

Tim Harris

11 October 2017

Benchmarking Concurrent
Data Structures
(or: “Do these numbers mean
what you think they mean?”)

2

The following is intended to provide some insight into a line of research in Oracle Labs. It is intended for

information purposes only, and may not be incorporated into any contract. It is not a commitment to

deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions.

Oracle reserves the right to alter its development plans and practices at any time, and the development,

release, and timing of any features or functionality described in connection with any Oracle product or

service remains at the sole discretion of Oracle. Any views expressed in this presentation are my own and

do not necessarily reflect the views of Oracle.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Why do we care about perf evaluation?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Why do we care about perf evaluation?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Why do we care about perf evaluation?

• How does a new algorithm compare with alternatives?

– Is it better?

–When is it better?
• Faster without contention?

• Higher throughput under contention?

• Lower tail latencies?

• Improved characteristics e.g. plateau rather than fall off as load rises?

– Are there surprises?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Why do we care about perf evaluation?

• Why does it perform as it does?

– Can we explain the trends seen?

– Can we relate them to design choices in the algorithm?

–What can we learn about designing other algorithms?

–What hypotheses can we form to test (disprove!) our explanation?

Most of the talk is about this point. What kinds of
experiments can we run to show ourselves and demonstrate
to others that a perf improvement is due to some aspects of

our work?

Overview

1

2

3

Understanding simple cases

Exploring performance trends

Sound experimental practices

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

“A pragmatic implementation of non-blocking linked lists”, Tim Harris, DISC 2001

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

• How much work to do?

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

Long runsShort runs

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

• How much work to do?

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

Long runsShort runs

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

• How much work to do?

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

Long runsShort runs

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Too much??

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Starting and stopping work

• How much work to do?

Too little: results
dominated by start-up
effects. Normalized
metrics vary as you
vary the duration.

Long runsShort runs

OK: results not
sensitive to the exact
choice of settings.
Confirm this: double /
halve duration with no
change.

Too much??

Deters experimentation if turnaround
time is long (e.g. >> overnight)

Harder to separate resource re-use
policy from the rest of the expt.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Constant load

• Fixed number of threads active

– E.g., data structure micro-benchmarks

– Look at how the structure under test behaves under varying loads

• Keep all threads active throughout experiment. Typically:
– Create threads

– Perform warm-up work in each thread

– Barrier

– Actual measurement interval

–Main thread signals request to exit to others

• Investigate and report differences in actual work completed by threads

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Constant work

• Fixed amount of work to perform

– Share it among a set of threads – e.g., OpenMP parallel loop

– Aim to use threads to complete the work more quickly

–Measure from when the work is started until when it is all complete

• Show results for

– Strong scaling: same amount of work as you vary the number of threads

–Weak scaling: increase the work proportional to the threads

• Investigate and report differences in
– Load imbalance (do threads finish early?)

– Actual amount of work completed by threads (do some threads work faster?)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Lightweight correctness checks

• Be skeptical about the results

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Lightweight correctness checks

• Be skeptical about the results

• Is the harness running what you intend it to run?

– Incorrect algorithms are often faster

– Good practice: do not print any output until you have confidence in the result

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Lightweight correctness checks

• Be skeptical about the results

• Is the harness running what you intend it to run?

– Incorrect algorithms are often faster

– Good practice: do not print any output until you have confidence in the result

• Does the data structure pass simple checks?
– Start with N items, insert K, delete L, check that we have N+K-L at the end

– Suppose we are building a balanced binary tree – is it actually balanced at the end?

– Suppose we have a vector of N items and swap pairs of items – do we have N distinct
items at the end?

Overview

1

2

3

Understanding simple cases

Exploring performance trends

Sound experimental practices

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Understand simple cases first

• Why? Almost without exception:

– There are bugs in the test harness

– There are bugs in the data processing scripts (grep, cut-n-paste, …)

– There are unexpected factors influencing the results

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Understand simple cases first

• Why? Almost without exception:

– There are bugs in the test harness

– There are bugs in the data processing scripts (grep, cut-n-paste, …)

– There are unexpected factors influencing the results

• Before paying any attention to actual results, try to identify simple test
cases that should have known behavior

– (Even if you do not care about them, or they are contrived)

– Do they behave as expected?

– Can you completely explain them? (“Memory system effects” is not an answer –
see Trevor Brown’s talk later today)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Basic stats to watch

• Elapsed time, system time, CPU time, context switch counts

• Should the workload be 100% user mode?

– Confirm this with “top”, check that “strace” is quiet (no system call activity)

• Where are the threads running?

• Where is the memory they access located?

• What do profiling tools show?

– Can you use with optimized builds? If not, check impact of disabling optimization

– Look at simpler 1-thread workloads – as expected?

