allocation avoids some of this copying.

There are other reasons why pre-tenuring may be desirable.
Firstly, the decreased volume of allocation in the young gen-
eration may reduce the number of times that that region
must be collected. Secondly, if non-copying collectors are
used, then pre-tenuring may reduce fragmentation in the
young generation. Thirdly, reducing the number of differ-
ent locations occupied by long-lived objects may improve
temporal locality of reference. Finally, in the current im-
plementation, it is more efficient to allocate an object di-
rectly into the old generation rather than to copy it there.
This is because the allocation function may be specialized
according to the size of the object, allowing a useful opti-
mization when manipulating the data structure for tracking
inter-generational references.

This paper describes a technique which aims to improve the
handling of long-lived objects in a two-generation system.
In particular, it aims to predict when an object will be long-
lived and to pre-tenure such objects by allocating them di-
rectly into the old generation. Unlike previous work, de-
scribed in Section 2, we decide when to pre-tenure objects
based on dynamic feedback using statistics gathered dur-
ing the current run of an application. This avoids the need
for a separate profile-gathering phase. It also allows pre-
tenuring decisions to be changed during execution if the
application moves between phases exhibiting different be-
havior. Section 3 illustrates the extent to which different
statistics, available at object allocation time, may serve as
predictors of the object becoming long-lived.

The implementation comprises two modules. The first is
concerned with object sampling. It gathers lifetime statistics
from a subset of the objects allocated. The second processes
these statistics to select which kinds of object should be pre-
tenured. It makes these pre-tenuring decisions by patching
the code generated by a just-in-time compiler. These two
modules are described in Sections 4 and 5 respectively.

Section 6 presents results from a number of widely-used
benchmark applications. Finally, Section 7 describes future
work and conclusions.



This paper makes two main contributions. Firstly, it uses
dynamic feedback within a single run of an application. Do-
ing so places a new emphasis on efficiently gathering statis-
tics on object lifetimes. Secondly, it allows pre-tenuring
decisions to be reversed and subsequently re-enabled as a
program executes. As shown in Section 4, this uses a novel
technique for identifying when an object allocated in the old
generation is short lived.

2. RELATED WORK

Previous work has investigated feedback-based techniques
for segregating long-lived and short-lived objects.

Barrett and Zorn attempt to predict short-lived objects in a
number of allocation-intensive applications written in C [1].
They use profile-driven full-run feedback based on observed
object lifetimes. Their motivation is to reduce the fragmen-
tation caused by long-lived objects scattered throughout the
heap. They are also able to reduce the cost of allocating
short-lived objects by placing them contiguously and delay-
ing deallocation until entire 4k batches become free.

They attempt to correlate short object lifetimes with the
most recent n return addresses on the execution stack. They
found that there is typically an abrupt step in the effective-
ness of prediction when n reaches some critical value. These
critical values varied between applications, but were usually
not greater than 4.

The effect of using these predictions was evaluated through
simulation using allocation traces. Each entry in the traces
contained an identifier representing the object size and the
complete call-chain to the allocation site. They estimate
that the cost of computing a reasonable approximation to
such an identifier may be between 9 and 94 RISC-style in-
structions for each memory allocation made. Such an over-
head is, perhaps, reasonable for a free-list based allocator
from the libc library. However, the fast-path of the ex-
isting allocator in the ResearchVM uses only 9 SPARC in-
structions and so even the best-case overhead of a further 9
instructions appears unsatistactory.

Seidl and Zorn propose dividing the heap into a number of
sections based on reference behavior and object lifetime [6].
They identify four kinds of object: highly referenced objects
that are accessed frequently, non-highly referenced objects
that are accessed infrequently, short-lived objects that are
de-allocated soon after they are created and other objects
which form the remainder of the heap. These divisions are
designed to improve the program’s usage of virtual mem-
ory pages. Their intuition is as follows: highly referenced
objects should be densely packed together so that the pages
they occupy will form part of the working set of the program,
non-highly referenced objects should also be held with one
another but segregated from other kinds of object, in the
hope that the pages they occupy will not form part of the
working set. Short-lived objects should also be held sepa-
rately from the rest of the heap in order to avoid fragmen-
tation in the remainder of the heap.

