s Microsoft:
AL Research
Py ‘_ J N 2

Language constructs for
transactional memory

Tim Harris

Disclaimer: these are my personal opinions

-.>:' H\"‘.

| ' Microsoft’
| % (g0 |40 1e0 Research

= 1 o | 10| ap

Untangling "atomic” from TM
Hiding TM from programmers

Current performance

Microsoft’
Research

Example: double-ended queue
Left sentinel Right sentinel
3 I s TS e T sl €I
Thread 1 Thread 2

M

T)
1l

* Support push/pop on both ends
* Allow concurrency where possible
* Avoid deadlock

Microsoft:

Research

Implementing this: TM

Class Q {
QElem leftSentinel;
QElem rightSentinel;

void pushLeft(int item) {
QElem e = new QElem(item);
do {
StartTx();
Txwrite(&e.right, TxRead(&this.leftSentinel.right));

TxwWrite(&e.left, this.leftSentinel);
TxwWrite(&TxRead(&this.leftSentinel.right).left, e);
Txwrite(&this.leftSentinel.right, e);

} while (!CommitTx());

}

, .

Broadly based on word-based STM from “Concurrent programming without locks”
Keir Fraser & Tim Harris, ACM TOCS

Microsoft:

Research

Implementing this: atomic blocks

Class Q { Class Q {

QElem T QElem TeftSentinel;
QElem r QElem rightSentinel;

void pu \5id pushLeft(int item) {

atom1 do {
QEl StartTxQ);
::jj}r QElem e = new QElem(item);
1' Txwrite(&e.right, TxRead(&this.leftSentinel.right));
thi Txwrite(&e.left, this.leftsentinel);
thi Txwrite(&TxRead(&this.leftSentinel.right).left, e);
} Txwrite(&this.leftSentinel.right, e);
} } while (!cCommitTx());
}

“What about memory access
violations, exceptions, security rolled back?

error logs, ...?

QElem TeftsSentine “What happens to

this.leftSentinel.

Microsoft

Research

Design questions

“What about

this object if the
atomic block is

QElem e = new QElem(item); “What happens if | single-

e.right = this.leftSentinel.righ step through this, and there’s
e.left = this.leftSentinel; a conflict with a concurrent
this.leftSentinel.right.left = e; transaction

Alght = e;
“What happens if this
fails with an exception;

“What if another thread tries “What if another atomic block are the other updates

to access one of these fields updates one of these fields? rolled back?
without being in an atomic Will | see the value change mid-

block?

way through my atomic block?

\/ @6

Microsoft’

Research

“Atomic blocks are transactions”

sereier dew B quoterw o coumved Wrarrow Boegh rerage
B T L e e e e S 1]
Loes o 9 ssliryg Cecuen poogiareusy u ofemdy M-
fand e Amramid soogfeieaey wownger o ol o awits W
ey L m “Hhﬂ.uﬂﬂyt—ﬁ-ﬁ

Doy e indense far Fevsiets o wadl ooy @ pert

W kg 1> ched Bt A e e & cRmsted veew of esory sl
Bar cownny @ deeg 0 sereery I vaidben @i teaser
maraces ool = fue metecd e shred by sscdber Gosel Ay
ﬁmvmﬂh“-mh—m

many of

un—-uu“-nn—-ud-—lm—um
Thaot ape 1o mnk-mellaand e Sonks Swowmd et @ to bade
M--mm-‘hnuﬂmb

Fomoen beths peogras bas

e 1 534 o Inig e ixkoy FEES fe T Ambarer
me‘n.‘u‘-ﬂ-{mbﬂm
szies bagrmTs ne e

b= conpls cemAm s -ﬂl-h_-d—'ld
et cpmEnes Ve mypeni e wv wnad b Sl ww em A
ey nddr 11 wnd et 0 andc nder t2 bal S ovemns fats sty
‘e nefle i covaets Ox frm) mast b vk b
e dereds o O rmissetcr of S et BT WITReD
s rwed Damw 1 @rpes e e ety Ge sogurrrew. [rvorsl
du does sl s o io @ orgeme nafas® sk @ Lo ckTedle el
TelschTadle u--d-_qh-&-m
ey ey 0 Sy ole 0wy
e claewt phes B lowka, <f rex comdteow of S clad
M—*‘vu“l-_-—- e
peemres of A @ i lad S bochoyg belueton mast sl boull
G pdbs €21 A cow b el = deet, poehas B e
exdradadly e (amet Adex cwas be ampees! ut ey
smma cpewmien