– Increase thread count and look for trends

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

0 10 20 30 40 50 60 70 80

O
p

s/
s

Threads

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

0 10 20 30 40 50 60 70 80

O
p

s/
s

Threads

Is this a good set
of results? It’s certainly
not a good graph

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

0 10 20 30 40 50 60 70 80

O
p

s/
s

Threads

Most of the data is buried down here

Which of these lines (if either)
would be perfect scaling?

Ugly numbers.
Is this good
performance or
poor?

Is this a good set
of results? It’s certainly
not a good graph

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60 70 80

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Threads

Normalize to optimized sequential code (and
report absolute baseline). Self-relative scaling
is almost never a good metric to use.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

Synergy: “horizontal is good” formats
are unaffected by switching to/from
log-scale axes

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

Disable Turbo Boost,
becomes flatter

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

Improvements to tuning of GC
and use of memory fences.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

Initially horizontal (as expected)
at low thread counts.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 4 8 16 32 64 128

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Threads

Synchrobench, Fraser skip-list, 100 % read only, 2*Haswell

What is happening here? The simplest
case that is not yet understood.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16 32 64 128

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Threads

(It was a stray process still running on the machine)

Fixed. Without Turbo Boost.

With Turbo Boost.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 4 8 16 32 64 128

N
o

rm
al

iz
ed

 t
h

ro
u

gh
p

u
t

Threads

(It was a stray process still running on the machine)

Fixed. Without Turbo Boost.

With Turbo Boost.

An aside: should we
always disable turbo

boost?

Overview

1

2

3

Understanding simple cases

Exploring performance trends

Sound experimental practices

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Try to identify why performance differs between algorithms

• Several “usual suspects”

– Try to vary each of these factors in turn

– Does the perf difference remain/grow/diminish?

• Hard to untangle cause and effect
– Identifying factors which are significant vs insignificant helps understand behavior

• Four examples:

– Unfairness

– Thread placement

–Memory placement

– Resource utilization

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Unfairness

• Look across all of the threads: did they complete the same amount of
work?

• Trade-offs between unfairness and aggregate throughput

– Unfairness may correlate with better LLC behavior

– Threads running nearby synchronize more quickly, and get to complete more work

• Whether we care about unfairness in itself depends on the workload
– Threads serving different clients: may want even response time

– Threads completing a batch of work: just care about overall completion time

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Unfairness: simple test-and-test-and-set lock

• Main thread runs a constant number of iterations, signals others to stop

• 2-socket Haswell, threads pinned sequentially to cores in 1 socket

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

O
p

er
at

io
n

s
p

e
r

th
re

ad
n

o
rm

al
iz

ed
 t

o
 m

ai
n

H/W thread number (0..18)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Unfairness: simple test-and-test-and-set lock

• Main thread runs a constant number of iterations, signals others to stop

• 2-socket Haswell, threads pinned sequentially to cores in both sockets
O

p
er

at
io

n
s

p
e

r
th

re
ad

n
o

rm
al

iz
ed

 t
o

 m
ai

n

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

45x, not 45%!

H/W thread number (0..36)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Unfairness: Synchrobench, Fraser skip list, read only

0.97

0.98

0.99

1.00

1.01

1.02

1.03
N

o
rm

al
iz

ed
 t

h
ro

u
gh

p
u

t
o

p
s/

s
at

 3
6

 t
h

re
ad

s
(1

 p
e

r
co

re
)

numactl --membind=0,1

Default (first touch?)

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Unfairness: Synchrobench, Fraser skip list, read only

0.97

0.98

0.99

1.00

1.01

1.02

1.03
N

o
rm

al
iz

ed
 t

h
ro

u
gh

p
u

t
o

p
s/

s
at

 3
6

 t
h

re
ad

s
(1

 p
e

r
co

re
)

numactl --membind=0,1

Default (first touch?)

numactl --membind=0

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Unfairness: Synchrobench, Fraser skip list, read only

0.97

0.98

0.99

1.00

1.01

1.02

1.03
N

o
rm

al
iz

ed
 t

h
ro

u
gh

p
u

t
o

p
s/

s
at

 3
6

 t
h

re
ad

s
(1

 p
e

r
co

re
)

numactl --membind=0,1

Default (first touch?)

numactl --membind=0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
r-

th
re

ad

th
ro

u
gh

p
u

t

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Unfairness: Synchrobench, Fraser skip list, read only

0.97

0.98

0.99

1.00

1.01

1.02

1.03
N

o
rm

al
iz

ed
 t

h
ro

u
gh

p
u

t
o

p
s/

s
at

 3
6

 t
h

re
ad

s
(1

 p
e

r
co

re
)

numactl --interleave=0,1

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Thread placement

• Choice between OS-control threading versus pinning

• Real workloads run with OS-controlled threading

–…but OS-controlled threading can be sensitive to blocking / wake-up behavior, thread
creation order, prior machine state, ….

