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Untangling “atomic” from TM 

Hiding TM from programmers 

Current performance 



Example: double-ended queue 

Left sentinel 

Thread 1 

10  X 

Thread 2 

30  X 20 

Right sentinel 

• Support push/pop on both ends 

• Allow concurrency where possible 

• Avoid deadlock 



Implementing this: TM 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    QElem e = new QElem(item); 
    do { 
      StartTx(); 
      TxWrite(&e.right, TxRead(&this.leftSentinel.right)); 
      TxWrite(&e.left, this.leftSentinel); 
      TxWrite(&TxRead(&this.leftSentinel.right).left, e); 
      TxWrite(&this.leftSentinel.right, e); 
    } while (!CommitTx()); 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    QElem e = new QElem(item); 
    do { 
      StartTx(); 
      TxWrite(&e.right, TxRead(&this.leftSentinel.right)); 
      TxWrite(&e.left, this.leftSentinel); 
      TxWrite(&TxRead(&this.leftSentinel.right).left, e); 
      TxWrite(&this.leftSentinel.right, e); 
    } while (!CommitTx()); 
  } 
 
  ... 
} 

Broadly based on word-based STM from “Concurrent programming without locks” 

Keir Fraser & Tim Harris, ACM TOCS 



Implementing this: atomic blocks 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    do { 
      StartTx(); 
      QElem e = new QElem(item); 
      TxWrite(&e.right, TxRead(&this.leftSentinel.right)); 
      TxWrite(&e.left, this.leftSentinel); 
      TxWrite(&TxRead(&this.leftSentinel.right).left, e); 
      TxWrite(&this.leftSentinel.right, e); 
    } while (!CommitTx()); 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    do { 
      StartTx(); 
      QElem e = new QElem(item); 
      TxWrite(&e.right, TxRead(&this.leftSentinel.right)); 
      TxWrite(&e.left, this.leftSentinel); 
      TxWrite(&TxRead(&this.leftSentinel.right).left, e); 
      TxWrite(&this.leftSentinel.right, e); 
    } while (!CommitTx()); 
  } 
 
  ... 
} 



Design questions 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 
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step through this, and there’s 

a conflict with a concurrent 

transaction 
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step through this, and there’s 

a conflict with a concurrent 

transaction 
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fails with an exception; 

are the other updates 

rolled back? 

“What happens if this 

fails with an exception; 

are the other updates 

rolled back? 
“What if another thread tries 

to access one of these fields 

without being in an atomic 

block? 

“What if another thread tries 

to access one of these fields 

without being in an atomic 

block? 

“What if another atomic block 

updates one of these fields?  

Will I see the value change mid-

way through my atomic block? 

“What if another atomic block 

updates one of these fields?  

Will I see the value change mid-

way through my atomic block? 

“What about 

I/O? 

“What about 

I/O? 

“What about memory access 

violations, exceptions, security 

error logs, ...? 

“What about memory access 

violations, exceptions, security 

error logs, ...? 



“Atomic blocks are transactions” 

“Composable memory transactions”, Tim Harris, Simon Marlow,  
Simon Peyton Jones, Maurice Herlihy, PPoPP ‘05 



“Atomic blocks are locks” 

• Consequences explored 

methodically by Menon  

et al (Transact ’08,  

SPAA ’08) 



Abstractions vs implementations 

Transactional 

memory API 

Transactional 

memory API 

Synchronized 

blocks 

Synchronized 

blocks 

TM TM Locks Locks 

Atomic  

blocks 

Atomic  

blocks 

TM TM TM TM TM TM 

AME AME 



Defining “atomic” without saying “TM” 

• “Strong semantics” 
– Simple interleaved execution of threads 

– If a thread starts an atomic block then only it can take 
steps 

– Blocking operations (e.g. “retry”, “orElse”, “blockUntil”) 
can be incorporated – see refs below 