Seidl and Zorn’s work used trace-driven full-run feedback to
gather statistics about a number of large C applications, in-
cluding AWK, PostScript and Perl interpreters. They iden-

tified two effective techniques for predicting, at allocation
time, into which category an object should be placed:

e The path point predictor assumes that there is a high
correlation between certain call sites in a program and
the behavior of objects allocated in procedures ‘below’
these sites in the dynamic call graph. The intuition is
that there are certain significant points at which the
program changes between generating different kinds of
object.

e The stack contents predictor uses a subset of the call
chain at the time of allocation as a predictor of object
behavior. For example it may consider the most recent
n return addresses, for small values of n such as 3. In
previous work the authors showed that this was effec-
tive for programs written in C++ because a few stack
frames were sufficient to disambiguate allocations oc-
curring in common functions, such as object construc-
tors, or malloc-wrappers, that are invoked throughout
the application [5].

Cheng, Harper and Lee describe profile-based pre-tenuring
in the TIL compiler for Standard ML [2]. They identify
allocation sites by their program counter — this is perhaps
more effective in the context of ML rather than C because it
is not customary for allocations to be made through layers
of wrapper functions.

Cheng et al do not comment on whether the effectiveness
of pre-tenuring is influenced by the usage patterns of heap-
allocated data in functional languages (illustrated, for exam-
ple, in Stefanovi¢ and Moss’ analysis based on SML/NJ [7]).
The major differences observed are a higher rate of allocat-
ing data records and a reduced rate of updates to existing
data. However, it is unclear whether these language-level
differences in the manipulation of data structures will be re-
flected in the native code generated by an optimizing com-
piler.

3. STATISTICS

The related work shows how information available at the
time of an object’s allocation can serve to predict its lifetime.
However we believe that this paper is the first to consider
profile-driven allocation in the context of an object-oriented
language with automatic storage management. This section
analyses the behavior of a number of popular benchmarks
in order to confirm that typical programs executed over the
Java Virtual Machine (JVM) [4] exhibit similar behavior to
those studied in other systems. We will start by present-
ing a number of reasons why object allocation may exhibit
different characteristics in this environment?.

Suppose that MethodA in ClassA wishes to create a new in-
stance of ClassB. This is typically achieved using the fol-
lowing bytecode sequence:

2 Activation records are allocated automatically as part of
each method invocation. They are not stored in the garbage
collected heap and their management is not discussed fur-
ther in this paper.



0: new <Class ClassB>
3: dup
4: invokespecial <Method ClassB.<init>()V>

There are two important steps to this process. The first, im-
plemented by the new bytecode, is to allocate storage space
in which to hold the new instance of ClassB. The second,
implemented by the invokespecial bytecode, is to call a
constructor of the desired class on the newly created space.
In C-like terminology, the new instruction is the equivalent
of a call to malloc while the invokespecial instruction cor-
responds to a call to some initialization function. Any par-
ticular new instruction allocates instances of only one par-
ticular class. Further bytecodes, newarray, anewarray and
multianewarray are provided for instantiating arrays.

The separation of these two steps is significant to the present
discussion because it means that the allocation occurs in
the method creating the instance rather than in the im-
plementation of the constructor. An observation in much
of the related work is that multiple stack frames of alloca-
tion context may be required to reach the method, in this
case ClassA.MethodA, that is ‘really’ making the allocation.
This is because it is common, in C, for programmers to em-
ploy wrappers around the malloc function. This style of
programming cannot be implemented cleanly over the JVM
because it would require each use of the new bytecode to
be changed into a method invocation. In practice, how-
ever, the common uses of malloc-wrappers are subsumed
by the strong typing provided by the JVM and by the use
of run-time exceptions for indicating out-of-memory condi-
tions. These reasons suggest that fewer frames of allocation
context may be required in the case of the JVM. Cheng et al
similarly observed that a single program counter value was
effective at separated allocation sites generating long-lived
and short-lived objects in the TIL compiler for Standard
ML [2].

Of course, there are programs which intuitively appear to
benefit from more information than is provided at a sin-
gle static allocation site. For example, suppose that each
constructor of ClassB allocates an instance of ClassC and
stores the only reference to this in a private field. If the life-
time of an instance of ClassB may be accurately predicted
with a single stack frame of context then the lifetime of an
instance of ClassC would be predictable using two stack
frames of context.

