
Language constructs for

transactional memory

Tim Harris

Disclaimer: these are my personal opinions

Untangling “atomic” from TM

Hiding TM from programmers

Current performance

Example: double-ended queue

Left sentinel

Thread 1

10 X

Thread 2

30 X 20

Right sentinel

• Support push/pop on both ends

• Allow concurrency where possible

• Avoid deadlock

Implementing this: TM

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 QElem e = new QElem(item);
 do {
 StartTx();
 TxWrite(&e.right, TxRead(&this.leftSentinel.right));
 TxWrite(&e.left, this.leftSentinel);
 TxWrite(&TxRead(&this.leftSentinel.right).left, e);
 TxWrite(&this.leftSentinel.right, e);
 } while (!CommitTx());
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 QElem e = new QElem(item);
 do {
 StartTx();
 TxWrite(&e.right, TxRead(&this.leftSentinel.right));
 TxWrite(&e.left, this.leftSentinel);
 TxWrite(&TxRead(&this.leftSentinel.right).left, e);
 TxWrite(&this.leftSentinel.right, e);
 } while (!CommitTx());
 }

 ...
}

Broadly based on word-based STM from “Concurrent programming without locks”

Keir Fraser & Tim Harris, ACM TOCS

Implementing this: atomic blocks

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 do {
 StartTx();
 QElem e = new QElem(item);
 TxWrite(&e.right, TxRead(&this.leftSentinel.right));
 TxWrite(&e.left, this.leftSentinel);
 TxWrite(&TxRead(&this.leftSentinel.right).left, e);
 TxWrite(&this.leftSentinel.right, e);
 } while (!CommitTx());
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 do {
 StartTx();
 QElem e = new QElem(item);
 TxWrite(&e.right, TxRead(&this.leftSentinel.right));
 TxWrite(&e.left, this.leftSentinel);
 TxWrite(&TxRead(&this.leftSentinel.right).left, e);
 TxWrite(&this.leftSentinel.right, e);
 } while (!CommitTx());
 }

 ...
}

Design questions

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

“What happens to

this object if the

atomic block is

rolled back?

“What happens to

this object if the

atomic block is

rolled back?

“What happens if I single-

step through this, and there’s

a conflict with a concurrent

transaction

“What happens if I single-

step through this, and there’s

a conflict with a concurrent

transaction

“What happens if this

fails with an exception;

are the other updates

rolled back?

“What happens if this

fails with an exception;

are the other updates

rolled back?
“What if another thread tries

to access one of these fields

without being in an atomic

block?

“What if another thread tries

to access one of these fields

without being in an atomic

block?

“What if another atomic block

updates one of these fields?

Will I see the value change mid-

way through my atomic block?

“What if another atomic block

updates one of these fields?

Will I see the value change mid-

way through my atomic block?

“What about

I/O?

“What about

I/O?

“What about memory access

violations, exceptions, security

error logs, ...?

“What about memory access

violations, exceptions, security

error logs, ...?

“Atomic blocks are transactions”

“Composable memory transactions”, Tim Harris, Simon Marlow,
Simon Peyton Jones, Maurice Herlihy, PPoPP ‘05

“Atomic blocks are locks”

• Consequences explored

methodically by Menon

et al (Transact ’08,

SPAA ’08)

Abstractions vs implementations

Transactional

memory API

Transactional

memory API

Synchronized

blocks

Synchronized

blocks

TM TM Locks Locks

Atomic

blocks

Atomic

blocks

TM TM TM TM TM TM

AME AME

Defining “atomic” without saying “TM”

• “Strong semantics”
– Simple interleaved execution of threads

– If a thread starts an atomic block then only it can take
steps

– Blocking operations (e.g. “retry”, “orElse”, “blockUntil”)
can be incorporated – see refs below

• This means:
– Atomic blocks are atomic wrt normal memory accesses

– Do not need to model conflict detection / resolution

– Can choose whether or not to retain the effects of an
atomic block that raises an exception

“Composable memory transactions”, Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice Herlihy. PPoPP ’05

“Semantics of Transactional Memory and Automatic Mutual Exclusion”, Martín Abadi, Andrew Birrell, Tim Harris, Michael Isard. POPL ‘08

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 100;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 100;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 101;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 1;

Strong semantics

• We’ve not talked about “inconsistent reads”,

“roll backs”, “in-place vs lazy updates”, “weak

atomicity”, “strong atomicity”, ...