• This means: 
– Atomic blocks are atomic wrt normal memory accesses 

– Do not need to model conflict detection / resolution 

– Can choose whether or not to retain the effects of an 
atomic block that raises an exception 

“Composable memory transactions”, Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice Herlihy. PPoPP ’05 

“Semantics of Transactional Memory and Automatic Mutual Exclusion”, Martín Abadi, Andrew Birrell, Tim Harris, Michael Isard. POPL ‘08 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = true;   x = 0; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = true;   x = 0; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = true;   x = 100; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 100; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 101; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
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} 

atomic { 
   x_shared = false; 
} 
x++; 
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} 
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x_shared = true;   x = 0; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 
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   x_shared = false; 
} 
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Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 0; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 0; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 1; 



Strong semantics 

• We’ve not talked about “inconsistent reads”, 

“roll backs”, “in-place vs lazy updates”, “weak 

atomicity”, “strong atomicity”, ... 

• We’ve not ruled out anything (e.g. I/O) 

• We’ve not considered program 

transformations 

 

• Is this a pipe-dream?  Can we implement it? 

 

 



Untangling “atomic” from TM 

Hiding TM from programmers 

Current performance 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = true;   x = 0; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = true;   x = 0; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = true;   x = 100; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 100; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 101; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 0; 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = false;   x = 0; 



Hiding TM from programmers 

Programming discipline(s) 
  

What does it mean for a 
program to use the 

constructs correctly? 

Low-level semantics &  
actual implementations 

 

Transactions, lock inference, optimistic 
concurrency, program transformations, 

weak memory models, ... 

Strong semantics  
 

atomic, retry, ..... What, ideally,  
should these constructs do? 



Programming disciplines 

All  

programs 

Violation-free 

programs 

Obeying dynamic 

separation 

Obeying static 

separation 

Fewer programs 

satisfy the discipline 

Fewer programs 

satisfy the discipline 

More programs 

satisfy the discipline 

More programs 

satisfy the discipline 

• Based on a program’s execution under the 

strong semantics 



Static separation 

• Atomic blocks can only access local variables 

and designated “atomic variables” 

• “atomic variables” cannot be accessed 

outside atomic blocks 

Class Q { 
  atomic QElem leftSentinel; 
  atomic QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  atomic QElem leftSentinel; 
  atomic QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 



Delaunay triangulation 

“Delaunay Triangulation with Transactions and Barriers” 

Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe, IISWC 2007 



Delaunay triangulation (2) 

Initialization 

Independent parallel 

work 

Possibly-conflicting 

parallel work 

Output 

Synchronization barrier 

Synchronization barrier 

Synchronization barrier 



Dynamic separation 

• Add explicit operations to indicate whether 
data is accessed inside atomic blocks, or 
accessed outside them 

• Correctly synchronized: data is always in the 
correct mode when it is accessed 

• Robust dynamic checking is possible: 

– Either the program runs with strong semantics 

– Or it fails with an error 

“Implementation and use of transactional memory with dynamic separation”,  
Martín Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, Michael Isard, CC ’09 (to appear) 



Violation freedom (VF) 

• Allow data’s access mode to change implicitly 

• To be correctly synchronized: 

– Conflicting data accesses must not be attempted 

concurrently inside & outside atomic blocks 

• Reminiscent of rules for programs to be free 

from data races 



Example: a privatization idiom 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   if (x_shared) { 
      x = 100; 
   } 
} 

atomic { 
   x_shared = false; 
} 
x++; 

atomic { 
   x_shared = false; 
} 
x++; 

x_shared = true;   x = 0; 



Programming with violations 

C# version of Labyrinth, derived from “STAMP: Stanford Transactional Applications for  

Multi-Processing” Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC ’08 

Copy to a thread-local map 

(no concurrency control) 

Atomically: route on the 

local map and merge back 



Strong atomicity 

• Similar to typical HTM behavior 

• Trade off implementation complexity for 

(hopefully) scalability & straight-line speed,  

• Two recent approaches: 

– “Dynamic Optimization for Efficient Strong 

Atomicity”, Schneider et al, OOPSLA ’08 

– “Transactional memory with strong atomicity 

using off-the-shelf memory protection hardware”,  

Abadi et al, PPoPP ’09 



Strong atomicity =/> strong semantics 

• Can tmp1==true, tmp2==0? 