• Deliberately explore different pinned placements, and quantify impact

– Are differences between algorithms consistent across these runs?

• In experiments compare:
–OS (report version)

– Different pinning choices (how many sockets used, how many cores per socket, what
order are h/w threads used)?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Memory placement

• Two aspects to this:

– NUMA-related allocations – same socket vs different socket?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Memory placement

• Two aspects to this:

– NUMA-related allocations – same socket vs different socket?

– Re-use of memory – e.g., via hazard pointers, epochs, etc.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Memory placement

• Two aspects to this:

– NUMA-related allocations – same socket vs different socket?

– Re-use of memory – e.g., via hazard pointers, epochs, etc.

• Suppose we have a new GC technique, and execution goes faster
– Is the GC running faster?

– Is it giving back memory with better distribution over sockets?

– Is it giving back memory which is still in the LLC?

• Try to separate out aspects of this behavior
– Run algorithms with the new vs old GC, but never re-use the memory => only

difference is the GC’s work

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Resource utilization

• Examine the use of significant resources in the machine

– Bandwidth to and from memory

– Bandwidth use on the interconnect

– Instruction execution rate

• Clock frequency and power settings

• Look for evidence of bad behavior

– High page fault rate (i.e., going to disk)

– High TLB miss rate

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Resource utilization

• Let’s imagine that we see a difference in resource consumption between
two algorithms

– Threads are placed in the same way

– Progress is distributed equally across the threads

• Can we relate the difference in resource consumption to the algorithm?
–More cache misses?

–More cache hits?

–More / fewer floating point operations?

• How do these metrics compare with known resource limits on the
machine? Have we reduced use of a bottleneck resource?

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Resource utilization – summing two arrays
Should we duplicate the arrays in local memory on each socket?

0
2

0
4

0

O
ri

gi
n

al

SL
G

SL
G

 In
tl

.

SL
G

 R
ep

l.

Ti
m

e
 (

se
c)

2*Haswell Xeon (low core count)

O
ri

gi
n

al

N
ew

In
te

rl
ea

ve

R
ep

lic
at

ed

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Resource utilization – summing two arrays
Should we duplicate the arrays in local memory on each socket?

0
2

0
4

0

O
ri

gi
n

al

SL
G

SL
G

 In
tl

.

SL
G

 R
ep

l.

Ti
m

e
 (

se
c)

0
5

1
0

1
5

O
ri

gi
n

al

SL
G

SL
G

 In
tl

.

SL
G

 R
ep

l.

Ti
m

e
 (

se
c)

O
ri

gi
n

al

N
ew

In
te

rl
ea

ve

R
ep

lic
at

ed

O
ri

gi
n

al

N
ew

In
te

rl
ea

ve

R
ep

lic
at

ed

2*Haswell Xeon (low core count) 2*Haswell Xeon (high core count)

Overview

1

2

3

Understanding simple cases

Exploring performance trends

Sound experimental practices

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Some final points

• We optimize for what we measure, or measure what we optimized

–Why pick specific workloads (read/write mix, key space, … ?)

– Does the choice reflect an important workload?

– Are results sensitive to the choice?

• Be careful about averages

– As with fairness over threads, an average over time hides details

– Even if you do not plot all the results, examine trends over time, variability, etc.

• Be careful about trade-offs
– Is a new system strictly better, or exploring a new point in a trade-off?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Further reading

• Books

– Huff & Geis – “How to Lie with Statistics”

– Jain – “The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling”

– Tufte – “The Visual Display of Quantitative Information”

• Papers and articles

– Bailey – “Twelve Ways to Fool the Masses”

– Fleming & Wallace – “How not to lie with statistics: the correct way to summarize
benchmark results”

– Heiser – “Systems Benchmarking Crimes”

– Hoefler & Belli – “Scientific Benchmarking of Parallel Computing Systems”

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Java has its own private ring of performance hell

• E.g., complexity from JIT (execution time, generated code quality)

• Complexity from GC

– E.g., suppose a change makes a workload that incurred 4 major GCs take 3 or 5
instead

• Look at frameworks such as http://openjdk.java.net/projects/code-
tools/jmh/

• Cliff Click’s podcast http://cliffc.org/blog/

• Laurie Tratt’s upcoming OOPSLA paper https://arxiv.org/abs/1602.00602

http://openjdk.java.net/projects/code-tools/jmh/
http://cliffc.org/blog/
https://arxiv.org/abs/1602.00602