As a concrete example, consider an implementation of java.
util.Hashtable. Each instance of Hashtable contains a ref-
erence to an array of references to java.util.Hashtable.
Entry. Each instance of Entry represents one of the key-
value pairs that is stored in the hashtable. The array of refer-
ences to entries is allocated in the constructor of Hashtable.
The entries themselves are initially allocated when new key-
value pairs are stored in the Hashtable.put method. If
the number of entries reaches a threshold size then a sec-
ond method, Hashtable.rehash is used to relocate the en-
tries to a new array. The array of references to entries may
therefore grow many times during the lifetime of the table.
Three stack frames of context would be required to associate
each re-allocation with the method that originally invoked
Hashtable.put.
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Figure 1: Best-case (left) and worst-case (right)
mappings of objects to categories. In each case a
total of 25% of objects were tenured, as shown by
the fact that the area under each curve is 0.25. The
best-case mapping separates objects into two kinds
of categories: those containing only tenured objects
and those containing only non-tenured objects. The
worst-case creates a single kind of category, contain-
ing a mix of tenured and non-tenured objects.

3.1 Object lifetime in benchmark applications
In order to study the effectiveness of different levels of con-
textual information we instrumented the ResearchVM to
record object allocation and lifetime. An object’s lifetime
was considered to extend until the space it occupies was re-
claimed by the garbage collector. For each object allocated
by the application under test, the VM logged the class of
the object, the last 5 methods at the allocation site, each
time the object was re-located during execution, the even-
tual time at which the object was de-allocated and if, at that
time, the object had been promoted to the old generation.

These statistics were used to evaluate the effectiveness of
various prediction techniques. Each candidate predictor is
considered as a mapping from the allocation trace infor-
mation onto a number of categories. An optimal predic-
tor would divide objects into two categories: the first cat-
egory containing only tenured objects and the second cate-
gory containing only non-tenured objects. Conversely, the
worst-case predictor would use only a single large category,
containing all of the objects that have been allocated.

Figure 1 illustrates the format in which we shall present
the results gathered from these traces. In these plots the
categories are placed, from left to right, in decreasing order
of the proportion of tenured objects that they contain. For
example, the categories at the extreme left will contain only
tenured objects while the categories at the extreme right
will contain only non-tenured objects. The x-axis indicates
the proportion of all objects which occur in categories up to
that point. The y-axis indicates the proportion of tenured
objects in each category. Note that the area under such a
curve is constant for any application trace: it represents the
total proportion of all objects that have been tenured.

Figures 2 and 3 show the results for the javac and ellisgc
benchmarks.

The javac benchmark allocates 6.2 x 10% objects, of which
28% become tenured. Class alone seems to be a reason-
ably good predictor. 25% of the objects allocated during
the experiment belong to classes of which at least 85% of
the instances became tenured. Notable among these were
the subclasses of _213_javac.Node used to represent the



AST in the compiler. A single frame of allocation con-
text distinguishes most tenured and non-tenured instances of
java.util.Hashtable and java.util.Vector. Two frames
distinguish most of the arrays-of-object used to contain the
elements in a Vector (allocated in the constructor) and three
frames distinguish the expanded arrays allocated upon over-
flow. There is little additional benefit from considering more
frames.

The ellisgc program is a synthetic benchmark that per-
forms extensive memory allocation. It operates in three
phases. The first phase allocates a large binary tree in or-
der to ‘stretch’ the heap and avoid subsequent changes to
its size. This structure becomes unreachable at the end of
the first phase. The second phase allocates a further tree
which remains reachable throughout the benchmark. The
third phase allocates a number of smaller short-lived binary
trees which become unreachable as soon as each is built.

Although this behavior seems quite different from that of
a reasonable application, the results shown in Figure 3 do
illustrate an important point. The simulated optimal predic-
tor shows that around 65% of objects become tenured. How-
ever, none of the predictors using 1-5 frames of stack context
is able to provide significantly useful results. The reason for
this is that the binary trees are allocated recursively and
so, aside from trivially small sizes, the top 5 frames are all
recursive invocations of the binary-tree-node constructor.