Tha seme plercwian e da e i g 3 cEgues el

e o psivmedy maped, 0 @ed ool vl e gowe of
[N EHE

Fairs far Lxdg b o Bovil 7 orneny o8 e sEme-
w0 0 Dbt SRS EIERTY (R W R) R
wac hawmen wn > ava s’ sy W el dee o e
tamnd memaoey -ﬁ-lm-hl—-h—l_—n
ol deTictam 1o comgls #vh nomey Fnsstoe 81 o
TR (b e e L

s { vedalmeint Al meervinlan) b
o b wnr b el pa o P2 we cun oy

sumis { pi “erlles” gl)

e mads o beseboy

cwcrrel G £ & n-iuag creeabls e

..w.gmuck -1ndt

seemie { of el wes lessed sievilesd); B2

B gt aec leaset
LoR B PR

B e Srmm) ban 43
ez, | e
am e
Tuady 1o peresy
L
bom 1 o Consumey
iy rearriey Vs
e bangag e

12 Comomrrens B4
CarEn W il

Thens wargle ragas w | A A B
e of Lasere, delete pi o Pl sl Gy commias b ek
amanaly d St opuueoe ey Mok esowy dal ws
21 Ireneemd ey
The siza of Eutmcton = a4 e fhey e b o Sndbanorsd
e B L
mach reonnl sk om batandtemd memvemas (11, b0 8 4 01
Tha hey shan o Sud & Mook of ool mcdabong moresd cel, 8.
B przemed bo g atamic Diad, wols Sw paceess s 0 rww
L e I L e e e]
ey cnt bw dgleaeesd ey sEALT e @ mastem -
o o tulong bosos, 81 STemLc bk U woles ooy et
ke a M iatanad Batun A oy D 0050l A EY BETTY
sewd wnd wmiy o puskes Biom far Sk comgrate, £ fow saudong

Pelvres,

are taw v
e Lo w9 oo
v el oo
ey W b e
Tmi bl g e i

rizEn s L e

there is no priority inversion: and there is no painful tension be-
tween granularity and concurrency. However little progress has
been made on building transactional abstractions that compose
well. We 1dentify three particular problems.

Firstly. since a transaction may be re-run automatically, it 1s
essential that it do nothing irrevocable. For example the transaction

atomic { if (n>k) then launch_missiles(); S2 }

might launch a second salvo of nussiles if it were re-executed.
It might also launch the missiles madvertently if, say, the thread
was de-scheduled after reading n but before reading k. and another

‘-‘---nn.rl “\AJ:‘-:A.J I\A'l\. I‘A;kﬁm +‘\A "‘lalnnﬂl LT Erw iIAﬁIllru\A.!I “\:n -osilA‘\IAit\

wio mrarTead Tae
& Fon ool e W
That o, e w

Dar sl divan e 1O wieon fad

LEral s 04 Racewn cn fw Ao el cepr shibe
zﬁ-n-m.ﬂﬁpﬁ-‘mﬁnmh—

e

- s pal of far slam A awmplais

Miews

“Composable memory transactions”, Tim Harris, Simon Marlow,
Simon Peyton Jones, Maurice Herlihy, PPoPP ‘05

Microsoft

Research

“Atomic blocks are locks”

Single Global Lock Semantlcs in a Weakly Atomic STM

Vijoy Menon' Steven Balensiefer® Totioea Shpeisman' Ali-Reza A dl-Tabatabai?

