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Language constructs for
transactional memory

Tim Harris

Disclaimer: these are my personal opinions
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Example: double-ended queue
Left sentinel Right sentinel
3 I s TS e T sl €I
Thread 1 Thread 2

M

T )
1l

* Support push/pop on both ends
* Allow concurrency where possible
* Avoid deadlock
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Implementing this: TM

Class Q {
QElem leftSentinel;
QElem rightSentinel;

void pushLeft(int item) {
QElem e = new QElem(item);
do {
StartTx();
Txwrite(&e.right, TxRead(&this.leftSentinel.right));

TxwWrite(&e.left, this.leftSentinel);
TxwWrite(&TxRead(&this.leftSentinel.right).left, e);
Txwrite(&this.leftSentinel.right, e);

} while (!CommitTx());

}

, .

Broadly based on word-based STM from “Concurrent programming without locks”
Keir Fraser & Tim Harris, ACM TOCS
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Implementing this: atomic blocks

Class Q { Class Q {

QElem T QElem TeftSentinel;
QElem r QElem rightSentinel;

void pu  \5id pushLeft(int item) {

atom1 do {
QEl StartTxQ);
::jj}r QElem e = new QElem(item);
1' Txwrite(&e.right, TxRead(&this.leftSentinel.right));
thi Txwrite(&e.left, this.leftsentinel);
thi Txwrite(&TxRead(&this.leftSentinel.right).left, e);
} Txwrite(&this.leftSentinel.right, e);
} } while (!cCommitTx());
}



“What about memory access
violations, exceptions, security rolled back?

error logs, ...?

QElem TeftsSentine “What happens to

this.leftSentinel.
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Design questions

“What about

this object if the
atomic block is

QElem e = new QElem(item); “What happens if | single-

e.right = this.leftSentinel.righ step through this, and there’s
e.left = this.leftSentinel; a conflict with a concurrent
this.leftSentinel.right.left = e; transaction

Alght = e;
“What happens if this
fails with an exception;

“What if another thread tries “What if another atomic block are the other updates

to access one of these fields updates one of these fields? rolled back?
without being in an atomic Will | see the value change mid-

block?

way through my atomic block?
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“Atomic blocks are transactions”
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there is no priority inversion: and there is no painful tension be-
tween granularity and concurrency. However little progress has
been made on building transactional abstractions that compose
well. We 1dentify three particular problems.

Firstly. since a transaction may be re-run automatically, it 1s
essential that it do nothing irrevocable. For example the transaction

atomic { if (n>k) then launch_missiles(); S2 }

might launch a second salvo of nussiles if it were re-executed.
It might also launch the missiles madvertently if, say, the thread
was de-scheduled after reading n but before reading k. and another
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“Composable memory transactions”, Tim Harris, Simon Marlow,
Simon Peyton Jones, Maurice Herlihy, PPoPP ‘05
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“Atomic blocks are locks”

Single Global Lock Semantlcs in a Weakly Atomic STM
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« Consequences explored
methodically by Menon
et al (Transact ‘08,

Abstract
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munity have informally proposed that a single global lock seman-
tics [16, 9], where transaction semantics are mapped to those of
regions protected by a single global lock, provide an intuitive and
efficiently imple mentable model for programmers.

In this paper, we explore the implementation and performance
implications of single global lock semantics in a weakly atomic
STM from the perspective of Java, and we discuss why even recent
STM implementations fall short of these semantics. We describe a
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Abstractions vs implementations

Transactional
memory API

Atomic
blocks

Synchronized
blocks
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Defining "atomic™ without saying “TM”

¢ “Strong semantics”
— Simple interleaved execution of threads

— If a thread starts an atomic block then only it can take
steps

— Blocking operations (e.g. “retry”, “orElse”, “blockUntil”)
can be incorporated — see refs below

* This means:
— Atomic blocks are atomic wrt normal memory accesses
— Do not need to model conflict detection / resolution

— Can choose whether or not to retain the effects of an
atomic block that raises an exception

“Composable memory transactions”, Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice Herlihy. PPoPP 05
“Semantics of Transactional Memory and Automatic Mutual Exclusion”, Martin Abadi, Andrew Birrell, Tim Harris, Michael Isard. POPL ‘08
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Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{  falee.
X = 100 : Xx_shared = false;
}

1 X++;
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Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{  falee.
X = 100 : Xx_shared = false;
}

1 X++;
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Example: a privatization idiom

X_shared = true; x = 100;
atomic { :
if (x_shared) { atomic 1 |
Xx_shared = false;
x = 100; )
} } X++;

=)
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Example: a privatization idiom

X_shared = false; x = 100;

atomic { atomic {
it (x_shared) { Xx_shared = false;
x = 100; 1 - ’
} } X++;

=)
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Example: a privatization idiom