Barrett and Zorn’s call-chain predictor trims the run-time
stack by removing cycles of recursive function invocations [1].
Such a predictor would be effective for ellisgc because 2
frames of context from such a trimmed stack would separate
the method invocations used to trigger the three benchmark
phases. One of the possible implementation techniques that
they present is to update a global ‘current allocation site’
identifier by XORing it with a per-function identifier on each
function call or return. These identifiers may be assigned by
static call-graph analysis. As described in Section 2, even
the best-case overhead of this technique appears to render it
unsuitable for use in the ResearchVM. However, it is inter-
esting to note that the XORing mechanism has the effect of
generating only two different allocation site identifiers dur-
ing deeply recursive invocations. The paper is not clear
whether this is deliberate, or whether the primary motiva-
tion for using XOR is to simplify recovery of the previous
allocation site identifier when a function returns.

Other benchmarks, such as compress from the SPEC JVM98
suite, exhibit low proportions of tenured objects — typically
Strings and arrays-of-char allocated from sites during ini-
tialization of the JVM and of the test harness.

3.2 Information to use at run-time

The results presented in the previous section illustrate that
although an object’s class is a reasonable predictor of its
lifetime, the most recent few methods at its allocation site
improve the accuracy of the predictions made. In our im-
plementation, presented in Sections 4 and 5, we chose to use
a single frame as contextual information. That is, we cate-
gorize objects on the basis of their class and of the program
counter at the place at which the new bytecode instruction
occurs.

This decision is motivated by implementation efficiency in
general and by the desire to avoid any overhead on fast-path
non-pre-tenured allocations. This clearly precludes updat-
ing any form of allocation site identifier on every method
invocation. However, less clearly, it makes it impractica-
ble to use even two frames of allocation context. This is
because the method containing the new instruction would
have to determine its caller at allocation time and then dis-
tinguish callers which should trigger pre-tenured allocation
and callers which should not. In contrast, if decisions are
based on a single frame of allocation context, then a pre-
tenured allocation may be implemented simply by changing
the way in which a particular occurrence of the new bytecode
is compiled.

However, note that method inlining performed at run-time
by the native-code generator may allow the single program
counter value to reflect a number of ‘virtual’ stack frames.
In particular the semantics of the invokespecial bytecode
often enable nested constructors to be inlined.

4. SAMPLING OBJECTS

This section describes the technique used for sampling ob-
jects at run-time in order to estimate their lifetimes. The
aim is to determine, for a hopefully representative subset
of objects, which allocation sites produce objects that are
predominantly tenured. We require some mechanism for as-
sociating an allocation site with an object while it remains
alive and then detecting, when an object becomes unreach-
able, whether it was tenured or whether it remained in the
young generation.

A two-level approach is taken in the ResearchVM to allocat-
ing normal objects the young generation copying collector.
Most allocations are satisfied by sequentially placing objects
within local allocation buffers (LABs)®. Each thread has a
separate LAB, so an allocation is essentially implemented
by incrementing a thread-local pointer. The complete code,
including checks for LAB overflow, is only 9 SPARC assem-
bly language instructions. Specialized allocation functions
are used for small object sizes. If an allocation fails because
it would cause the current LAB to overflow then a new LAB
is obtained from the second level allocator. The implemen-
tation of the second-level allocator is similar, except that
LABs are allocated from a shared stretch of memory using
an atomic CAS operation. A young generation garbage col-
lection occurs whenever the space used by the second-level
allocator is exhausted.

4.1 Selecting objects on LAB overflow
Object sampling is implemented as part of the LAB overflow
handler.

Although this avoids any change to the allocation fast-path
it is not clear that it produces a representative selection of
objects to sample. This is because, in general, larger ob-
jects are more likely to cause a LAB overflow than smaller
objects. This skew is quite apparent when looking at bench-

30bjects created through reflection or through the clone
method are allocated in the young generation using separate
functions. Very large allocations occur directly in the old
generation.
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Figure 3: ellisgc synthetic benchmark with a high allocation rate.



mark statistics. For example in javac 26% of all objects al-
located are arrays-of-char, but they account for 40% of the
allocations selected by LAB overflows.

A number of alternative schemes were considered to reduce
this skew. The LAB overflow handler could cause the sam-
pling of the next object to be allocated. This could be
implemented by leaving the allocation pointer ‘broken’ so
as to cause the LAB overflow handler to be re-entered on
the next allocation. However, in the case of javac, this
changes the skew rather than avoids it. This is because
the arrays-of-char were typically allocated while manipulat-
ing text and the subsequent allocation is frequently an in-
stance of java.lang.String. More generally, the first-level
allocator could select the request n after the genuine over-
flow. This qualitatively reduces the skew, but it is less clear
whether that benefit is balanced by the need to make n + 1
non-fast-path allocations.