Richard L. Hudson® Bratin Saha’ Adam Welct
lresl Lata *Dpartmre o of Compuer Scivscs snd Exgisesring
Sumia Clum, T4 75054 Usieardiy nf'ﬂ'mi-;lm Sl WA TEL0S
[vijay. x rwscn atisa shpiman ali-wz o sdb-tsbaika Ak bucion bratin aaba adam wa b | @incal som
{aluska} @ ez wabingiznsda

« Consequences explored
methodically by Menon
et al (Transact ‘08,

Abstract

Iubislly daes = 43, rasdy = falss, val = 3
This

YR trsnncticon have been posd ar s lu kval

y epilcarmat for Iocks, the s growng mead for wll e 1 : s hiea;
martice. In cosing in catsbass trarascings, tranction menoy 2: | dazm =t
I TM] semanfics ase corplicated by the face that programs may - 4: | anemiz |
mer e BNTA BwrEery aficon boih innid and oubide manes- L] TRAGY = LIRS
ticox Semoply siomic @ mactics, whes sco-tmascdionsl scoe e] I
arw treatad aa implick: ngh-cperstion mannction, moin difi- i i
cult b prov ide w Hhou specisiand bardwars sapport ssdlor sigrif- L=
icant pai sow ovartwsd Ax s dkeraative, mey in te come #: R

infarmaally propad that a ringle gisbal lock semas-
whars faruaos mrastics oo npped fo thom of
ciecd by singhe global lock, provich an okt and

dand

FIRUE L. Publizstionszamphs with s semingly bosign s

icant performance overhead. As an allernative, many in e Com- Femmime s e
R e R e T

munity have informally proposed that a single global lock seman-
tics [16, 9], where transaction semantics are mapped to those of
regions protected by a single global lock, provide an intuitive and
efficiently imple mentable model for programmers.

In this paper, we explore the implementation and performance
implications of single global lock semantics in a weakly atomic
STM from the perspective of Java, and we discuss why even recent
STM implementations fall short of these semantics. We describe a

Caraidar the pulicains e ample in Figam | Thresd 2 reacs dutn
sarty ins e pricass locwdon tzp. Hewevar. that vabas in only nwd
 randy ir st CHberecire, tap in doad and rever aconme d sgain.
If 1t tranuactions are splased with locks, thiv program wil nn
cormetly: val would sitter bn 0 or L depeading spon which crifical
mering mesued B Nevorthe ko, nos ST would producs the
walum 42 in Thwad I givan the inserie mving in Figars 1. Ax Theoad
1 writes dwim cotwide s rasesction, sweakly stormic STM weoald
noc chiect asy cosflict and, 1kes, would not inalidas Theead 2
read operaticn

It should be ooied thet, even ander locks, this progrn har s
dita max Thread | and Theead 2 may acoers dutn simultace-
ourly. However from the programmer’s perrpective, the vk in
reov e e i this cuw, and the n should b begign. Jrva's oo o
ory mocal [7] {armmiing lock somantics) mpacifcally dindlows
any sxeastion that produces 43 in Thmad 2 1s fact, dhivexample
ali b implicaricns for comectly ryschmsied progmme Stan
dard compiler s ordering cxn iradveraily intodeo & do e
Caraidar a cormetly ryschmsized varant of this progrm is Fig-
we I whem Thesad 2 ooly scosmes dats fuide the condiional
Carepiler cpimizations rach as spcalath aliminse
ficn or inmincricn schedling widl inirduce o deis rew by

kiation ik provides sicghe
concurmct emeation, b
perfornans oo We alm
|tres sraanticn thai loosen
ficing strony, gasrancees

b pvicus zear, inchicing

fmi ring akesrastive o leck-
for susaning concumen
decasis, TM remarch hax
b cally extract coscar-
i prov i
fra-grain bocks
M tar complicaied maki-
e [ni ordar m writs cor-
hurt ba abls o reascn ko
Ohteride of TR ibecw han
rrmaal res mary mcdels have
it of Wirwable b bavion

new weakly atomic Java STM implementation that provides single
global lock semantics while permitting concurrent execution, but
we show that this comes at a sienificant performance cost. We also

e ach aw intingicaly
hecal i & faratamwstal par
|tz ite fype mbety and me-

bl 1o 1kin mix, thers in ro
prgeage renory modl In
S

ks are chligsed = handk

boirfing the scoem kg o hise T in Figum 11 if proficsble. Sach
imirations s me b inrsduced recer am bemign.