• Under strong semantics: no 

• Under plausible implementations with strong 

atomicity: yes 

Example from “What do high-level memory models mean for transactions?” 

Dan Grossman, Jeremy Manson, William Pugh, MSPC ’06 

atomic {  
   ready = true; 
   data = 1; 
} 

atomic {  
   ready = true; 
   data = 1; 
} 

tmp1 = ready; 
if (tmp1 == true) { 
   tmp2 = data; 
} 

tmp1 = ready; 
if (tmp1 == true) { 
   tmp2 = data; 
} 



Design questions 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 

Class Q { 
  QElem leftSentinel; 
  QElem rightSentinel; 
 
  void pushLeft(int item) { 
    atomic { 
      QElem e = new QElem(item); 
      e.right = this.leftSentinel.right; 
      e.left = this.leftSentinel; 
      this.leftSentinel.right.left = e; 
      this.leftSentinel.right = e; 
    } 
  } 
 
  ... 
} 
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Will I see the value change mid-
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“What if another atomic block 
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I/O? 

“What about 

I/O? 

“What about memory access 

violations, exceptions, security 

error logs, ...? 

“What about memory access 

violations, exceptions, security 

error logs, ...? 

“Atomic blocks are for 

building shared memory data 

structures; use explicit 

synchronization for I/O 

“Atomic blocks are for 

building shared memory data 

structures; use explicit 

synchronization for I/O “In correctly synchronized 

programs, any use of 

speculation must be hidden by 

the implementation 

“In correctly synchronized 

programs, any use of 

speculation must be hidden by 

the implementation 

“In correctly synchronized 

programs, speculation won’t 

be revealed by the debugger 

“In correctly synchronized 

programs, speculation won’t 

be revealed by the debugger 

“This depends on the 

language (Personally: 

no roll  back, to avoid 

overhead on lock-

inference impl’s) 

“This depends on the 

language (Personally: 

no roll  back, to avoid 

overhead on lock-

inference impl’s) 

“Again, in correctly 

synchronized programs, 

speculation won’t be revealed 

by the implementation 

“Again, in correctly 

synchronized programs, 

speculation won’t be revealed 

by the implementation 

“If it’s a conflicting access, 

then the program is not 

correctly synchronized 

“If it’s a conflicting access, 

then the program is not 

correctly synchronized 

“Again, ... “Again, ... 



Open nesting, boosting, system calls 

TM TM TM TM 

Atomic  

blocks 

Atomic  

blocks 

TM TM TM TM Locks Locks 

Programming abstraction 

is “atomic blocks”.  Just 

shared memory 

operations (including 

allocation, including GC). 

Programming abstraction 

is “atomic blocks”.  Just 

shared memory 

operations (including 

allocation, including GC). 

Implementation may 

use system calls, e.g. 

allocating memory.   

Implementation may 

use system calls, e.g. 

allocating memory.   

Open nesting, boosting are “TM-

level” operations, possibly used in 

the implementation of allocation 

during atomic blocks.   Mark uses as 

“unsafe” if explicit in applications. 

Open nesting, boosting are “TM-

level” operations, possibly used in 

the implementation of allocation 

during atomic blocks.   Mark uses as 

“unsafe” if explicit in applications. 



Untangling “atomic” from TM 

Hiding TM from programmers 

Current performance 



Perf. figures depend on... 

• Workload : What do the atomic blocks do?  How long is spent inside 
them? 