Xx_shared = false; x = 101;

atomic { atomic {
it (x_shared) { Xx_shared = false;
x = 100; ) - ’
} } X++;

= =
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Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{  falee.
X = 100 : Xx_shared = false;
}

1 X++;
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Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{  falee.
X = 100 : Xx_shared = false;
}

1 X++;
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Example: a privatization idiom

X_shared = false; X = 0;
atomic { :
5 G shamzd) atomic |  falee.
X = 100 : Xx_shared = false;
}

} X++;
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Example: a privatization idiom

X_shared = false; X = 0;
atomic { :
if (x_shared) { L S
X = 100 : Xx_shared = false;
} } X++;

=)
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Example: a privatization idiom

X_shared = false; X = 1;
atomic { :
if (x_shared) { atomic |  falee.
X = 100 : x_shared = false;
} } X++;

= =




Research
Strong semantics

We've not talked about “inconsistent reads’,

“roll backs”, “in-place vs lazy updates”, "weak

atomicity”, “strong atomicity’, ...
We've not ruled out anything (e.g. 1/0O)

We've not considered program
transformations

Is this a pipe-dream”? Can we implement it?
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Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{  falee.
X = 100 : Xx_shared = false;
}

1 X++;



atomic {
if (x_shared) {
x = 100;
}

}
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Research

atomic {
Xx_shared = false;

}

X++;
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X_shared = true; x = 100;

=)

atomic {

atomic {

1T (x_shared) { 3 _
:::j;> X = 100: : x_shared = false;
}

} X++;
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X_shared = false; x = 100;

atomic {

1T (x_shared) { 3 _
:::j;> X = 100: : x_shared = false;
}

} X++;

atomic {
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Xx_shared = false; x = 101;

atomic {

if (x_shared) { B _
:::j;> X = 100: , x_shared = false;
}

} X++;

=)

atomic {
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X_shared = false; X = 0;
atomic { :
5 G shamzd) atomic |  falee.
X = 100 : X_shared = false;
1 } X++;

=)
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X_shared = false; X = 0;
atomic { :
5 G shamzd) atomic |  falee.
X = 100 : X_shared = false;
1 } X++;

= =
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Hiding TM from programmers

Programming discipline(s)

What does it mean for a
program to use the
constructs correctly?

Strong semantics

atomic, retry, ..... What, ideally,
should these constructs do?

Low-level semantics &
actual implementations

Transactions, lock inference, optimistic
concurrency, program transformations,
weak memory models, ...
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Programming disciplines

 Based on a program’s execution under the
strong semantics

All Violation-free Obeying dynamic Obeying static
programs programs separation separation

More programs

: S Fewer programs
satisfy the discipline

satisfy the discipline
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Static separation

» Atomic blocks can only access local variables
and designated “atomic variables”

e “atomic variables” cannot be accessed
outside atomic blocks

Class Q {
atomic QElem leftSentinel;
atomic QElem rightSentinel;

void pushLeft(int item) {

atomic {
QElem e = new QElem(item);
e.right = this.leftSentinel.right;

e.left = this.leftSentinel;

0y~ r~
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Delaunay triangulation

“‘Delaunay Triangulation with Transactions and Barriers”
Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe, IISWC 2007
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Delaunay triangulation (2)

Initialization

Synchronization barrier

Independent parallel
work

Synchronization barrier

Possibly-conflicting
parallel work

Synchronization barrier

Output




Microsoft:

Research

Dynamic separation

* Add explicit operations to indicate whether
data is accessed inside atomic blocks, or
accessed outside them

» Correctly synchronized: data is always in the
correct mode when it Is accessed

* Robust dynamic checking is possible:

— Either the program runs with strong semantics
— Or it fails with an error

“Implementation and use of transactional memory with dynamic separation”,
Martin Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, Michael Isard, CC ‘09 (to appear)
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Violation freedom (VF)

» Allow data’s access mode to change implicitly

* To be correctly synchronized:

— Conflicting data accesses must not be attempted
concurrently inside & outside atomic blocks

* Reminiscent of rules for programs to be free
from data races
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X = 0;
atomic { :
it (x_shared) { at021§h§red = false;
X = 100; 1 - - ’
}

} X++;
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Programming with violations

Copy to a thread-local map
no concurrency control

omically: route on the
local map and merge back

C# version of Labyrinth, derived from “STAMP: Stanford Transactional Applications for
Multi-Processing” Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , ISWC '08
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Strong atomicity

« Similar to typical HTM behavior

* Trade off implementation complexity for
(hopefully) scalability & straight-line speed,

* Two recent approaches:

— “Dynamic Optimization for Efficient Strong
Atomicity”, Schneider et al, OOPSLA 08

— “Transactional memory with strong atomicity
using off-the-shelf memory protection hardware”,
Abadi et al, PPoPP '09
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Strong atomicity =/> strong semantics

atomic { tmpl = ready;
ready = true; 1if (tmpl == true) {
data = 1; tmp2 = data;

} }

« Can tmp1==true, tmp2==07?