A appealing schition i 4= provide streag somacity [5 2] 1,
wham oo trannacticoal memary acm s am asdgos m singl
inutracricn raachicns and e e frem violing te idanza
of icre. [n thin model, ios me siticily mom maTic-

"t mrm mrong Sovion e aud in i Exnnm

Fai e i)

Microsoft

Research

Abstractions vs implementations

Transactional
memory API

Atomic
blocks

Synchronized
blocks

N IM/%Z/

™

Locks

Microsoft:

Research

Defining "atomic™ without saying “TM”

¢ “Strong semantics”
— Simple interleaved execution of threads

— If a thread starts an atomic block then only it can take
steps

— Blocking operations (e.g. “retry”, “orElse”, “blockUntil”)
can be incorporated — see refs below

* This means:
— Atomic blocks are atomic wrt normal memory accesses
— Do not need to model conflict detection / resolution

— Can choose whether or not to retain the effects of an
atomic block that raises an exception

“Composable memory transactions”, Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice Herlihy. PPoPP 05
“Semantics of Transactional Memory and Automatic Mutual Exclusion”, Martin Abadi, Andrew Birrell, Tim Harris, Michael Isard. POPL ‘08

Microsoft

Research

Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{ falee.
X = 100 : Xx_shared = false;
}

1 X++;

Microsoft

Research

Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{ falee.
X = 100 : Xx_shared = false;
}

1 X++;

Microsoft

Research

Example: a privatization idiom

X_shared = true; x = 100;
atomic { :
if (x_shared) { atomic 1 |
Xx_shared = false;
x = 100;)
} } X++;

=)

Microsoft

Research

Example: a privatization idiom

X_shared = false; x = 100;

atomic { atomic {
it (x_shared) { Xx_shared = false;
x = 100; 1 - ’
} } X++;

=)

Microsoft

Research

Example: a privatization idiom

Xx_shared = false; x = 101;

atomic { atomic {
it (x_shared) { Xx_shared = false;
x = 100;) - ’
} } X++;

= =

Microsoft

Research

Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{ falee.
X = 100 : Xx_shared = false;
}

1 X++;

Microsoft

Research

Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{ falee.
X = 100 : Xx_shared = false;
}

1 X++;

Microsoft

Research

Example: a privatization idiom

X_shared = false; X = 0;
atomic { :
5 G shamzd) atomic | falee.
X = 100 : Xx_shared = false;
}

} X++;

Microsoft

Research

Example: a privatization idiom

X_shared = false; X = 0;
atomic { :
if (x_shared) { L S
X = 100 : Xx_shared = false;
} } X++;

=)

Microsoft

Research

Example: a privatization idiom

X_shared = false; X = 1;
atomic { :
if (x_shared) { atomic | falee.
X = 100 : x_shared = false;
} } X++;

= =

Research
Strong semantics

We've not talked about “inconsistent reads’,

“roll backs”, “in-place vs lazy updates”, "weak

atomicity”, “strong atomicity’, ...
We've not ruled out anything (e.g. 1/0O)

We've not considered program
transformations

Is this a pipe-dream”? Can we implement it?