However, after comparing each of these candidate schemes
using full-run allocation traces, it appears that the skew in-
troduced is not an important problem. Although it leads
to certain kinds of object being sampled more frequently,
it does not distort the proportion of tenured objects which
occur in each category. The simple scheme, sampling each
object allocated from the LAB overflow handler, was there-
fore implemented.

4.2 Sampling objects in the young generation
As mentioned in the introduction to this section, some mech-
anism is needed to allow:

e a sampled object’s allocation site to be associated with
that object during its lifetime,

e this information to be accessed when the object be-
comes tenured or when it is reclaimed by the garbage
collector.

The approach taken allows sampled objects to be held in
the same run-time format as ordinary objects and avoids
any overhead when tenuring or reclaiming non-sampled ob-
jects. The technique, termed object fingerprinting, is more
generally applicable — it is deployed here to store allocation-
time information for particular objects.

An auxiliary data structure, separate from the main garbage-
collected heap, contains per-instance information for each
object being sampled. This information consists of two fields
— the memory address of the object’s allocation site and a
weak root that refers to the object. The garbage collec-
tor makes a series of callbacks after each collection cycle, at
which point the referents of the weak roots may be examined
in order to determine whether the sampled objects remain
in the young generation, whether they have been tenured or
whether they have become unreachable.

As with the weak reference objects (java.lang.ref.Weak
Reference) available from the Java programming language,
the existence of a weak root referring to a particular object
is not considered by the garbage collector when establishing
which objects are reachable. Weak roots for object sampling

are conceptually weaker than any of the kinds of reference
that a user may create within their program, or that that
ResearchVM employs internally for other reasons.

Figure 4 shows how the data structure is organized. The per-
sampled-object information is held in chunks. Each chunk
contains an age field, an occupancy field and a number of
slots. Each slot is either empty or contains information
about a sampled object. Each thread is associated with
a current chunk and, when allocating a sampled object, it
records the allocation site and new object reference in the
next slot. The chunks are held in a linked list.

The occupancy field logically contains a count of the number
of non-empty slots. However, in order to avoid updating it
whenever a sampled object is allocated, the value actually
recorded in a current chunk is offset by the number of empty
slots beyond the nezt slot. The age field contains the time
at which the chunk became a current chunk. The use of this
value will be described below in Section 4.3.

The data structure is traversed as part of each garbage col-
lection. Each sampled object is examined. If the object
has been retained by the copying young generation collector
then the weak root is updated to refer to the new location
of the object. If the object has been marked unreachable by
the collector then the weak root is cleared, the occupancy of
the chunk is decremented and the count of non-tenured ob-
jects for that category is incremented. If the object has been
promoted by the young generation collector then the weak
root is also cleared, the occupancy of the chunk is decre-
mented and the count of tenured objects for that category
is incremented. A chunk is removed from the list of active
chunks when its occupancy falls below a threshold level.

Per-category information is held in a hash table indexed by a
combination of the object’s class and the allocation site pro-
gram counter. Section 5 will describe how this information
is used to reach pre-tenuring decisions.

4.3 Sampling objects in the old generation
The scheme described in the previous section gathers statis-
tics about the proportion of tenured objects within the young
generation. This information is insufficient for implementing
an effective dynamic pre-tenuring system.

For example, the first phase of the ellisgc benchmark al-
locates a large binary tree in order to ‘stretch’ the heap
to an appropriate size for the remainder of the benchmark.
Many of the objects allocated during that phase will become
tenured, particularly if the size of the young generation is
initially small. The same allocation sites are used during
the final phase when allocating short-lived data structures.
It would therefore be unfortunate if an irreversible decision
to pre-tenure was taken on the basis of the first phase.

This problem occurs to a lesser extent in systems based
on full-run feedback because they would consider allocation
from all three phases together. The benchmark allocates
a substantial volume of objects during the third phase and
these would ‘dilute’ the tenured objects allocated during the
first two phases. Allowing pre-tenuring decisions to be re-
versed may turn this problem into an advantage: objects are
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Figure 4: Run-time data structures used for object sampling. The Active and Free fields, on the far left, are
global variables which identify the heads of linked lists.

implicitly categorized according to allocation time as well as
allocation site.