• We’ve not ruled out anything (e.g. I/O)

• We’ve not considered program

transformations

• Is this a pipe-dream? Can we implement it?

Untangling “atomic” from TM

Hiding TM from programmers

Current performance

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 100;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 100;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 101;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 0;

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = false; x = 0;

Hiding TM from programmers

Programming discipline(s)

What does it mean for a
program to use the

constructs correctly?

Low-level semantics &
actual implementations

Transactions, lock inference, optimistic
concurrency, program transformations,

weak memory models, ...

Strong semantics

atomic, retry, What, ideally,
should these constructs do?

Programming disciplines

All

programs

Violation-free

programs

Obeying dynamic

separation

Obeying static

separation

Fewer programs

satisfy the discipline

Fewer programs

satisfy the discipline

More programs

satisfy the discipline

More programs

satisfy the discipline

• Based on a program’s execution under the

strong semantics

Static separation

• Atomic blocks can only access local variables

and designated “atomic variables”

• “atomic variables” cannot be accessed

outside atomic blocks

Class Q {
 atomic QElem leftSentinel;
 atomic QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 atomic QElem leftSentinel;
 atomic QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Delaunay triangulation

“Delaunay Triangulation with Transactions and Barriers”

Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe, IISWC 2007

Delaunay triangulation (2)

Initialization

Independent parallel

work

Possibly-conflicting

parallel work

Output

Synchronization barrier

Synchronization barrier

Synchronization barrier

Dynamic separation

• Add explicit operations to indicate whether
data is accessed inside atomic blocks, or
accessed outside them

• Correctly synchronized: data is always in the
correct mode when it is accessed

• Robust dynamic checking is possible:

– Either the program runs with strong semantics

– Or it fails with an error

“Implementation and use of transactional memory with dynamic separation”,
Martín Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, Michael Isard, CC ’09 (to appear)

Violation freedom (VF)

• Allow data’s access mode to change implicitly

• To be correctly synchronized:

– Conflicting data accesses must not be attempted

concurrently inside & outside atomic blocks

• Reminiscent of rules for programs to be free

from data races

Example: a privatization idiom

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 if (x_shared) {
 x = 100;
 }
}

atomic {
 x_shared = false;
}
x++;

atomic {
 x_shared = false;
}
x++;

x_shared = true; x = 0;

Programming with violations

C# version of Labyrinth, derived from “STAMP: Stanford Transactional Applications for

Multi-Processing” Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC ’08

Copy to a thread-local map

(no concurrency control)

Atomically: route on the

local map and merge back

Strong atomicity

• Similar to typical HTM behavior

• Trade off implementation complexity for

(hopefully) scalability & straight-line speed,

• Two recent approaches:

– “Dynamic Optimization for Efficient Strong

Atomicity”, Schneider et al, OOPSLA ’08

– “Transactional memory with strong atomicity

using off-the-shelf memory protection hardware”,

Abadi et al, PPoPP ’09

Strong atomicity =/> strong semantics

• Can tmp1==true, tmp2==0?

• Under strong semantics: no

• Under plausible implementations with strong

atomicity: yes

Example from “What do high-level memory models mean for transactions?”

Dan Grossman, Jeremy Manson, William Pugh, MSPC ’06

atomic {
 ready = true;
 data = 1;
}

atomic {
 ready = true;
 data = 1;
}

tmp1 = ready;
if (tmp1 == true) {
 tmp2 = data;
}

tmp1 = ready;
if (tmp1 == true) {
 tmp2 = data;
}

Design questions

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

Class Q {
 QElem leftSentinel;
 QElem rightSentinel;

 void pushLeft(int item) {
 atomic {
 QElem e = new QElem(item);
 e.right = this.leftSentinel.right;
 e.left = this.leftSentinel;
 this.leftSentinel.right.left = e;
 this.leftSentinel.right = e;
 }
 }

 ...
}

“What happens to

this object if the

atomic block is

rolled back?

“What happens to

this object if the

atomic block is

rolled back?

“What happens if I single-

step through this, and there’s

a conflict with a concurrent

transaction

“What happens if I single-

step through this, and there’s

a conflict with a concurrent

transaction

“What happens if this

fails with an exception;

are the other updates

rolled back?