-.>:' H\"‘.

| ' Microsoft’
| % (g0 |40 1e0 Research

= 1 o | 10| ap

Untangling "atomic” from TM
Hiding TM from programmers

Current performance

Microsoft

Research

Example: a privatization idiom

X_shared = true; X = 0;
atomic { :
5% (0 chared) 1 at°m‘ch{ falee.
X = 100 : Xx_shared = false;
}

1 X++;

atomic {
if (x_shared) {
x = 100;
}

}

Microsoft

Research

atomic {
Xx_shared = false;

}

X++;

Microsoft

Research

X_shared = true; x = 100;

=)

atomic {

atomic {

1T (x_shared) { 3 _
:::j;> X = 100: : x_shared = false;
}

} X++;

Microsoft

Research

X_shared = false; x = 100;

atomic {

1T (x_shared) { 3 _
:::j;> X = 100: : x_shared = false;
}

} X++;

atomic {

Microsoft

Research

Xx_shared = false; x = 101;

atomic {

if (x_shared) { B _
:::j;> X = 100: , x_shared = false;
}

} X++;

=)

atomic {

Microsoft

Research

X_shared = false; X = 0;
atomic { :
5 G shamzd) atomic | falee.
X = 100 : X_shared = false;
1 } X++;

=)

Microsoft

Research

X_shared = false; X = 0;
atomic { :
5 G shamzd) atomic | falee.
X = 100 : X_shared = false;
1 } X++;

= =

Microsoft

Research

Hiding TM from programmers

Programming discipline(s)

What does it mean for a
program to use the
constructs correctly?

Strong semantics

atomic, retry, What, ideally,
should these constructs do?

Low-level semantics &
actual implementations

Transactions, lock inference, optimistic
concurrency, program transformations,
weak memory models, ...

Microsoft

Research
Programming disciplines

 Based on a program’s execution under the
strong semantics

All Violation-free Obeying dynamic Obeying static
programs programs separation separation

More programs

: S Fewer programs
satisfy the discipline

satisfy the discipline

Microsoft:

Research
Static separation

» Atomic blocks can only access local variables
and designated “atomic variables”

e “atomic variables” cannot be accessed
outside atomic blocks

Class Q {
atomic QElem leftSentinel;
atomic QElem rightSentinel;

void pushLeft(int item) {

atomic {
QElem e = new QElem(item);
e.right = this.leftSentinel.right;

e.left = this.leftSentinel;

0y~ r~

Microsoft

Research

Delaunay triangulation

“‘Delaunay Triangulation with Transactions and Barriers”
Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe, IISWC 2007

Microsoft

Research

Delaunay triangulation (2)

Initialization

Synchronization barrier

Independent parallel
work

Synchronization barrier

Possibly-conflicting
parallel work

Synchronization barrier

Output

Microsoft:

Research

Dynamic separation

* Add explicit operations to indicate whether
data is accessed inside atomic blocks, or
accessed outside them

» Correctly synchronized: data is always in the
correct mode when it Is accessed

* Robust dynamic checking is possible:

— Either the program runs with strong semantics
— Or it fails with an error

“Implementation and use of transactional memory with dynamic separation”,
Martin Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, Michael Isard, CC ‘09 (to appear)

Microsoft:

Research

Violation freedom (VF)

» Allow data’s access mode to change implicitly

* To be correctly synchronized:

— Conflicting data accesses must not be attempted
concurrently inside & outside atomic blocks

* Reminiscent of rules for programs to be free
from data races

Microsoft

Research

X = 0;
atomic { :
it (x_shared) { at021§h§red = false;
X = 100; 1 - - ’
}

} X++;

L »" L} e \ = — .
’ ™ Microsoft:

iy | Y (g0 W 10 | Research
L ls) e — | o D ap)

.
N -

Programming with violations

Copy to a thread-local map
no concurrency control

omically: route on the
local map and merge back

C# version of Labyrinth, derived from “STAMP: Stanford Transactional Applications for
Multi-Processing” Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , ISWC '08

Microsoft:

Research
Strong atomicity

« Similar to typical HTM behavior

* Trade off implementation complexity for
(hopefully) scalability & straight-line speed,

* Two recent approaches:

— “Dynamic Optimization for Efficient Strong
Atomicity”, Schneider et al, OOPSLA 08

— “Transactional memory with strong atomicity
using off-the-shelf memory protection hardware”,
Abadi et al, PPoPP '09

Microsoft

Research

Strong atomicity =/> strong semantics

atomic { tmpl = ready;
ready = true; 1if (tmpl == true) {
data = 1; tmp2 = data;

} }

« Can tmp1==true, tmp2==07?