Suppose however that the scheme described in Section 4.2
were to be applied to pre-tenured objects. When an object
has already been pre-tenured, there is no clear analogue for
promotion from the old generation. Objects could be classi-
fied as short-lived or long-lived depending on whether they
have survived a single old generation collection.

However, that is unsatisfactory because old generation col-
lection cycles are infrequent — even an object that dies before
the end of its first old generation collection may have sur-
vived for comparable young-generation-allocated objects to
have been tenured. Furthermore, the long intervals between
old generation collections could mean that a large number
of chunks are required to track all of the sampled objects.

One tempting approach is to allocate sampled pre-tenured
objects into the young generation. This would make them
subject to frequent garbage collection and would allow them
to be handled in the same way as regular sampled objects.
However, consider again the binary trees allocated during
the ellisgc benchmark. The tree structure means that all
nodes other than the root are referenced from a parent in the
tree. Whenever a pre-tenured node is sampled then although
that node would be allocated in the young generation, its
parent would generally be allocated in the old generation.
This old-to-young reference would exist until the parent is
reclaimed. As before, the infrequency of old generation col-
lections would preserve the sampled objects.

Instead, the implemented approach samples objects directly
in the old generation but exercises caution over which sam-
ples are considered representative. The system maintains a
current tenuring age, that is, an estimate of the time be-
tween the allocation of an object and its subsequent tenur-
ing. Sampled pre-tenured objects are held in a separate
list of chunks to regular sampled objects. The pre-tenured
chunks are examined after every collection. Any dead ob-
jects in chunks younger than the tenuring age are deemed
to have been short-lived. Any live objects in chunks older
than the tenuring age are deemed to have been long-lived.

The tenuring age is updated after every young generation
collection. It is calculated as a rolling average of the ages of
chunks containing objects that have just been tenured.

5. PRE-TENURING

The previous section described how we gather statistics about
the proportion of short-lived and long-lived objects within
each category. This section describes how these are used to
decide when to pre-tenure a particular category of object
and how these decisions are implemented.

In common with the work of Cheng et al we use a sim-
ple threshold-based scheme to trigger pre-tenured allocation.
This is controlled by two parameters. The first specifies a
minimum number of sampled objects within a category and
the second specifies a proportion of these objects which must
have been long lived.

The minimum object count is used to avoid basing a de-
cision to pre-tenure object allocation on atypical behavior
during initialization or before many sampled objects have
been observed. The per-category counts of long-lived and
short-lived objects are halved whenever more than twice the
minimum number of sampled objects have been observed.
This avoids special handling of arithmetic overflow and aids
the detection of application phase changes.

Separate thresholds are used to decide when to reverse a de-
cision to pre-tenure a category of object. By default these
are equal to the parameters to trigger pre-tenuring. How-
ever, it may be the case that some applications benefit from
setting different thresholds — for example to prevent un-
wanted oscillation between regular and pre-tenured alloca-
tion.

In general, binary patching is used to implement decisions
to start or to stop pre-tenuring a particular category of ob-
ject. Each category is identified by the memory address of
the invocation of an allocation function. The style of al-
location used may be modified by changing the target of
this invocation. Such updates occur when mutator threads
are already suspended for garbage collection (although, on
many systems, an update could be performed by a single
atomic write instruction).

We do not attempt to pre-tenure objects allocated from in-
terpreted code. This is because the ResearchVM executes
most code using a fast non-optimizing compiler and any sig-
nificant allocation site will be compiled. Pre-tenuring de-
cisions are recorded in per-method structures for use if a
method is re-compiled.



Before After

Young generation GC  Total time/ms 3486 3177
Count 255 229

Mean duration/ms 13.7 139

Old generation GC  Total time/ms 2072 2058
Count 10 10

Mean duration/ms 207 206

Total GC Total time/ms 5560 5236

Count 265 239

Mean duration/ms 21.0 219

Heap size Total/Mb 17 17

Free at last GC 3% 6%

Run-time Total/s 30.39 30.25

Figure 5: The performance of the javac benchmark
with dynamic pre-tenuring disabled (left) and en-
abled (right).

6. RESULTS

It is difficult to provide a fair comparison between the per-
formance of the VM when dynamic pre-tenuring is enabled
and the performance when it is disabled.