“What happens if this

fails with an exception;

are the other updates

rolled back?
“What if another thread tries

to access one of these fields

without being in an atomic

block?

“What if another thread tries

to access one of these fields

without being in an atomic

block?

“What if another atomic block

updates one of these fields?

Will I see the value change mid-

way through my atomic block?

“What if another atomic block

updates one of these fields?

Will I see the value change mid-

way through my atomic block?

“What about

I/O?

“What about

I/O?

“What about memory access

violations, exceptions, security

error logs, ...?

“What about memory access

violations, exceptions, security

error logs, ...?

“Atomic blocks are for

building shared memory data

structures; use explicit

synchronization for I/O

“Atomic blocks are for

building shared memory data

structures; use explicit

synchronization for I/O “In correctly synchronized

programs, any use of

speculation must be hidden by

the implementation

“In correctly synchronized

programs, any use of

speculation must be hidden by

the implementation

“In correctly synchronized

programs, speculation won’t

be revealed by the debugger

“In correctly synchronized

programs, speculation won’t

be revealed by the debugger

“This depends on the

language (Personally:

no roll back, to avoid

overhead on lock-

inference impl’s)

“This depends on the

language (Personally:

no roll back, to avoid

overhead on lock-

inference impl’s)

“Again, in correctly

synchronized programs,

speculation won’t be revealed

by the implementation

“Again, in correctly

synchronized programs,

speculation won’t be revealed

by the implementation

“If it’s a conflicting access,

then the program is not

correctly synchronized

“If it’s a conflicting access,

then the program is not

correctly synchronized

“Again, ... “Again, ...

Open nesting, boosting, system calls

TM TM TM TM

Atomic

blocks

Atomic

blocks

TM TM TM TM Locks Locks

Programming abstraction

is “atomic blocks”. Just

shared memory

operations (including

allocation, including GC).

Programming abstraction

is “atomic blocks”. Just

shared memory

operations (including

allocation, including GC).

Implementation may

use system calls, e.g.

allocating memory.

Implementation may

use system calls, e.g.

allocating memory.

Open nesting, boosting are “TM-

level” operations, possibly used in

the implementation of allocation

during atomic blocks. Mark uses as

“unsafe” if explicit in applications.

Open nesting, boosting are “TM-

level” operations, possibly used in

the implementation of allocation

during atomic blocks. Mark uses as

“unsafe” if explicit in applications.

Untangling “atomic” from TM

Hiding TM from programmers

Current performance

Perf. figures depend on...

• Workload : What do the atomic blocks do? How long is spent inside
them?

• Baseline implementation: Mature existing compiler, or prototype?

• Intended semantics: Support static separation? Violation freedom?
Strong atomicity?

• STM implementation: In-place updates, deferred updates,
eager/lazy conflict detection, visible/invisible readers?

• STM-specific optimizations: e.g. to remove or downgrade redundant
TM operations

• Integration: e.g. dynamically between the GC and the STM, or
inlining of STM functions during compilation

• Implementation effort: low-level perf tweaks, tuning, etc.

• Hardware: e.g. performance of CAS and memory system

Labyrinth

s1

e1

• STAMP v0.9.10

• 256x256x3 grid

• Routing 256 paths

• Almost all execution inside atomic

blocks

• Atomic blocks can attempt 100K+

updates

• C# version derived from original C

• Compiled using Bartok, whole

program mode, C# -> x86 (~80%

perf of original C with VS2008)

• Overhead results with Core2 Duo

running Windows Vista

“STAMP: Stanford Transactional Applications for Multi-Processing”

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, Kunle Olukotun , IISWC 2008

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Sequential overhead

STM implementation supporting static separation

In-place updates

Lazy conflict detection

Per-object STM metadata

Addition of read/write barriers before accesses

Read: log per-object metadata word

Update: CAS on per-object metadata word

Update: log value being overwritten

STM implementation supporting static separation

In-place updates

Lazy conflict detection

Per-object STM metadata

Addition of read/write barriers before accesses

Read: log per-object metadata word

Update: CAS on per-object metadata word

Update: log value being overwritten

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed

Consequential reduction in validation time

1st level: per-thread hashtable (1024 entries)