» Under strong semantics: no

» Under plausible implementations with strong
atomicity: yes

Example from “What do high-level memory models mean for transactions?”
Dan Grossman, Jeremy Manson, William Pugh, MSPC '06

Microsoft

Research

“Atomic blocks are for q U eStl O n S

building shared memory data

structures; use explicit

synchronization for 1/0 “In correctly synchronized
programs, any use of

QElem leftSentiner; “« speculation must be hidden by
QElem rightSentinel; the implementation

“What about memorv access

violations, & «Again, ...
erro

o QETem(item); “In correctly synchronized
e.right = this.leftSentinel.righ S| programs, speculation won't
e.left = this.leftSentinel; i be revealed by the debugger

this.leftSentinel.right.left = e; | R EEEEEEEE
this.leftSentinel.pight = e;

“This depends on the
language (Personally:
“Again, in correctly no roll back, to avoid

“If it's a conflicting access, synchronized programs, overhead on lock-
then the program is not speculation won't be revealed inference impl’s)
correctly synchronized by the implementation

Microsoft’

Research

Open nesting, boosting, system calls

Atomic
blocks

/]

|

Programming abstraction
is “atomic blocks”. Just
shared memory
operations (including
allocation, including GC).

{/

Locks

4

Implementation may
use system calls, e.g.

allocating memory.

™

Open nesting, boosting are “TM-
level” operations, possibly used in

the implementation of allocation
during atomic blocks. Mark uses as
“‘unsafe” if explicit in applications.

. s S

P ’ Microsoft
| % (g0 |40 1e0 Research

¢ ot 4 *
il) e — | | LD e

Untangling "atomic” from TM
Hiding TM from programmers

Current performance

Microsoft

Research

Perf. figures depend on...

Workload : What do the atomic blocks do? How long is spent inside
them?

Baseline implementation: Mature existing compiler, or prototype?

Intended semantics: Support static separation? Violation freedom?
Strong atomicity?

STM implementation: In-place updates, deferred updates,
eager/lazy conflict detection, visible/invisible readers?

STM-specific optimizations: e.g. to remove or downgrade redundant
TM operations

Integration: e.g. dynamically between the GC and the STM, or
inlining of STM functions during compilation

Implementation effort: low-level perf tweaks, tuning, etc.
Hardware: e.g. performance of CAS and memory system

Labyrinth

11
. ..

“STAMP: Stanford Transactional Applications for Multi-Processing”

Microsoft:

Research

STAMP v0.9.10
256x256x3 grid
Routing 256 paths

Almost all execution inside atomic
blocks

Atomic blocks can attempt 100K+
updates

C# version derived from original C

Compiled using Bartok, whole
program mode, C# -> x86 (~80%
perf of original C with VS2008)

Overhead results with Core2 Duo
running Windows Vista

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , ISWC 2008

= =
N H

[N
o

1-thread, normalized to seq. baseline

Microsoft’

Research

Sequential overhead

STM implementation supporting static separation
11.86 In-place updates

Lazy conflict detection
Per-object STM metadata

Addition of read/write barriers before accesses
Read: log per-object metadata word
Update: CAS on per-object metadata word
Update: log value being overwritten

STM

= =
N H

[N
o

1-thread, normalized to seq. baseline

Microsoft’

Ko o Research

Sequential overhead

STM

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed
Consequential reduction in validation time
15t level: per-thread hashtable (1024 entries)
2nd level: per-object bitmap of updated fields

Dynamic
filtering

= =
N H

[N
o

1-thread, normalized to seq. baseline

Microsoft’

| e Research

Sequential overhead

STM

Data-flow optimizations

Remove repeated log operations
Open-for-read/update on a per-object basis

Log-old-value on a per-field basis
Remove concurrency control on newly-allocated objects