As described in the introduction, pre-tenured allocation may
reduce the number of times that objects are relocated. How-
ever, this goal can be trivially achieved by increasing the size
of the heap and thereby reducing the frequency of garbage
collections. Other metrics may also provide a false impres-
sion of the effect of the technique. For example, although
effective pre-tenured allocation may be expected to reduce
the number of young generation collections, naive overly-
enthusiastic pre-tenuring would have a similar effect. It is
therefore necessary to examine a set of metrics to determine
the overall impact on application performance.

Figure 5 illustrates the effect that dynamic pre-tenuring has
on the performance of the javac benchmark. The bench-
mark ran using a 1Mb young generation and 16Mb old gen-
eration. The size of both generations was fixed so that the
total memory footprint of the VM was the same in each case.
The young generation was managed by a copying collector
using separate semispaces. The old generation was managed
using a mark-compact collector.

Pre-tenured allocation was enabled for categories containing
at least 95% long-lived objects and at least 100 sampled
objects. The same threshold was set for reverting to young
generation allocation, although no such decisions were made
during the javac benchmark.

Dynamic pre-tenuring has a marked effect on young genera-
tion garbage collection. The number of collections is reduced
by 11%. The total time spent in young generation collection
is reduced by 9%. There is a slight improvement but, more
importantly, no degradation in the number of old generation
collections or the total time that they take. There is a 6%
reduction in the time spent in garbage collection. Garbage
collection as a whole accounts for 17% of the benchmark
execution time and so the reduction translates to a slight
overall improvement of 0.5%.

Figure 6 shows a summary of the results for a number of
the benchmarks. The list omits benchmarks during which
fewer than 10 garbage collections occurred. As before the
JVM was configured to use a 1Mb young generation and a
16Mb old generation. The size of the young generation was
fixed. The size of the old generation was allowed to expand
up to 64Mb. However, the heuristics used to control heap
expansion did not choose to enlarge the heap.

The four charts illustrate, clockwise from top-left, how dy-
namic pre-tenuring affects the reported result of the bench-
mark, the garbage collection time, old generation collection
time and young generation collection time. Three bars are
plotted for each benchmark on each chart. These corre-
spond, from left to right, to the original performance, the
performance without application phase detection and the
performance with application phase detection. The bars ex-
tend between the minimum and maximum values obtained
from five invocations of each test. The point marked is the
arithmetic mean of the five values. These have been nor-
malized so that the original performance is 1. In each case
higher values indicate worse performance.

The compress, jess, cst, db, anagram and javac bench-
marks all exhibit a clear reduction in overall execution time
when using dynamic pre-tenuring. The performance of the
raytrace and gcbench tests are clearly degraded.

The behavior of gcbench is particularly interesting. It is
a shorter-running variant of the ellisgc benchmark and
exhibits the same three-phase operation described in Sec-
tion 3.1. Without phase detection, the total time spent in
young generation collection is reduced to 7% of the original
value. This is because the behavior observed during the first
phase of the benchmark causes all subsequent allocations to
be made into the old generation — a decision which causes
the total time spent in old generation collection to increase
by a factor of over 100 and the total execution time by a fac-
tor of 2.9. Phase detection ameliorates this in the gcbench
test by reverting to young generation allocation: resulting
in an overall degradation by a factor of between 1.18 and
1.25.

During the javac benchmark, 6.2 * 10° objects were allo-
cated. 7.7 x 10* were sampled. During the total run-time
of 30.4s, 57ms was spent examining the chunks contain-
ing sampled objects and 3ms was spent examining the per-
category information to select when to change object allo-
cation strategy. Twenty five allocation sites were selected
for pre-tenured allocation. These were within the subclasses
of ConstantPoolData, subclasses of Node, or arrays of such
classes. The pre-tenured allocation sites occurred within the
methods of Parser and ConstantPool. These 25 allocation
sites generated 1.0 x 10° pre-tenured objects, comprising
16% of those allocated overall. A total of 41 chunk struc-
tures were allocated, occupying 22k of memory at run time.
The per-category information occupied a further 40k.