» Under strong semantics: no

» Under plausible implementations with strong
atomicity: yes

Example from “What do high-level memory models mean for transactions?”
Dan Grossman, Jeremy Manson, William Pugh, MSPC '06
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“Atomic blocks are for q U eStl O n S

building shared memory data

structures; use explicit

synchronization for 1/0 “In correctly synchronized
programs, any use of

QElem leftSentiner; “« speculation must be hidden by
QElem rightSentinel; the implementation

“What about memorv access

violations, &  «Again, ...
erro

o QETem(item); “In correctly synchronized
e.right = this.leftSentinel.righ S| programs, speculation won't
e.left = this.leftSentinel; i be revealed by the debugger

this.leftSentinel.right.left = e; | R EEEEEEEE
this.leftSentinel.pight = e;

“This depends on the
language (Personally:
“Again, in correctly no roll back, to avoid

“If it's a conflicting access, synchronized programs, overhead on lock-
then the program is not speculation won't be revealed inference impl’s)
correctly synchronized by the implementation
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Open nesting, boosting, system calls

Atomic
blocks

/]

|

Programming abstraction
is “atomic blocks”. Just
shared memory
operations (including
allocation, including GC).

{/

Locks

4

Implementation may
use system calls, e.g.

allocating memory.

™

Open nesting, boosting are “TM-
level” operations, possibly used in

the implementation of allocation
during atomic blocks. Mark uses as
“‘unsafe” if explicit in applications.
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Perf. figures depend on...

Workload : What do the atomic blocks do? How long is spent inside
them?

Baseline implementation: Mature existing compiler, or prototype?

Intended semantics: Support static separation? Violation freedom?
Strong atomicity?

STM implementation: In-place updates, deferred updates,
eager/lazy conflict detection, visible/invisible readers?

STM-specific optimizations: e.g. to remove or downgrade redundant
TM operations

Integration: e.g. dynamically between the GC and the STM, or
inlining of STM functions during compilation

Implementation effort: low-level perf tweaks, tuning, etc.
Hardware: e.g. performance of CAS and memory system



Labyrinth
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“STAMP: Stanford Transactional Applications for Multi-Processing”
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STAMP v0.9.10
256x256x3 grid
Routing 256 paths

Almost all execution inside atomic
blocks

Atomic blocks can attempt 100K+
updates

C# version derived from original C

Compiled using Bartok, whole
program mode, C# -> x86 (~80%
perf of original C with VS2008)

Overhead results with Core2 Duo
running Windows Vista

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , ISWC 2008
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Sequential overhead

STM implementation supporting static separation
11.86 In-place updates

Lazy conflict detection
Per-object STM metadata

Addition of read/write barriers before accesses
Read: log per-object metadata word
Update: CAS on per-object metadata word
Update: log value being overwritten

STM
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Sequential overhead

STM

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed
Consequential reduction in validation time
15t level: per-thread hashtable (1024 entries)
2nd level: per-object bitmap of updated fields

Dynamic
filtering
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Sequential overhead

STM

Data-flow optimizations

Remove repeated log operations
Open-for-read/update on a per-object basis

Log-old-value on a per-field basis
Remove concurrency control on newly-allocated objects

Dynamic Dataflow
filtering opts
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Sequential overhead

STM

Inline optimized filter operations

mov eax <- ob]j addr

and eax <- eax, Oxffc

mov ebx <- [table base + eax]
cmp ebx, obj addr

Re-use table base between filter operations
Avoids caller save/restore on filter hits

Dynamic
filtering

Dataflow  Filter opts
opts
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Sequential overhead

11.86

Re-use STM logs between transactions

Reduces pressure on per-page allocation lock
Reduces time spent in GC

STM Dynamic Dataflow  Filter opts Re-use logs
filtering opts
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Scaling — Labyrinth

- Static separation

- Strong atomicity

1.0 = wall-clock execution

time of sequential code

without concurrency control

HThreads
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Scaling — Delaunay

— Static separation
- Strong atomicity

2 3 4 5
HThreads
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Scaling — Genome

— Static separation
- Strong atomicity

2 3 4 5 6 7 8
HThreads
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Scaling — Vacation

Static separation ——
e Strong atomicity

2 3 4 5
HThreads
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Abstractions vs implementations
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Atomic
blocks
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Future directions

Which programming discipline should we settle on
— ...in a language like C#?
— ...in future languages?

H/W acceleration based on mature optimized S/W
Implementations

Progress guarantees, interactions with implementation
techniques and performance

What asymptotic bounds on STM performance can we
give when supporting different programming disciplines?

How do we define correctness of an STM interface, as
opposed to the whole language implementation?
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