Dynamic Dataflow
filtering opts

= =
N H

[N
o

1-thread, normalized to seq. baseline

Microsoft’

Ko o Research

Sequential overhead

STM

Inline optimized filter operations

mov eax <- ob]j addr

and eax <- eax, Oxffc

mov ebx <- [table base + eax]
cmp ebx, obj addr

Re-use table base between filter operations
Avoids caller save/restore on filter hits

Dynamic
filtering

Dataflow Filter opts
opts

= =
N H

[N
o

1-thread, normalized to seq. baseline

Microsoft’

Research

Sequential overhead

11.86

Re-use STM logs between transactions

Reduces pressure on per-page allocation lock
Reduces time spent in GC

STM Dynamic Dataflow Filter opts Re-use logs
filtering opts

g
o

o 1.8

in

- ===
o N B~ O

o o
o 00

xecution time / seq. basel
o
D

E
e
o N

Microsoft’

LI ALt Research

Scaling — Labyrinth

- Static separation

- Strong atomicity

1.0 = wall-clock execution

time of sequential code

without concurrency control

HThreads

o o o
N B O

Execution time / seq. baseline

o
o

Microsoft

Research

Scaling — Delaunay

— Static separation
- Strong atomicity

2 3 4 5
HThreads

e
=N
o O

- ===
o N B~ O

o o
A 00

xecution time / seq. baselin
o
D

E
o o
o N

Microsoft

Research

Scaling — Genome

— Static separation
- Strong atomicity

2 3 4 5 6 7 8
HThreads

ed. baseline
= = = =
N D O

21.0

Microsoft

Research

Scaling — Vacation

Static separation ——
e Strong atomicity

2 3 4 5
HThreads

| 71 Microsoft’
& JA\ (4) ” 1ol
| [0 |90 1 Research
- o T &1

Untangling "atomic” from TM
Hiding TM from programmers

Current performance

Microsoft

Research

Abstractions vs implementations

Transactional
memory API

Atomic
blocks

Synchronized
blocks

N IM/%Z/

™

Locks

Microsoft:

Research

Future directions

Which programming discipline should we settle on
— ...in a language like C#?
— ...in future languages?

H/W acceleration based on mature optimized S/W
Implementations

Progress guarantees, interactions with implementation
techniques and performance

What asymptotic bounds on STM performance can we
give when supporting different programming disciplines?

How do we define correctness of an STM interface, as
opposed to the whole language implementation?

Microsoft

Research

Acnkowledgements

Most of the work described in these slides has been collaborative; I'd like to thank colleagues at MSR

Cambridge, MSR Redmond, MSR Mountain View, the Microsoft Parallel Computing Platform Group, the
University of Cambridge Computer Lab, and the MSR-BSC joint research centre.

Material is drawn from the following publications:

Martin Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, Michael Isard. “Implementation and use of
transactional memory with dynamic separation”. Compiler Construction, March 2009

Martin Abadi, Tim Harris, Mojtaba Mehrara. “Transactional memory with strong atomicity using off-
the-shelf memory protection hardware”. PPoPP, February 2009

Martin Abadi, Tim Harris, Katherine Moore. “A model of dynamic separation for transactional
memory”. CONCUR, August 2008

Martin Abadi, Andrew Birrell, Tim Harris, Michael Isard. “Semantics of Transactional Memory and
Automatic Mutual Exclusion”. POPL, January 2008

Keir Fraser, Tim Harris. “Concurrent programming without locks”. ACM TOCS, May 2007

Tim Harris, Mark Plesko, Avraham Shinnar, David Tarditi. “Optimizing Memory Transactions” PLDI,
June 2006

Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice Herlihy. “Composable memory
transactions” PPoPP, June 2005

Tim Harris, Keir Fraser. “Language Support for Lightweight Transactions”. OOPSLA, October 2003

« The material on performance is current at Jan 2009, and reflects a slightly later more optimized
implementation than that described in the PPoPP 2009 paper