7. CONCLUSION

The results shown in this paper indicate that, for many
benchmarks, it is practicable and worthwhile to employ dy-
namic pre-tenuring. We showed in Section 3 that it is pos-
sible to predict the lifetime of many objects at the point
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of their allocation. The techniques presented in Sections 4
and 5 allow such predictions to be made with low overhead at
run-time, in terms of both time and space. The results of the
previous section show that an overall reduction in execution
time can be achieved, even when deploying the techniques
in a garbage collection system that has already been sub-
ject to extensive optimization. Using application phase de-
tection reduces the worst-case performance for benchmarks
where dynamic pre-tenuring is not effective. It is addition-
ally worth noting that the total run times of many of the
benchmarks are less than 30 seconds: these short run times
provide a particularly harsh environment in which to obtain
overall improvements using dynamic feedback.

Widely reported server-side Java benchmarks, such as the
Volano test application, are designed to stress I/O and multi-
threading performance within the JVM rather than storage
management. It will be interesting to re-evaluate dynamic
pre-tenuring when more suitable benchmarks are available
and, in particular, to quantify the extent to which phase de-
tection enables opportunities for optimized allocation that
cannot be realized through off-line analysis.

There are a number of additional possibilities for future
work. A first option is to investigate a system with more
than two generations. This would require a richer set of
statistics to be gathered because objects could no long be
classified as simply tenured or non-tenured. It may be pos-
sible to select an allocation generation based on both the ex-
pected lifetime and on the variance between the sampled ob-
jects. A second promising possibility is to base pre-tenuring
decisions on coarser information than the object class and
allocation site. Observe, from the javac benchmark, that
the classes which become pre-tenured are closely related in
the inheritance hierarchy. It may be possible to identify a
common supertype (possibly an abstract class or an inter-
face) and to share sampling information between all of its
subtypes.

A further alternative would be to base allocation-time de-
cisions on a combination of the class being instantiated, a
single frame of allocation context and also on the allocation
site of the this reference at its point of allocation. The intu-
ition is that considering this would allow properties to de-
pend on objects in addition to allocation sites. For example
the put method on hashtable could allocate buckets differ-
ently when invoked on a predicted-long-lived hashtable from
when invoked on a predicted-short-lived table. A straight-
forward implementation of this behavior may be possible by
providing multiple virtual method tables per class and, for
a particular instance, selecting between these at allocation
time based on the predicted behavior of that instance.

However, it is less clear whether the information needed to
trigger such decisions could be gathered effectively in a sys-
tem based on dynamic feedback. This is because, in opti-
mized native code generated from Java bytecode, the this
reference may not be in a well-known location — in some
methods it may even have been removed as a dead value. It
would, perhaps, be more appropriate to implement such a
scheme using full-run feedback in which the profile-gathering
phase could operate with relevant optimizations disabled.

8. ACKNOWLEDGMENTS

The work described in this paper was carried out during an
internship with the Java Technology Research Group at Sun
Labs. The idea of tracking objects through weak roots was
suggested by Ole Agesen and Alex Garthwaite. In addition
to Ole and Alex I am indebted to Dave Detlefs, Christine
Flood, Steve Heller, Nir Shavit and Guy Steele for mak-
ing my time at Sun so enjoyable and worthwhile. For their
help in the preparation of this paper I'd also like to thank
Steven Hand, Richard Mortier and Ian Pratt from the Uni-
versity of Cambridge Computer Laboratory and, of course,
the anonymous reviewers for their insightful comments.

9. REFERENCES

[1] D. A. Barrett and B. G. Zorn. Using lifetime predictors
to improve memory allocation performance. ACM
SIGPLAN Notices, 28(6):187-196, June 1993.

[2] P. Cheng, R. Harper, and P. Lee. Generational stack
collection and profile-driven pretenuring. ACM
SIGPLAN Notices, 33(5):162-173, May 1998.

[3] R. Jones and R. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. John
Wiley and Sons, July 1996.

[4] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. The Java Series. Addison-Wesley,
Reading, MA, USA, Jan. 1997.

[6] M. L. Seidl and B. G. Zorn. Predicting references to
dynamically allocated objects. Technical Report
CU-CS-826-97, Department of Computer Science,
University of Colorado, Boulder, Jan. 1997.

[6] M. L. Seidl and B. G. Zorn. Segregating heap objects
by reference behavior and lifetime. ACM SIGPLAN
Notices, 33(11):12-23, Nov. 1998.

[7] D. Stefanovi¢ and J. E. B. Moss. Characterisation of
object behaviour in Standard ML of New Jersey. In
Conference Record of the 1994 ACM Symposium on
Lisp and Functional Programming, pages 43-54. ACM
Press, June 1994.