• Baseline implementation: Mature existing compiler, or prototype? 

• Intended semantics: Support static separation?  Violation freedom?  
Strong atomicity? 

• STM implementation: In-place updates, deferred updates, 
eager/lazy conflict detection, visible/invisible readers? 

• STM-specific optimizations: e.g. to remove or downgrade redundant 
TM operations 

• Integration: e.g. dynamically between the GC and the STM, or 
inlining of STM functions during compilation 

• Implementation effort: low-level perf tweaks, tuning, etc. 

• Hardware: e.g. performance of CAS and memory system 



Labyrinth 

s1 

e1 

• STAMP v0.9.10 

• 256x256x3 grid 

• Routing 256 paths 

• Almost all execution inside atomic 

blocks 

• Atomic blocks can attempt 100K+ 

updates 

• C# version derived from original C 

• Compiled using Bartok, whole 

program mode, C# -> x86 (~80% 

perf of original C with VS2008) 

• Overhead results with Core2 Duo 

running Windows Vista 

“STAMP: Stanford Transactional Applications for Multi-Processing” 

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008 
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Sequential overhead 

STM implementation supporting static separation 

In-place updates 

Lazy conflict detection 

Per-object STM metadata 

Addition of read/write barriers before accesses 

Read: log per-object metadata word 

Update: CAS on per-object metadata word 

Update: log value being overwritten 

STM implementation supporting static separation 

In-place updates 

Lazy conflict detection 

Per-object STM metadata 

Addition of read/write barriers before accesses 

Read: log per-object metadata word 

Update: CAS on per-object metadata word 

Update: log value being overwritten 
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Dynamic filtering to remove redundant logging 

 

Log size grows with #locations accessed 

Consequential reduction in validation time 

1st level: per-thread hashtable (1024 entries) 

2nd level: per-object bitmap of updated fields 

Dynamic filtering to remove redundant logging 

 

Log size grows with #locations accessed 

Consequential reduction in validation time 

1st level: per-thread hashtable (1024 entries) 

2nd level: per-object bitmap of updated fields 
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Data-flow optimizations 

 

Remove repeated log operations 

Open-for-read/update on a per-object basis 

Log-old-value on a per-field basis 

Remove concurrency control on newly-allocated objects 

Data-flow optimizations 

 

Remove repeated log operations 

Open-for-read/update on a per-object basis 

Log-old-value on a per-field basis 

Remove concurrency control on newly-allocated objects 
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 Inline optimized filter operations 

 

 

 

 

 

Re-use table_base between filter operations 

Avoids caller save/restore on filter hits 

Inline optimized filter operations 

 

 

 

 

 

Re-use table_base between filter operations 

Avoids caller save/restore on filter hits 

mov eax <- obj_addr 

and eax <- eax, 0xffc 

mov ebx <- [table_base + eax] 

cmp ebx, obj_addr 
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Re-use STM logs between transactions 

 

Reduces pressure on per-page allocation lock 

Reduces time spent in GC 

Re-use STM logs between transactions 

 

Reduces pressure on per-page allocation lock 

Reduces time spent in GC 



Scaling – Labyrinth 
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#Threads 

Static separation 

Strong atomicity 

1.0 = wall-clock execution 

time of sequential code 

without concurrency control 

1.0 = wall-clock execution 

time of sequential code 
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Scaling – Delaunay 
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Scaling – Genome 
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Scaling – Vacation 
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Untangling “atomic” from TM 

Hiding TM from programmers 

Current performance 
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Future directions 

• Which programming discipline should we settle on 

– ...in a language like C#? 

– ...in future languages? 

• H/W acceleration based on mature optimized S/W 

implementations 

• Progress guarantees, interactions with implementation 

techniques and performance 

• What asymptotic bounds on STM performance can we 

give when supporting different programming disciplines? 

• How do we define correctness of an STM interface, as 

opposed to the whole language implementation? 
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