2nd level: per-object bitmap of updated fields

Dynamic filtering to remove redundant logging

Log size grows with #locations accessed

Consequential reduction in validation time

1st level: per-thread hashtable (1024 entries)

2nd level: per-object bitmap of updated fields

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Data-flow optimizations

Remove repeated log operations

Open-for-read/update on a per-object basis

Log-old-value on a per-field basis

Remove concurrency control on newly-allocated objects

Data-flow optimizations

Remove repeated log operations

Open-for-read/update on a per-object basis

Log-old-value on a per-field basis

Remove concurrency control on newly-allocated objects

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

 Inline optimized filter operations

Re-use table_base between filter operations

Avoids caller save/restore on filter hits

Inline optimized filter operations

Re-use table_base between filter operations

Avoids caller save/restore on filter hits

mov eax <- obj_addr

and eax <- eax, 0xffc

mov ebx <- [table_base + eax]

cmp ebx, obj_addr

Sequential overhead

11.86

3.14

1.99 1.71 1.71

0

2

4

6

8

10

12

14

STM Dynamic
filtering

Dataflow
opts

Filter opts Re-use logs

1
-t

h
re

ad
, n

o
rm

al
iz

e
d

 t
o

 s
e

q
. b

as
e

lin
e

Re-use STM logs between transactions

Reduces pressure on per-page allocation lock

Reduces time spent in GC

Re-use STM logs between transactions

Reduces pressure on per-page allocation lock

Reduces time spent in GC

Scaling – Labyrinth

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Static separation

Strong atomicity

1.0 = wall-clock execution

time of sequential code

without concurrency control

1.0 = wall-clock execution

time of sequential code

without concurrency control

Scaling – Delaunay

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Static separation

Strong atomicity

Scaling – Genome

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Static separation

Strong atomicity

Scaling – Vacation

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8

Ex
e

cu
ti

o
n

 t
im

e
 /

 s
e

q
. b

as
e

lin
e

#Threads

Static separation

Strong atomicity

Untangling “atomic” from TM

Hiding TM from programmers

Current performance

Abstractions vs implementations

Transactional

memory API

Transactional

memory API

Synchronized

blocks

Synchronized

blocks

TM TM Locks Locks

Atomic

blocks

Atomic

blocks

TM TM TM TM TM TM

AME AME

Future directions

• Which programming discipline should we settle on

– ...in a language like C#?

– ...in future languages?

• H/W acceleration based on mature optimized S/W

implementations

• Progress guarantees, interactions with implementation

techniques and performance

• What asymptotic bounds on STM performance can we

give when supporting different programming disciplines?

• How do we define correctness of an STM interface, as

opposed to the whole language implementation?

Acnkowledgements
• Most of the work described in these slides has been collaborative; I’d like to thank colleagues at MSR

Cambridge, MSR Redmond, MSR Mountain View, the Microsoft Parallel Computing Platform Group, the

University of Cambridge Computer Lab, and the MSR-BSC joint research centre.

• Material is drawn from the following publications:

– Martín Abadi, Andrew Birrell, Tim Harris, Johnson Hsieh, Michael Isard. “Implementation and use of

transactional memory with dynamic separation”. Compiler Construction, March 2009

– Martín Abadi, Tim Harris, Mojtaba Mehrara. “Transactional memory with strong atomicity using off-

the-shelf memory protection hardware”. PPoPP, February 2009

– Martín Abadi, Tim Harris, Katherine Moore. “A model of dynamic separation for transactional

memory”. CONCUR, August 2008

– Martín Abadi, Andrew Birrell, Tim Harris, Michael Isard. “Semantics of Transactional Memory and

Automatic Mutual Exclusion”. POPL, January 2008

– Keir Fraser, Tim Harris. “Concurrent programming without locks”. ACM TOCS, May 2007

– Tim Harris, Mark Plesko, Avraham Shinnar, David Tarditi. “Optimizing Memory Transactions” PLDI,

June 2006

– Tim Harris, Simon Marlow, Simon Peyton Jones, Maurice Herlihy. “Composable memory

transactions” PPoPP, June 2005

– Tim Harris, Keir Fraser. “Language Support for Lightweight Transactions”. OOPSLA, October 2003

• The material on performance is current at Jan 2009, and reflects a slightly later more optimized

implementation than that described in the PPoPP 2009 paper

